Contents lists available at ScienceDirect

EClinicalMedicine

journal homepage: https://www.journals.elsevier.com/eclinicalmedicine

Research paper

Bacterial Profile and asymptomatic bacteriuria among pregnant women in Africa: A systematic review and meta analysis

Nefsu Awoke^{a,*}, Tiwabwork Tekalign^a, Mistre Teshome^a, Tsegaye Lolaso^b, Getahun Dendir^c, Mohammed Suleiman Obsa^c

^a School of Nursing, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia

^b School of Public Health, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia

^c School of Anesthesia, College of Health Science and Medicine, Wolaita Sodo University, Wolaita Sodo, Ethiopia

A R T I C L E I N F O

Article History: Received 13 December 2020 Revised 18 May 2021 Accepted 19 May 2021 Available online 9 June 2021

Keywords: Asymptomatic bacteriuria Pregnant women Systematic review Meta-analysis, africa

ABSTRACT

Background: Different physiologic changes that occur during pregnancy, such as Hydroureter, dilatation of the renal pelvis, glycosuria and aminoaciduria, and low urine production predispose pregnant women for ascending urinary tract infection. Globally, 2% to 15% of the pregnant women have urinary tract infection without specific symptoms. Therefore, this study aimed to estimate the prevalence of asymptomatic bacteriuria (ABU) in pregnant women in Africa.

Methods: Systematic search of published studies done on PubMed, EMBASE, Web of Science, SCOPUS, PsychInfo, CINAHL, and google scholar for gray literature. All published observational studies until October 30, 2020 were included. This meta-analysis follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Quality of studies was assessed by modified Newcastle-Ottawa Scale (NOS). Meta-analysis was carried out using a random-effects method with the double arcsine transformation approach using the STATATM Version 14 software. Trim and fill analysis was done to correct presence of significant publication bias. The study protocol is prospectively registered on PROSPERO, registration number CRD42020212601.

Findings: From 3393 obtained studies, 48 studies from 12 African countries involving 15, 664 pregnant women included in this Meta-analysis. The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa after correction for publication bias by trim and fill analysis was found to be 11.1% (95% CI: 7.8, 14.4). The most common bacterial isolates involved in the etiology of ABU was *Escherichia coli* with pooled prevalence 33.4% (95% CI: 27.3 - 39.4)

Interpretation: Asymptomatic bacteriuria is substantial among pregnant women in Africa. Therefore, all pregnant women should be tested for the presence of asymptomatic bacteriuria. A screening program must be based not only on the incidence but also on a cost-efficacy evaluation and a microbiological evaluation. *Funding:* There was no funding source for this study.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Due to the hormonal and physiological changes during pregnancy; women's are more susceptible to infections. Different physiologic changes that occur during pregnancy, such as Hydroureter, dilatation of the renal pelvis, glycosuria and aminoaciduria, were responsible for the stasis of urine and create the best medium for the growth of different species of bacteria [1,2]. Also, low urine osmolality due to physiologic change facilitate bacterial colonization and

* Correspondence author.

E-mail address: nefsea@gmail.com (N. Awoke).

increase ascending infection increased in addition to the dysfunctional vesicoureteral reflux and ureteric valves [2].

Asymptomatic bacteriuria (ABU) in pregnancy is defined as the presence of \geq 100,000 colony-forming units (CFU) /ml of urine taken from a clean catch midstream urine specimen in the absence of specific symptoms of acute urinary tract infection [1,3]. Globally, it happens in 2% to 15% of all pregnancies [3]. Pregnancy boosts the progression from asymptomatic to symptomatic bacteriuria. Due to this, ABU is a main risk factor for the development of urinary tract infections (UTIs) [4,5].

The most common organism responsible for 75–90% of bacteriuria in pregnancy is *Escherichia coli* [5,6]. Other microbial agents include, *Proteus mirabilis*, group *B Streptococcus*, *Pseudomonas*

https://doi.org/10.1016/j.eclinm.2021.100952

2589-5370/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context

Evidence before this study

We systematically searched PubMed, EMBASE, Web of Science, SCOPUS, PsychInfo, and CINAHL to identify published studies. Grey literature searching done by Google and Google Scholar. All published observational studies written in English language, published until October 30, 2020 and studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa were included. The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa after corrected for Duval and Tweedie's trim and fill analysis and was found to be 11.1% (95% CI: 7.8, 14.4).

