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ABSTRACT The mechanism by which polyethylene glycol (PEG) mediates cell fusion has been 
studied by examining the movements of membrane lipids and proteins, as well as cytoplasmic 
markers, from erythrocytes to monolayers of cultured cells to which they have been fused. 
Fluorescence and freeze-fracture electron microscopy and fluorescence recovery after photo- 
bleaching have yielded the following results: (a) In the presence of both fusogenic and 
nonfusogenic PEG 1 membranes are brought together at closely apposed contact regions. (b) 
Fluorescent lipid probes quickly spread from the membranes of erythrocytes to cultured cells 
in the presence of both fusogenic and nonfusogenic PEG. (c) Proteins of the erythrocyte 
membranes were never observed to diffuse into the cultured cell membrane. (d) Water-soluble 
proteins did not diffuse from the erythrocyte interior into the target cell cytoplasm until the 
PEG was removed. These data suggest that the coordinate action of two distinct components 
is necessary for fusion as mediated by PEG. Presumably, the polymer itself promotes close 
apposition of the adjacent cell membranes but the fusion stimulus is provided by the additives 
contained in commercial PEG. 

Polyethylene glycol (PEG) of high molecular weight is widely 
used to mediate ceU-ceU fusion in the production of somatic 
cell hybrids, including hybridomas, and more recently in the 
fusion injection of macromolecules from erythrocytes (1, 2) or 
liposomes into cultured cells (3). PEG offers advantages over 
other fusogens in that it permits fusion of  a variety of cell types 
which may differ in species or even in kingdom and under the 
proper conditions produces high fusion efficiencies with mini- 
mal toxicity. Yet little is known of the mechanism by which 
PEG operates. 

PEG causes the redistribution of intramembrane particles 
(IMPs) of cellular membranes, this ability being attributed to 
the ordering of water by high concentrations of the polymer 
(4). When aqueous solutions of PEG exceed 35%, cell aggre- 

Dr. J. Lucy has pointed out that the term "nonfusogenic PEG" does 
not apply to all cell fusion protocols. He and his co-workers (29) have 
shown that extracted PEG (6) will fuse hen erythrocytes in a protocol 
requiring a 15-rain incubation in PEG. 

gation and fusion are observed, although maximum fusion 
efficiency occurs at concentrations between 40 and 50%. Since 
all water is bound to PEG in solutions having concentrations 
of 35% by weight or greater, dehydration appears to play a role 
in PEG-mediated fusion (5, 25). However, pure PEG does not 
appear to be a complete fusogen. Recently, Honda et al. (6) 
have demonstrated that antioxidants and/or  polymerization 
agents added to commercial PEG are responsible for the fusion 
~ctivity since removal of these agents through organic solvent 
extraction renders the PEG nonfusogenic) Earlier work had 
shown that membrane active chemicals such as glyceryl mon- 
ooleate (GMO) are only capable of inducing cell-cell fusion 
when administered in conjunction with high molecular weight 
polymers such as dextrans (5). 

Our interest in the mechanisms of PEG-induced fusion was 
prompted by our use of the erythrocyte-mediated microinjec- 
tion method to introduce fluorescent macromolecules into the 
cytoplasm of cultured cells (7) and subsequently to measure 
their diffusion rates by the fluorescence recovery after photo- 
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bleaching (FRAP) technique. Experimentally, this method of- 
fers both relative biological simplicity and a high fusion effi- 
ciency. 

To approach the question of the molecular mechanisms 
occurring during fusion, we planned to examine both the 
movement of membrane lipids and proteins from one cell to 
another and the cytoplasmic communication between cells 
which follows the fusion event. 

MATERIALS AND METHODS 

Cells 
CULTURED CELLS: Human neonatal foreskin diploid fibroblasts, strain 

BG-9, were grown in Eagle's minimal essential medium with Eafle's salts (Gibco 
Laboratories, Grand Island Biological Co., Grand Island, NY), 10% heat-inacti- 
vated fetal calf serum (KC Biologlcals, Lanexa, KS), penicillin (500 U/ml)  and 
streptomycin (0.5 mg/ml).  Mouse embryo flbroblast cells, C3HIOTY~, were 
cultured in Basal medium with Earle's salts containing 10% heat-inactivated fetal 
calf serum (FCS), 1% penicillin, streptomycin and L-glutamine. Veto, a green 
monkey kidney cell line, and baby hamster kidney (BHK) cell line, were grown 
in Dulbecco's minimum essential medium with 10% heat-inactivated FCS con- 
taining penicillin, streptomycin and L-glutamine. All cells were seeded onto 22- 
mm square glass coverslips within 35-mm petri dishes and cultured for 24 h 
before the fusion experiments. 