Added value of this study

Our study confirmed that the prevalence of asymptomatic bacteriuria among pregnant women was significant and *Escherichia coli* is the most common bacterial isolates involved in the etiology of ABU.

Implications of all the available evidence

The findings may have great clinical implication on importance of testing all pregnant women for the presence of asymptomatic bacteriuria and microbiological evaluation.

aeruginosa, Klebsiella pneumoniae, Streptococcus saprophyticus, Staphylococcus aureus, and Enterococcus faecalis [7].

The maternal and fetal outcomes related to ABU are numerous. Untreated ABU result in abnormal maternal outcomes such as development of pyelonephritis in 20–50% of cases [1,4–6, 8,9], higher rate of preterm labor, chronic infection resistant to drugs, preeclampsia, anemia, chorioamnionitis, endometritis and UTI in the postpartum period [2,5,7,8]. Fetal complications associated with ABU include prematurity, Intrauterine growth restriction (IUGR), low birth weight, increase in perinatal mortality, stillbirth, mental retardation and development delay [2,4,5].

Maternal and fetal complications that may arise due to infection can be prevented by timely detection and treatment [1,4,8]. Urine culture is the gold standard diagnostic technique for ABU which occurs during pregnancy [5]. It's recommended that three up to seven days antibiotics therapy reduces the risk of symptomatic UTI by 80 to 90% [4]. Also, antimicrobial treatment of ABU will reduce the risk of risk of having a low birth weight baby from 15% to 5% and pyelonephritis from 20 to 35% to 1-4% [2].

Since the risk of asymptomatic bacteriuria was increased by prior history urinary tract infection, pre-existing diabetes mellitus, increased parity, and low socioeconomic status [10]; understanding the magnitude and bacterial isolates of asymptomatic bacteriuria in Africa is important in reducing the complications related to it. Even though, there were several studies conducted on the prevalence of asymptomatic bacteriuria, there are disagreements on the result of the studies. Therefore, this meta-analysis was aimed to estimate the overall prevalence of asymptomatic bacteriuria among pregnant women in Africa.

2. Methods

2.1. Study protocol

The study protocol was registered and published in the PROSPERO international prospective register of systematic reviews with registration number (CRD42020212601). This systematic review and

meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for literature search strategy, selection of studies, data extraction, and result reporting [11]. To download, organize, review, and cite related articles Endnote (version X8) reference management software for Windows was used.

2.2. Study design and search strategy

We systematically searched PubMed, EMBASE, Web of Science, SCO-PUS, PsychInfo, and CINAHL to identify published studies. The following search key terms were used to include studies from above mentioned database: "pregnant women", "pregnant mother", "pregnancy", "Urinary tract infection", "bacteriuria", "UTI", "asymptomatic bacteriuria", "bacterial profile", "Asymptomatic Urinary Tract Infection", and "Uropathogens". The Boolean operators (AND and OR) combination were used to search databases. The PubMed search terms with their Boolean operators of this review was attached as an additional file (Additional file 1). In addition, manual hand searching done by Google and Google Scholar to include studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa.

2.3. Study selection

The relevant studies were obtained after titles and abstracts screening of retrieved record. The screening was done by two independent authors (N.A, and T.T) and when the discrepancies occur it was resolved by the third authors (M.T)

2.4. Eligibility criteria

All published observational studies written in English language, published until October 30, 2020 and studies that reported the prevalence of asymptomatic bacteriuria among pregnant women in Africa were included.