ERYTHROCYTES: Fresh human erythrocytes were collected into beparin- or 
citrate-containing anti-coagulant tubes and were washed repeatedly with PBS to 
remove the plasma proteins and the leukocytes. The washed erythrocytes were 
stored as a 50% suspension in Hanks '  balanced salt solution (HBSS) at 4°C until 
needed. Storage times typically did not exceed 3 d. The mouse spherocytic 
erythrocytes were a generous gift from Dr. S. Bernstein, Jackson Laboratories, 
Bar Harbor, ME. 

Reagents 
Bovine serum albumin (BSA), fatty acid-free (Sigma Chemical Co., Saint 

Louis, MO) and rabbit anti-human erythrocyte IgG (Cappel labs, Cochranville, 
PA) were coupled with fluorescein isothiocyanate at 22°C in a 0.1 M borate 
buffer at pH 9.2. The free isothiocyanate was removed from the proteins by gel 
filtration on a Sephadex G-25/50 column (2 cm of G25 on top of  20 cm G50) 
and then dialyzed overnight against PBS at 4°C. Dye-to-protein ratios were in 
the range of 0.75 to 2. Polyethylene glycols, average 8,000 mol wt, were purchased 
from Fisher Chemical Company (Pittsburgh, PA), the BASF Wyandotte Corp. 
(Wyandotte, MI), and from Research Products International (Mount Prospect, 
IL). 

The fluorescent lipid probe, dihexadecylinodocarbocyanine (dil), was a gen- 
erous gift from Dr. A. Waggoner. NBD derivatives of phosphatidylcholine (l-  
acyl-2(N-4 nitrobenzo-2-oxa-1,3 diazole)-amino caproyl phophatidylchollne; C6- 
NBD-PC) and phosphatidylethanolamine (N-4 nitrobenzo-2oxa- 1,3 diazole phos- 
phatidylethanolamine; NBD-PE) were purchased from Avanti Biochemicals, Inc. 
(Birmingham, AL) and were chromatographed on silica gel plates before use. 
Anti-oxidants were obtained from Sigma Chemical Co. Stock solutions were 
made with methanol as the solvent and stored under nitrogen and in the dark. 
Fluorescein isothiocyanate (FITC) on celite was purchased from Research Or- 
ganics Inc. (Cleveland, OH), while eosin isothiocyanate (EITC) was a gift from 
Dr. E-S. Wu, University of  Maryland-Baltimore County. The lectin, phytohe- 
magglutinin (PHA), was obtained from Miles Laboratories (Elkhart, IN) or from 
Difco Laboratories (Detroit, MI). All antiserums were purchased from Cappel 
Laboratories and used without further purification. Fab fragments of rabbit IgG 
were made according to the protocol of Putnam et al. (26). 

ERYTHROCYTE-MEDIATED MICROINJECTION: Loading of the erythro- 
cytes with the aqueous probe, F-BSA, and the actual microinjections were 
performed according to the method of Schlegel and Mercer (9). Erythrocytes, 
which had been treated as described above, were bound to the surface of the 
cultured cells with PHA (50 ~g/ml). After the removal of  the unattached 
erythrocytes and the excess fluid, 1 ml of 44% PEG (8,000 tool wt in 20 mM 
Tris/0.15 M NaC1) was added for I min. The PEG was removed by repeated 
washings with PBS. Fusion efficiency was determined in parallel culture plates 
by counting the number of cultured cells which were microinjected with the 
cytoplasmic probe, F-BSA. This protocol was also used in all erythrocyte or 
erythrocyte ghost fusion experiments. 

LABELING OF ERYTHROCYTES: Staining of the erythrocytes with the 
fluorescent lipid probes was achieved through an ethanol injection protocol 
followed by a 30-min incubation at 37°C. Labeling of the erythrocytes with dil 
was achieved with a 5 mM final dye concentration in 2.7% (vol/vol) ethanol. In 
the case of the NBD-labeled phosphollpids, staining was achieved at the final 
probe concentrations of 12 mM in 10% ethanol (vol/vol). Erythrocytes incubated 
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in 10% ethanol for 30 min at 37°C were shown to undergo PEG-mediated fusion. 
Ceils were washed repeatedly with PBS to remove the free NBD-phospholipids. 
Covalent labeling of the erythrocyte membrane proteins with FITC was done 
according to Fowler and Branton (10). The procedure of Golan and Veatch was 
used for labeling with EITC (11). 