Studies were excluded if:

- 1. Studies that reported the prevalence of ABU without laboratory test
- 2. Methodologically poor studies with 0–5 points on Newcastle-Ottawa Scale (NOS) were excluded

2.5. Quality assessment of included studies

The quality of each study was assessed using the modified Newcastle-Ottawa Scale (NOS) for cross-sectional studies [12]. The scale contains eight sections, and evaluated the included articles based on the selection, comparability, exposure assessment, and outcome. The point score and interpretation were: Points of 0–5 considered as low quality, 6–7 as moderate quality and 8–10 as high quality. We included articles with a minimum score of 6 on NOS

2.6. Data extraction

We prepared a form in Microsoft Excel 2013 spreadsheet for data extraction. The format was prepared to extract the following important variables from the articles: The first author's name, publication year, region, design, type of sample collected, sample size, sampling method, the prevalence of asymptomatic bacteriuria and microorganisms involved in bacteriuria. The extraction was done by two independent authors (N.A, and T.T) and any discrepancy that occur during the extraction process was resolved by a third author (M.T).

2.7. Statistical analysis

An inverse-variance weighted random effects meta-analysis model using the double arcsine transformation approach [13] was used to pool the prevalence of asymptomatic bacteriuria among pregnant women in Africa. Statistical analyses were done by using Stata version 14.0. The heterogeneity test of the studies was assessed using Higgins I-squared (I^2) and p-value. The value of I^2 was taken as 0-24% may not be important, 25–49\% indicates moderate heterogeneity, 50–75% indicates substantial heterogeneity and over 75% indicates considerable heterogeneity [14]. The Source of heterogeneity was analyzed by subgroup analysis and Meta-regression. Publication bias was tested statistically by Egger's tests and viewed graphically by the funnel plots. Due to presence of publication bias the result was corrected by Duval and Tweedie's trim and fill analysis.

2.8. Ethics approval and consent to participate

Not applicable.

3. Role of the funding source

There was no funding source for this study Result.

4. Search results

Initially, a total of 3393 studies were retrieved from the databases and manual searching. From this, 30 duplicate were found and removed. The remaining 3363 articles were screened by their title and abstract and 3276 irrelevant studies were removed. Eight-seven full-text articles were assessed for eligibility, and 39 of them were excluded due to not reporting the outcome of interest, poor methodological quality and not based on laboratory. Finally, a total of 48 studies fulfilled the inclusion criteria and enrolled in the study (Fig. 1).

5. Study characteristics

A total of 48 articles with 15, 664 pregnant women from 12 African countries was included in this systematic review and meta-analysis. Among included studies 46 were cross-sectional and 2 studies were case control study design. The sample size across the studies ranges from 100 [15] to 1830 [16] pregnant women. The highest number (27) of studies was included from West Africa and only one study was obtained from the Southern region of Africa. The lowest prevalence 3.8% of ABU was reported in Uganda [17] and the highest 63.3% was reported from Nigeria [18] (Table 1).

5.1. Prevalence of asymptomatic bacteriuria among pregnant women

The overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa was 18% (95% CI: 15, 21) with heterogeneity index (I^2) of 97.47% (p < 0.001) (Fig. 2). Since the Eggers test was found significant, the final pooled prevalence was corrected for Duval and Tweedie's trim and fill analysis and was found to be 11.1% (95% CI: 7.8, 14.4).

5.2. Subgroup analysis

Subgroup analyses revealed a marked variation in the region of Africa with highest prevalence 22% (95% CI: 17 28) in West Africa

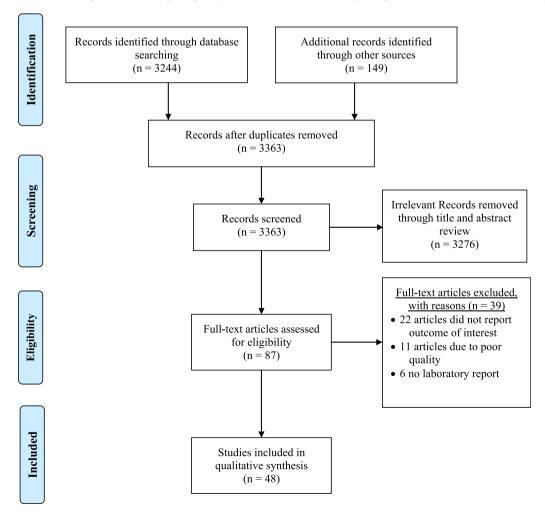


Fig. 1. PRISMA flowchart diagram of the study selection.

Table 1

Characteristics of the included studies in the systematic review and meta-analysis of asymptomatic bacteriuria among pregnant women in Africa.

No	Authors Name	Publication Year	Country	Region	Sample taken	Study design	Total (N)	Sample (n)	NOS	Prevalence (%)
1	Aboderin AO., et al. [19]	2004	Nigeria	West	Clean catch midstream urine	cross sectional	196	73	6	37.2 (30.4, 44.0)
2	Ajayi AB., et al. [20]	2012	Nigeria	West	Clean catch midstream urine	cross sectional	125	50	6	40 (31.4, 48.6)
3	Akinloye O., et al. [21]	2013	Nigeria	West	Clean catch midstream urine	cross sectional	300	63	6	21 (16.4, 25.6)
4	Akujobi CO., et al. [22]	2009	Nigeria	West	Clean catch midstream urine	cross sectional	630	11	7	17.6 (14.6, 20.6)
5	Alfred AO et al. [23]	2013	Nigeria	West	Clean catch midstream urine	cross sectional	240	33	7	13.8 (9.4, 18.2)
6	Awolude OA., et al. [24]	2010	Nigeria	West	Clean catch midstream urine	cross sectional	161	25	6	15.5 (9.9, 21.1)
7	Banda JM., et al. [25]	2020	Nigeria	West	Clean catch midstream urine	cross sectional	136	14	6	10.3 (5.2, 15.4)
8	Belete MA. et al. [26]	2020	Ethiopia	East	Clean catch midstream urine	cross sectional	244	29	10	11.8 (7.8, 15.9)
9	Chaula T., et al. [27]	2017	Tanzania	East	Clean catch midstream urine	cross sectional	234	39	10	16.6 (11.8, 21.4)
10	Chukwu OS., et al. [28]	2014	Nigeria	West	Clean catch midstream urine	cross sectional	200	22	8	11 (6.7, 15.3)
11	Demilie T., et al. [29]	2012	Ethiopia	East	Clean catch midstream urine	cross sectional	330	28	10	8.5 (5.5, 11.5)
12	Derese B., et al. [30]	2016	Ethiopia	East	Clean catch midstream urine	cross sectional	186	11	10	5.9 (2.5, 9.3)
13	Edae M., et al. [9]	2020	Ethiopia	East	Clean catch midstream urine	cross sectional	281	56	10	19.9 (15.2, 24.6)
14	El-Sokkary M [16]	2011	Egypt	North	Clean catch midstream urine	cross sectional	1830	361	10	19.7 (17.9, 21.5)
15	Elzayat MA., et al. [31]	2017	Egypt	North	Clean catch midstream urine	cross sectional	170	17	9	10 (5.5, 14.5)
16	Ezechi OC., et al. [32]	2013	Nigeria	West	Clean catch midstream urine	cross sectional	563	102	6	18.1 (14.9, 21.3)
17	Ezeome IV., et al. [33]	2006	Nigeria	West	Clean catch midstream urine	cross sectional	430	65	7	15.1 (11.7, 18.5)
18	Gessese YA., et al. [34]	2017	Ethiopia	East	Clean catch midstream urine	cross sectional	300	53	10	17.8 (13.5, 22.1)
19	Hagos K., et al. [35]	2015	Eritrea	East	Clean catch midstream urine	cross sectional	200	19	8	9.5 (5.4, 13.6)
20	Hamdan HZ., et al. [36]	2011	Sudan	East	Clean catch midstream urine	cross sectional	235	28	9	12 (7.9, 16.2)
21	Igwegbe AO., et al. [37]	2012	Nigeria	West	Clean catch midstream urine	Case control	220	43	9	19.5 (14.3, 24.7)
22	Ilusanya OA., et al. [15]	2012	Nigeria	West	Clean catch midstream urine	cross sectional	100	52	6	52 (42.2, 61.8)
23	Imade PE., et al. [38]	2010	Nigeria	West	Clean catch midstream urine	cross sectional	1228	556	8	45.3 (42.5, 48.1)