SENDAl FUSION: Erythrocyte-cultured cell fusions with Sendal virus were 
performed as previously described (2) using I x 106 cultured cells, 1 x l08 
erythrocytes, 300 HAU of virus in 0.5 ml of Tris-saline buffer containing 0.5 mM 
MnCI2. After fusion, cells were placed onto coverslips as described above and 
examined at various times after fusion following attachment. 

REPREC1PITATION OF PEG: As described by Honda et al. (6), l0 g of 
commercial PEG were dissolved in 100 ml of chloroform. This solution was 
poured slowly, with constant stirring, into 1,000 ml of diethyl ether. The PEG, 
upon dilution in the ether, precipitated out of solution. The white precipitate was 
removed by filtration through Whatman # 2  filter paper and dried under vacuum 
for 48-72 h at room temperature. 

FLUORESCENCE MICROSCOPY AND PHOTOBLEACHING MEASURE- 
MENTS: The microscope used for photobleaching and image work has been 
described previously in detail (7, 12, 13). For fluorescence photography, a x 40 
phase or x 50 salt water objective was used with Kodak Tri-X Pan film to record 
the images. For the fluorescence recovery after photobleaching (FRAP) mea- 
surements, a x 25/0.5 NA objective was used to give a e -2 beam diameter of 3.4 
/tm. A 350-/~m image plane diaphragm was used. Bleach times were typically 
20-40 ms. 

FREEZE-FRACTURE ELECTRON MICROSCOPY; Erythrocyte specimens 
were frozen in 44% PEG solutions. Freeze-fracturing was done in a Bakers 
BA360 freeze-etching apparatus (Balzers, Hudson, NH), and electron micro- 
graphs were taken with a JEOL 100CX electron microscope operated at 80 kV as 
previously described (8, 31). 

RESULTS AND DISCUSSION 

Cell fusion may be conceived of as a sequence of interrelated 
events. First, adjacent plasma membranes are brought into 
close apposition. Next, a transient destabilization of the normal 
bilayer structure of the apposed membranes occurs, leading to 
a molecular rearrangement which results in the continuity of 
the two membranes. Finally, the previously separated cyto- 
plasmic compartments of the two cells become one. By using 
appropriate probes, the kinetics of both membrane and cyto- 
plasmic intermixing events can be studied. 

Mixing of Plasma Membrane 
Components: Lipids 

Provided lipid components are free to diffuse within the 
plane of the membrane, transfer of lipid from one cell to 
another should, in principle, be an indicator of continuity 
between two fused membranes. As a marker of this lipid 
intermixing event, the fluorescent lipid probe, diI, an indocar- 
bocyanine dye, was used. Previous studies using the FRAP 
technique have shown that this probe is free to diffuse within 
the membranes of  living cells (14) and, recently, the dye has 
been used to assess fusion between probe-labeled lipid vesicles 
and cultured cells (3). 

In the standard fusion protocol, the lectin, PHA, was used to 
attach human erythrocytes to human fibroblasts grow n on glass 
coverslips, and then PEG is used to fuse the two cell types. 
PHA-mediated attachment of erythrocytes stained with diI did 
not result in transfer of the probe into the cultured cell mem- 
brane. Fluorescence was restricted to the erythrocytes alone, 
after incubation at 37 °C for 60 min (Fig. 1,4 and B). However, 
after a l-min exposure of the cells to PEG and repeated 
washing to remove the fusogen, the lipid probe was seen to 
spread into the plasma membrane of the cultured cells (Fig. 
1 C and D). The final staining pattern was similar to the typical 
membrane fluorescence seen when the same cells are directly 
labeled with diI by ethanol injection (14), or when diI-labeled 
vesicles are fused to these same cells by PEG (3). The eryth- 
rocytes could not be dissociated from the fibroblasts after lectin 



hGURE 1 dil- labeled erythrocytes attached to human fibroblasts via PHA and incubated in saline show no evidence of lipid 
probe transfer; phase contrast (A) and fluorescence (B) photomicrographs. C.and D are of cells after fusion with PEG, while E and 
F are images of cells still in 44% PEG. (Note that PEG enhances the fluorescence of the dil-stained erythrocytes.) Both sets of 
photos show dil transfer into the fibroblasts. Bar, 25 p.m. x 1,485. 
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treatment with a haptenic sugar, N-acetylgalactosamine, for 
PHA or after treatment with either PEG or nonfusogenic PEG 
(see below). 