24	Kamel HA., et al. [39]	2018	Egypt	North	Clean catch midstream urine	cross sectional	160	7	10	4.4 (1.2, 7.6)
25	Kehinde AO., et al. [40]	2011	Nigeria	West	Clean catch midstream urine	cross sectional	473	136	7	28.8 (24.7, 32.9)
26	Koffi KA et al. [41]	2020	Côted'Ivoire	West	Clean catch midstream urine	cross sectional	987	76	10	7.7 (6.0, 9.4)
27	Labi Ak., et al. [42]	2015	Ghana	West	Clean catch midstream urine	cross sectional	274	15	7	5.5 (2.8, 8.2)
28	Masinde, A., et al. [43]	2009	Tanzania	East	Clean catch midstream urine	cross sectional	247	32	10	13 (8.8, 17.2)
29	Mayanja R., et.al. [44]	2016	Uganda	East	Clean catch midstream urine	cross sectional	385	47	10	12.2 (8.9, 15.5)
30	Mokube MN., et al. [45]	2013	Cameroon	West	Clean catch midstream urine	cross sectional	102	24	8	23.5 (15.3, 31.7)
31	Mwei MK., et al. [46]	2018	Tanzania	East	Clean catch midstream urine	cross sectional	300	26	7	8.7 (5.5, 11.9)
32	Nteziyaremye J., et al. [17]	2020	Uganda	East	Clean catch midstream urine	cross sectional	587	22	10	3.8 (2.3, 5.4)
33	Obirikorang C., et al. [47]	2012	Ghana	West	Clean catch midstream urine	cross sectional	200	19	6	9.5 (5.4, 13.6)
34	Ogba OM., et al. [48]	2016	Nigeria	West	Clean catch midstream urine	cross sectional	120	27	6	22.5 (15.0, 30.0)
35	Ojide CK., et al. [49]	2020	Nigeria	West	Clean catch midstream urine	cross sectional	265	28	7	10.6 (6.9, 14.3)
36	Oko [O., et al. [50]	2017	Nigeria	West	Clean catch midstream urine	cross sectional	350	83	8	23.7 (19.2, 28.2)
37	Okon KO., et al. [18]	2012	Nigeria	West	Clean catch midstream urine	cross sectional	150	95	8	63.3 (55.6, 71.0)
38	Okorondu SI., et al. [51]	2013	Nigeria	West	Clean catch midstream urine	cross sectional	100	40	6	40 (30.4, 49.6)
39	Oli AN., et al. [52]	2010	Nigeria	West	Clean catch midstream urine	cross sectional	357	82	7	23 (18.6, 27.4)
40	Onu FA., et al. [53]	2015	Nigeria	West	Clean catch midstream urine	cross sectional	300	74	8	24.7 (19.8, 29.6)
41	Onyango HA., et al. [54]	2018	Kenya	East	Clean catch midstream urine	cross sectional		9	9	4.3 (1.6, 7.0)
42	Tadesse A., et al. [55]	2001	Ethiopia	East	Clean catch midstream urine	cross sectional		17	9	9.8 (5.4, 14.2)
43	Tadesse S., et al. [56]	2018	Ethiopia	East	Clean catch midstream urine	cross sectional	259	55	10	21.2 (16.2, 26.2)
44	Taye S., et al. [57]	2018	Ethiopia	East	Early morning midstream	cross sectional	118	26	10	22 (14.5, 29.5)
45	Tolulope A., et al. [58]	2015	Nigeria	West	Clean catch midstream urine	cross sectional	138	35	7	25.3 (18.1, 32.6)
46	Turpin CA., et al. [59]	2007	Ghana	West	Clean catch midstream urine	cross sectional	220	16	6	7.3 (3.9, 10.7)
47	Wabe YA. et al. [60]	2020	Ethiopia	East	Clean catch midstream urine	cross sectional	290	49	10	16.9 (12.6, 21.2)
48	Widmer TA., et al. [61]	2010	S.Africa	South	Clean catch midstream urine	Case control	360	30	7	8.3 (5.5, 11.2)
										(,)

with heterogeneity index (I²) of 98.34%(p < 0.001) and the lowest prevalence 11% (95% CI: 1, 22) in North Africa (Fig. 2 and Fig. 3).