Because cells were examined only after dilution and removal 
of PEG, it was not possible from these experiments to deter- 
mine precisely when transfer of the lipid probe had occurred. 
To answer this question, cultures were examined while PEG 
was still present. The plasma membranes of  the cultured cells 
were observed to exhibit fluorescence in <30 s after the addition 
of PEG (Fig. 1 E). After 1-2 min in the presence of undiluted 
PEG, the stain had spread from the erythrocytes and was 
distributed over the plasma membranes of  the cultured cells 
(Fig. 1 F).  

To demonstrate the generality of these results, we examined 
the transfer of other lipid probes. Erythrocytes were labeled 
with a fluorescent derivative of  phosphatidylcholine (C6-NBD- 
PC) or phosphatidylethanolamine (NBD-PE). The results with 
each of these probes were similar to those with diI, in that label 

was transferred only upon addition of  PEG and that transfer 
did not require dilution of PEG. Although these observations 
were compatible with transfer being accomplished as a result 
of membrane fusion, it was also possible that transfer was 
occurring in the absence of fusion. For instance, PEG could 
have mediated a unique membrane-membrane contact which 
facilitates an exchange of lipid molecules from one bilayer to 
another by a mechanism which did not require fusion. Or PEG 
could have acted as a lipid exchange vehicle, irrespective of its 
fusion capabilities, by serving as an agent in which the probe 
was solubilized. In this regard, C6-NBD-PC, but not NBD-PE, 
is readily exchanged between lipid vesicles or between vesicles 
and cells (30). 

To distinguish between a fusion mechanism or a simple 
exchange mechanism of lipid probe transfer, we examined 
transfer in two fusion-inefficient systems. The first system 
substituted leaky erythrocyte ghosts for intact erythrocytes 
which do not fuse using Sendai virus as fusogen (15, 16). 

FIGURE 2 Fluorescence micrographs show that dil-stained dodge erythrocyte ghosts did not form polyghosts after PEG treatment 
(see Materials and Methods) (A). Numerous individual ghosts or closed ghost membrane fragments are present (arrow), and most 
of the remaining membrane material has aggregated (star). Normal erythrocytes treated with PEG did yield poly-erythrocytes 
(arrows, B). Phase (C) and fluorescence (D) micrographs show that label could be transferred from the ghost membrane into the 
membrane of the cultured cells in the presence of PEG. Bar, 25/Lm A and B, x 1,850; Cand D, x 1,485. 
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Similarly, PEG addition did not result in large polyghost 
structures (Fig. 2A) which are indicative of fusion. Note that 
many individual ghosts or closed ghost fragments remain (ar- 
row) and that much of the membrane material is aggregated 
(star). Intact erythrocytes did undergo PEG-mediated fusion 
(Fig. 2 B, arrows). When these ghosts were labeled with diI and 
then carried through the standard fusion protocol, fluorescence 
was again seen to be limited to erythrocyte membranes before 
addition of PEG (data not shown), but, upon addition of PEG, 
fluorescence was observed in the cultured cell membranes (Fig. 
2 C and D), even though fusion between ghosts and cultured 
cells was unlikely to have occurred. (Upon dilution of the PEG, 
images such as seen in Fig. 1 D were observed with this system.) 

The second fusion-inefficient system was based on the ob- 
servations of Honda et al. (6), noted earlier, that solvent- 
extracted PEG (nonfusogenic PEG) is unable to fuse cells. To 
confirm this fmding, we first established the fusion efficiency 
of commercial PEG by determining the percentage of cultured 
cells into which a cytoplasmic marker, fluorescein conjugated 
BSA (F-BSA), was transferred after fusion with erythrocytes 
which had been hypotonically loaded with the marker. In 
agreement with our previous results, >90% of the cultured cells 
exhibited cytoplasmic staining following the standard protocol. 
If, however, nonfusogenic PEG was tested for its ability to 
promote fusion, < 1% of the cultured cells exhibited the marker 
within their cytoplasm. Yet, when this nonfusogenic PEG was 
applied to erythrocytes labeled with diI, the lipid probe was 
transferred with high efficiency to cultured cell membranes 
(data not shown, but as in Fig. 1 D). 

Thus, both of these fusion-inefficient systems point to a 
nonfusogenic exchange mechanism of lipid probe transfer. Of 
the two exchange mechanisms presented above, the one which 
involved PEG as a vehicle of transfer, as opposed to the one 
which is based on the dehydrating capacity of PEG, predicts 
that diI should be solubilized by PEG. Although diI can be 
dissolved via ethanol injection in 44% PEG and although this 
PEG/diI  solution will stain the membranes of cultured cells, 
our preliminary experiments were not able to detect spectro- 
photometrically the solubilization by PEG of diI from the 
membranes of erythrocytes (data not shown). It is therefore 
difficult to explain the diI transfer in terms of the extraction of 
the probe by PEG, at least on the time scale of our experiments 
where PEG was present for only 1 min. 