5.3. Meta regression

To identify the source of heterogeneity Meta-regression was conducted using year of publication and sample size as a covariate. It was indicated that there is no effect of year of publication and sample size on heterogeneity between studies (Table 2).

6. Publication bias

The presence of publication bias was evaluated graphically by funnel plots and statistically tested for the presence of small study effect by Egger test. The funnel plot indicated the presence of publication bias as the graph appear asymmetrical (Fig. 4) and after adjusting for publication bias by trim and fill analysis the funnel plot appeared symmetrical (Fig. 5). The presence of small study effect was evident by Egger test with p < 0.001.

6.1. Type of bacterial isolates

Sixteen different types of bacterial isolates were extracted from studies included in this systematic review and meta-analysis. The most common bacterial isolates involved in the etiology of ABU in this systematic review and meta-analysis was *E. coli* with pooled prevalence 33.4% (95% CI: 27.3 - 39.4) (Table 3).

7. Discussion

The estimated pooled prevalence of asymptomatic bacteriuria among pregnant after correction for Duval and Tweedie's trim and fill analysis was found to be 11.1% (95% CI: 7.8, 14.4) in Africa. This was higher than a similar systematic review and meta-analysis conducted in Iran, which reported the prevalence of 0.13% [62]. Also, our meta-analysis was higher than a report from the Infectious Diseases Society of America, which depicted the prevalence ranged from 2%-7% [63]. This might be due to difference in socio economic status. Also several factors were identified to vary the prevalence of ABU such as urinary tract