Support for the alternate hypothesis that PEG, by virtue of 
its dehydrating ability, promotes a unique type of membrane 
apposition that permits rapid transfer of lipid probes comes 
from freeze-fracture electron micrographs of erythrocytes 
which have been treated with both PHA and PEG. In the 
presence of 44% PEG, clustering of intramembrane particles 
(IMPs) resulted in the creation of IMP-depleted areas (Fig. 
3A), similar to earlier evidence provided by Knutton (4) on 
erythrocytes and Kdihling (25) on HeLa cells. Note that the 
fracture plane appears to shift heights in the particle-free areas. 
This may suggest such close contact between adjacent, particle- 
free cell membranes that the fracture plane skips from one cell 
membrane to the other (4). Alternatively, Kdihling (25) has 
suggested that the loss of a preferred fracture plane represents 
a marked disorganization of these membrane regions caused 
by the PEG treatment. At any rate, cross-fracture of the 
erythrocytes in both fusogenic and nonfusogenic PEG shows 
that the apposed membranes are brought so close together that 
a space between them cannot be resolved by this technique 
(Fig. 3 B). These results are consistent with both types of PEG 
being able to mediate lipid probe transfer. By transmission 

electron microscopy, the membranes of erythrocytes agglutin- 
ated by PEG are separated by <50 A and in regions appear to 
touch (4). 

Mixing of Plasma Membrane 
Components: Proteins 

Since these data indicate that lipid probes are transferred in 
the presence of PEG irrespective of fusion, it was of interest to 
determine whether the proteins of the erythrocyte membrane 
were similarly transferred. Erythrocyte membrane proteins 
with moieties accessible from the external medium were di- 
rectly labeled by covalent linkage of either FITC or EITC, and 
these ceils displayed a ring fluorescence typical of membrane 
labeling. In addition, the fluorescence persisted when the ceils 
were hypotonically lysed, and the hemoglobin and other pro- 
teins released by this process were not labeled when checked 
by fluorescence microscopy and gel electrophoresis (data not 
shown). When these erythrocytes were fused to cultured cells 
using the standard protocol, fluorescence was limited to the 
erythrocytes only, 2 even after a 24-h incubation at 37°C (Fig. 
4). Fusion was not inhibited by labeling since >75% of the 
cultured cells were microinjected with F-BSA. 

Although others have demonstrated that erythrocyte mem- 
brane proteins that have been labeled by either of these re- 
agents are mobile within the plane of the membrane (10, 11), 
our results might still be explained if the labeling protocol had 
somehow led to the immobilization of the labeled proteins. To 
circumvent this possible complication, we labeled erythrocyte 
membrane components after, rather than before, fusion so that 
the components would be allowed to diffuse before labeling. 
This was accomplished by fusing unlabeled human erythro- 
cytes with mouse cultured cells and then detecting erythrocyte 
membrane components by antibodies directed to them. When 
either direct or indirect immunofluorescence protocols were 
used, staining was again limited to erythrocytes only, even after 
incubations for 24 h at 37°C before staining (data not shown 
but as in Fig. 4 B). It might still be argued that the PEG itself 
had somehow immobilized the membrane components. This 
seems unlikely because, when Sendai virus was substituted for 
PEG as the fusogen, similar results were seen, again up to 24 
h of incubation (data not shown but as in Fig. 4 B). Further- 
more, PEG treatment did not inhibit the intermixing of labeled 
membrane components following fusion (10, 19). Finally, the 
lectin, PHA, in combination with PEG could result in immo- 

2 The detection limit for protein transfer can be roughly estimated as 
follows: 106 copies of Band 3 in a typical erythrocyte are dispersed 
over a surface area of 200/ma2; let us estimate the surface of a typical 
human fibroblast as 50/tm x 100 #m × 2 (for top and bottom) x 2 (for 
surface roughness) = 2,000 #m 2. (Our SEM photographs show the 
fibroblasts to be generally quite smooth.) Complete equilibration of 
Band 3 after one erythrocyte has fused with a fibroblast would result 
in 9 x 105 copies introduced into the fibroblast. In our experience we 
can visually detect, by direct immunofluorecence, roughly 5 x 105 
copies per cell in fibroblasts. Thus, it is likely that we could detect 
complete transfer of about 50% of the available Band 3. Furthermore, 
if more than one erythrocyte transferred its protein to the fibroblast, 
with our indirect immunofluorescence protocol the detection limit 
should be reduced by a factor of 10 to about 5 x 104 proteins per 
fibroblast. 