Asymptomatic bacteriuria among pregnant women in Africa

Ajayi Ab, et al. 2012 0.40 (ob (0.31, 0.49) 1.87 Aknioye O, et al. 2003 0.21 (0.17, 0.28) 2.10 Aknolye O, et al. 2013 0.14 (0.10, 0.28) 2.10 Awoludo CA, et al. 2013 0.14 (0.10, 0.19) 2.11 Awoludo CA, et al. 2013 0.14 (0.10, 0.22) 2.16 Banda JM, et al. 2020 0.16 (0.06, 0.17) 2.07 Chukwo DS, et al. 2011 0.16 (0.10, 0.22) 2.14 Byeeghe AO, et al. 2012 0.20 (0.15, 0.28) 2.17 Ilusarya OA, et al. 2012 0.20 (0.15, 0.28) 2.17 Ilusarya OA, et al. 2012 0.20 (0.15, 0.28) 2.17 Ilusarya OA, et al. 2012 0.20 (0.15, 0.28) 2.17 Ilusarya OA, et al. 2012 0.20 (0.16, 0.12) 1.49 Chrikothe MN, et al. 2010 0.46 (0.42, 0.28) 2.16 Obrikothe MN, et al. 2012 0.20 (0.16, 0.28) 2.11 Old AO, et al. 2017 0.24 (0.16, 0.28) 2.11 Okor AO, et al. 2016 0.21 (0.17, 0.28) 2.13 O	eight
Ajayi AB, et al. 2012 0.40 (0.31, 0.49) 137 Aknioye Co., et al. 2003 0.21 (0.17, 0.28) 2.10 Aknioye Co., et al. 2013 0.41 (0.10, 0.28) 2.20 Aknioye Co., et al. 2013 0.14 (0.10, 0.28) 2.20 Avelued CA, et al. 2013 0.14 (0.10, 0.28) 2.20 Chukwo DS, et al. 2014 0.11 (0.07, 0.16) 2.11 Ezechi CC, et al. 2013 0.18 (0.15, 0.28) 2.10 Ilusarya CA, et al. 2012 0.16 (0.06, 0.28) 2.11 Ilusarya CA, et al. 2012 0.28 (0.16, 0.28) 2.17 Ilusarya CA, et al. 2012 0.28 (0.16, 0.28) 2.17 Ilusarya CA, et al. 2012 0.28 (0.06, 0.08) 2.16 Kehinde AC, et al. 2014 0.29 (0.26, 0.33) 1.30 Obrik/comag C, et al. 2013 0.24 (0.16, 0.28) 2.10 Obrik/comag C, et al. 2014 0.20 (0.10, 0.13) 1.30 Obrik/comag C, et al. 2015 0.28 (0.20, 0.33) 1.30 O	
Admiopy C, et al. 2013 Admiophic C, et al. 2013 Attred AO et al. 2014 Attred AO et al. 2013 Attred AO et al. 2014 Banda JM, et al. 2020 Chukwu GS, et al. 2014 Execome IV, et al. 2016 (Insanya GA, et al. 2012 Imade PE, et al. 2016 Mokube MN, et al. 2015 Mokube MN, et al. 2015 Mokube MN, et al. 2015 Mokube MN, et al. 2017 Cohick AC, et al. 2016 Cohick AC, et al. 2017 Cohick AC, et al. 2017 Cohick AC, et al. 2016 Cohick AC, et al. 2017 Cohick AC, et al. 2018 Cohick AC, et al. 2019 Cohick AC, et al. 2011 Cohick AC, et al. 2019 Cohick AC, et al. 2019 Cohick	99
Akujeb ICO., et al. 2013 Avolude OA., et al. 2013 Avolude OA., et al. 2014 Eachi CC., et al. 2014 (Jameda PE, et al. 2014) Eachi CC., et al. 2014 (Jameda PE, et al. 2013) Eachi CC., et al. 2014 (Jameda PE, et al. 2012) (Jameda PE, et al. 2012) (Jameda PE, et al. 2014) Kehinde AO., et al. 2012 Labi Ak., et al. 2015 Obrikorang C., et al. 2017 Obrikorang C., et al. 2016 Obrikorang C., et al. 2017 Obrikorang C., et al. 2017 Dermie D., et al. 2016 Dermie D., et al. 2017 Dermie D., et al. 2017 Dermie D., et al. 2017 Dermie D., et al. 2018 Dermie D., et al. 2019 Dermie D., et al. 2010 Dermie D., et al. 2010 Dermie D.	37
Akujob ICO., et al. 2013 Awolude OA., et al. 2013 Awolude OA., et al. 2014 Chulkwu OS., et al. 2014 Ezechi OC., et al. 2013 Ezechi OC., et al. 2014 Ezechi OC., et al. 2013 Ezechi OC., et al. 2014 Exechi OC., et al. 2014 Exechi OC., et al. 2012 Illusarya OA., et al. 2012 Illusarya OA., et al. 2012 Illusarya OA., et al. 2010 Obrikozarg C., et al. 2013 Obrikozarg C., et al. 2016 Obrikozarg C., et al. 2017 Obrikozarg C., et al. 2017 Obrikozarg C., et al. 2017 Obrikozarg C., et al. 2017 Obrikoz, et al. 2017 Obrikozarg C., et al. 2017 Obrikoz, et al. 2017 Obrikozarg C., et al. 2017 Obrikoz, et al. 2016 Oli AN., et al. 2015 Tulpio A., et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Oli AN., et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Oli AN., et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Oli AN., et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2017 Obrikoz, et al. 2016 Obrikoz, et al. 2017 Demile T., et al. 2018 Define C., et al. 2018 Define C., et al. 2019 Demile T., et al. 2019 Demile T., et al. 2016 Define C., et al. 2016 Define C., et al. 2017 Demile T., et al. 2016 Define C., et al. 2017 Demile T., et al. 2016 Define C., et al. 2017 Define C., et al. 2016 Define C., et al. 2017 Define C., et al. 2016 Define C., et al. 2017 Define C., et al. 20	10