Under these conditions, one would expect to discern the transfer of 
as little as 10% of the erythrocyte membrane proteins. Finally, it is 
important to note that no initial spreading of the labeled erythrocyte 
material to the fibroblast was ever noted; near the cell-cell contact 
region the concentration of labeled components should be nearly as 
high as in the erythrocyte itself. 
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bilization of erythrocyte surface components. This, too, seems 
unlikely because preliminary FRAP measurements on F-PHA 
bound to erythrocytes at the same concentration (50 #g/ml) as 
that used in the erythrocyte-mediated microinjection technique 
show that the lectin-receptor complexes have similar lateral 
mobility before and after PEG treatment (apparent lateral 
diffusion coefficient (D) - 2  × 10 -1° cm2/s; mobile fraction 
-20-50%). Fab fragments of antibody against erythrocytes also 
were partially mobile when bound to the erythrocyte antigens 
in the presence of the lectin, PHA, and after PEG treatment 
(D-0.5 x 10 -1° cm2/s; mobile fraction ~30%). 

This lack of transfer of erythrocyte membrane components 
suggests a restriction to diffusion placed upon the erythrocyte 
membrane by the cultured cell or the erythrocyte itself. Given 
the spectrin network to which several of the erythrocyte mem- 
brane proteins are anchored, one might suspect that this inter- 
action is responsible for the restriction to transfer observed. To 
investigate this possibility, we used erythrocytes from mice with 

L 

hereditary spherocytic anemia. The membranes of these spher- 
ocytes are greatly deficient in spectrin. Yet, when these cells 
were treated by the standard PEG fusion protocol (seven 
experiments) or with Sendal virus (two experiments) as fuso- 
gen, fluoresceinated anti-human-erythrocyte antisera labeling 
was again confined to erythrocytes (data not shown, but as in 
Fig. 4 B) and diI spread to the cultured cells as before (Fig. 
l D). Fusion of these erythrocytes with cultured cells could not 
be unequivocally demonstrated because they are unable to 
withstand the F-BSA loading protocol. However, others have 
demonstrated that spherocytes do fuse with each other (16). 
Thus, since protein diffusion in the plane of the membrane is 
some 50-fold faster in these cells than in normal erythrocytes 
(17), the lack of protein transfer observed in our experiments 
suggests that the restriction to protein transfer did not lie with 
the erythrocyte cytoskeleton. 

If  it is not some property of  the erythrocyte which is pre- 
venting diffusion, is it the cultured cell which is providing the 

FIGURE 3 Freeze-fracture electron micrographs of membrane contacts made by erythrocytes treated with both PHA and PEG. 
Samples were frozen and fractured in PEG. A shows clustering of IMP's (arrowhead), leaving IMP-poor regions which are 
characterized by irregularities in the fracture plane (arrows); the cells were treated with the ether/chloroform-extracted nonfuso- 
genic PEG. B is a cross-fracture showing the extremely close contact (box) induced by commercial PEG; micrographs after 
nonfusogenic PEG treatment also showed similar close contact between membranes. Bar, 0.2 #m. x 62,500. 
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network or a glycocalyx, restrictions to lateral diffusion appear 
to be attributable to some structural aspect of the recipient cell 
surface. 

FIGURE 4 Erythrocyte membrane proteins labeled wi th F ITCwere 
fused with cultured fibroblasts and incubated at 37°C for 24 h and 
then examined for probe location (A, phase; B, fluorescence). The 
FITC fluorescence is seen to be l imited to the original erythrocyte 
membranes. Bar, 25 p.m. x 1,485. 

restriction? To determine whether the human diploid fibroblast 
recipient ceils are not a special case, we fused erythrocytes to 
BHK or Vero cells. In these experiments as well, fluorescence 
of the cultured cell plasma membranes due to transfer of the 
labeled erythrocyte components was not observed. 

It therefore appears that, although protein intermixing is 
well-documented in mouse-human (18) and erythrocyte-eryth- 
rocyte (19) fusion systems, it does not occur in all systems 
undergoing fusion. Restrictions upon lateral diffusion of mem- 
brane components introduced into cultured cells by fusion is 
not unprecedented. In an extensive study, Baumann et al. (20) 
have reconstituted vesicles from mixtures of deoxycholate-sol- 
ubilized phospholipids and proteins and then fused the vesicles 
to mouse L-cells using PEG. The phospholipids of the vesicles 
mix relatively rapidly with the cell membrane lipids after 
fusion, as judged by immunofluorescence staining of trinitro- 
phenylated lipids which had been reconstituted into the vesi- 
cles. In contrast, proteins transferred to the L-cells showed 
restricted diffusion using the same immunofluorescence tech- 
niques. Even after the fused cells had been in culture for 16 h, 
the majority of labeled glycoproteins was still concentrated in 
discrete patches. That fusion had indeed occurred was dem- 
onstrated in that the functions of the serum asialoglycoprotein 
receptor were conferred upon receptor-deficient L-cells. Since 
the vesicles presumably do not contain either a cytoskeletal 

Mixing of Cytoplasmic Compartments 
The endpoint of fusion is marked by formation of a pore 

through which intercytoplasmic communication can take place. 
We have previously reported that entry of cytoplasmic markers 
(375-160,000 daltons) from erythrocytes to cultured cells begins 
1 to 3 min after dilution of PEG (7). This result provoked the 
question of whether the actual endpoint of fusion occurs some- 
time after dilution of the PEG or during the PEG incubation, 
but transfer of the cytoplasmic probe is delayed for some 
reason. 

To examine whether the entrapped F-BSA is mobile within 
the cytoplasm during the fusion protocol, we used the FRAP 
technique, a method we have recently used to measure the 
diffusion of cytoplasmic probes within individual, living cells 
(7). Erythrocytes which were loaded with F-BSA and cultured 
fibroblasts, previously microinjected with F-BSA, were placed 
into 44% PEG and the F-BSA diffusion coefficients were 
determined. In PEG, recovery in both cell types was slow or 
nonexistent, indicating that the F-BSA was operationally im- 
mobile (D~ < 10 -12 cm2/s; Fig. 5, + PEG curve). However, if the 
PEG was removed by extensive washing, F-BSA diffused freely 
with D=10 -s cm2/s. (Fig. 5, - P E G  curve), values consistent 
with our earlier results for cytoplasmic diffusion in fibroblasts 
(7). Results were independent of whether the PEG used was 
fusogenic or nonfusogenic, but, of course, transfer from eryth- 
rocytes to cultured ceils occurred only when fusogenic PEG 
was used. Therefore it seems likely that the delay observed 
between dilution of PEG and the transfer of a cytoplasmic 
probe may be attributed to probe immobilization which is only 
relieved by dilution of the polymer. Presumably, this phenom- 
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FIGURE 5 Fluorescence recovery after photobleaching measure- 
ments of cytoplasmic dif fusion of F-BSA wi th in  cultured fibroblasts 
after PEG addit ion ( . . . .  ; + PEG) and after PEG removal (- - -; 
-PEG). Initial f luorescence is Fi, photobleaching is indicated by 
arrow labeled pb, and f luorescence after recovery is completed is 
Foo. The lack of  f luorescence recovery in PEG (+ PEG) is interpreted 
as probe immobi l izat ion (diffusion coeff ic ient =10 -12 cm2/s), whi le 
after PEG removal (-PEG) the FRAP kinetics are consistent wi th a 
dif fusion coeff icient of ~10 -8 cm2/s. The same phenomenon was 
observed wi th F-BSA loaded erythrocyte in the presence and ab- 
sence of PEG. A x 25 object ive was used, giving an e -2 beam 
diameter of ~3.4 p.m. 
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enon is closely related to the reversible precipitation of proteins 
induced when sufficient PEG is added to decrease the available 
volume for proteins; rehydration (dilution) reverses this effect 
(21). It is clear that pore formation must occur at some time 
between the beginning of the PEG dilution and the actual 
observation of probe transfer. 

SUMMARY AND HYPOTHESIS 

The first requirement for the efficient fusion of erythrocytes 
with cultured cells by PEG is the attachment of the two cell 
types to one another by a lectin bridge (9); this procedure 
enhances the efficiency of the process by binding more of the 
added erythrocytes with the target cells (2). It is also a prereq- 
uisite for PEG-mediated fusion ofglycolipid vesicles to various 
cultured cells (3). However, in neither fusion system does the 
action of the lectin result in the transfer of membrane or 
cytoplasmic probes associated with the vesicle or the erythro- 
cyte, respectively, to the cultured cell. 

Once cells have been brought into proximity by the lectin, 
transfer of lipid probes from erythrocytes to cultured cells 
occurs only upon addition of PEG. In the presence of PEG, 
IMPs have been observed to segregate, leaving lipid-rich, IMP- 
free regions of the membrane (4, 25). In addition, our freeze- 
fracture experiments reveal that erythrocyte membranes come 
extremely close to each other in the presence of  both fusogenic 
and nonfusogenic PEG. Since nonfusogenic PEG also mediates 
lipid probe transfer, this transfer phenomenon is not dependent 
on fusion. The dehydrating ability of PEG may serve a dual 
role in mediating these events. First, it may be responsible for 
IMP clustering, either by dehydrating lipids and thus affecting 
fluidity or by directly promoting protein aggregation through 
dehydration. (Alternatively, PEG may simply cross-link prox- 
imate proteins.) Second, the dehydration of lipid membranes, 
in general, will force them as close together as 5 A (22). It 
seems quite plausible that lipid transfer could occur precisely 
in such regions of ultraclose membrane apposition. 

Transfer of a cytoplasmic probe from erythrocytes to cul- 
tured cells, which is truly indicative of fusion, occurs only with 
commercial PEG and not with its recrystallized counterpart. 
Thus, fusion requires, in addition to the pure polymer, some 
agent contained in commercial PEG which is removed upon 
recrystallization. Likely candidates are the ingredients added 
to PEG during production, such as antioxidants and polymer- 
ization agents, since, upon addition of certain of these com- 
pounds to purified PEG, fusion competence is restored (6). 

Indeed, we have shown that the fusogenic capacity of com- 
mercial nonfusogenic PEGs and extracted PEG can be restored 
by addition of several different antioxidants (Wojcieszyn, J., 
unpublished observations). Thus, if the term fusogen is to be 
assigned, the designation would most properly fit the second 
class of ingredients in PEG, keeping in mind that other pre- 
conditions must be met before the term takes on meaning. This 
separation of activities in a fusion-competent system is not 
unprecedented. Lucy et al. (5) have shown that erythrocytes 
can be fused by the addition of certain lipids but only in the 
presence of high concentrations of  dextran. GMO was later 
shown to promote an isotropic NMR signal from isolated 
erythrocyte lipids (23), indicating its potential to destabilize the 
bilayers. In the present case, the combination of  PEG-induced 
dehydration, favoring a rigid lipid state, together with the 
fusogenic additives favoring a fluid state may produce unstable 
phase boundaries which nucleate the fusion process (24). Fu- 
sion may also be "driven" by membrane tension (stretch) 
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produced by the intracellular volume expansion (32) accom- 
panying the PEG dilution step in combination with the fixed 
membrane regions caused by the intercellular lectin cross- 
bridges; this membrane stress could then be relieved by the 
formation of pores originating at the fusogen-induced bilayer 
defects. In any event, after the fusion process, cytoplasmic 
communication is possible but may be prevented by the im- 
mobilization of cytoplasmic molecules within both the eryth- 
rocyte and the cultured cell due to the continued presence of 
PEG. Once the dehydrant is removed and mobility is restored, 
actual transfer via diffusion occurs. 

In our system, erythrocyte membrane proteins do not diffuse 
into the membrane of the cultured cell after fusion. This is 
perhaps surprising since the membrane proteins of two differ- 
ent cultured ceils are free to mix after fusion. However, when 
one considers the specialized cytomembrane structure of the 
erythrocyte, it is not clear that analogies between the two 
systems are appropriate. At a minimum, our data imply a 
special, porous erythrocyte-cultured cell junctional region hav- 
ing channels which permit cytoplasmic transfer. Perhaps what 
has been produced is an artificial topographic specialization 
analogous to that which occurs naturally, for example, at gap 
junctions. Whether further integration is prevented by incom- 
patible submembranous structures, integral membrane com- 
ponents, or associated glycocalyx is not clear. 

This study strongly suggests that commercial PEG performs 
two, separable functions: first, it brings the adjacent plasma 
membranes into very close apposition so that lipid transfer can 
occur. Second, it must destabilize these close contact areas 
enough so that fusion events become a predominant route to 
a more stable state. Similar functions can be identified in both 
biological and artificial bflayer membrane fusion. For example, 
chromaffm granules are aggregated by Ca ++ and synexin and 
can be promoted to fuse by the addition of arachodonic acid 
(27). In artificial membranes, the ionic fusogen, Ca ++, appears 
both to aggregate membranes in an anhydrous contact state 
and to destabilize the apposed membranes leading to fusion 
(28). Membrane aggregation, close apposition and destabiliza- 
tion appear to be a recurrent theme and to provide the neces- 
sary conditions for fusion. 
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