Afried AO et al. 2013 Afried AO et al. 2010 Banda JM. et al. 2020 Chukwu GS, et al. 2011 Execomi UV, et al. 2016 Ilicamya CA., et al. 2011 Ilicamya CA., et al. 2012 Ilicamya CA., et al. 2011 Keinhick AO., et al. 2012 Ilicamya CA., et al. 2012 Ilicamya CA., et al. 2012 Keinhick AO., et al. 2012 Chukwu GS., et al. 2012 Keinhick AO., et al. 2012 Coll CK., et al. 2012 Coll CK., et al. 2012 Coll CK., et al. 2017 Obel CK., et al. 2017 Old CK., et al. 2017 Old CK., et al. 2017 Old CK., et al. 2017 Okon CO., et al. 2016	20
Awokude OA, et al. 2010 0.16 (0.10, 0.22) 2.05 Chukwu OS, et al. 2014 0.11 (0.07, 0.16) 2.11 Ezeenin CC, et al. 2013 0.16 (0.16, 0.22) 2.16 Ezeenin CC, et al. 2014 0.18 (0.06, 0.17) 2.07 Ilusanya OA, et al. 2012 0.16 (0.16, 0.22) 2.05 Ilwade PE, et al. 2010 0.45 (0.42, 0.49) 2.41 Kehinde AO, et al. 2011 0.45 (0.42, 0.49) 2.41 Mokube MN, et al. 2020 0.26 (0.66, 0.10) 2.19 Labi AK, et al. 2015 0.06 (0.03, 0.09) 2.16 Obrik Corag, c, et al. 2016 0.24 (0.16, 0.33) 2.12 Obrik Corag, c, et al. 2017 0.24 (0.16, 0.33) 2.12 Okoro AO, et al. 2016 0.26 (0.50, 0.17) 1.83 Oli AO, et al. 2017 0.24 (0.16, 0.33) 2.12 Okoro AO, et al. 2016 0.26 (0.03, 0.05) 2.10 Okoro AO, et al. 2017 0.24 (0.16, 0.22) 2.10 Okoro AO, et al. <td>11</td>	11
Banda M. et al. 2020 Chulwau OS., et al. 2014 Exection U.C., et al. 2013 Execome W., et al. 2016 Wei MK, et al. 2017 Chorendu SJ., et al. 2015 Doinicorang C., et al. 2015 Mokube MN, et al. 2016 Doinicorang C., et al. 2017 Okon KO., et al. 2017 Okon KO., et al. 2017 Okon KO., et al. 2017 Chorendu SJ., et al. 2017 Okon KO., et al. 2017 Divide A., et al. 2018 Divide A., et al. 2019 Divide A., et al. 2019 Divide A., et al. 2010 Divide A., et al. 2010 Divide A., et al. 2010 Divide A., et al. 2010 Divide A., et al. 2011 Divide A., et al. 2014 Divide A., et al. 2014 Divide A., et al. 2014 Divide A., et al	
Chukwu OS., et al. 2014 Ezechi OC., et al. 2013 Ezechi OC., et al. 2014 (hysepbe AO., et al. 2012 Itiasanya OA., et al. 2012 Itiasanya OA., et al. 2011 Itiasanya OA., et al. 2015 Itiasanya OA., et al. 2015 Itiasanya OA., et al. 2015 Itiasanya OA., et al. 2015 Itiasanya OA., et al. 2016 ODB (DAB, et al. 2017 OKon KO., et al. 2017 OKon KO., et al. 2017 OKon KO., et al. 2017 Oto IA., et al. 2017 Thagons K., et al. 2018 Itias AB., et al. 2018 Itias AB., et al. 2018 Itias AB., et al. 2018 Itias AB., et al. 2019 Itias AB., et al	
Ezechi OC., et al. 2013 Ezecome IV., et al. 2006 Igwegbe AO., et al. 2012 Imade PE., et al. 2010 Kehnide AO., et al. 2011 Kehnide AO., et al. 2011 Construction of the AO., et al. 2011 Construction of the AO., et al. 2011 Construction of the AO., et al. 2012 Deliviorang C., et al. 2013 Obiniverang C., et al. 2017 Obiniverang C., et al. 2017 Obiniverang C., et al. 2017 Okon Oko, et al. 2017 Demile T., et al. 2018 Devese B., et al. 2019 Demile T., et al. 2010 Demile T., et al. 2019 Demile T., et al. 2019 Demile T., et al. 2010 Demile T., et al. 2010 Demile T., et al. 2010 Demile T., et al. 2010 Demile T., et al. 2019 Demile T., et al.	
Ezeome IV., et al. 2006 [jwegbe AO, et al. 2012 lusany OA, et al. 2012 lusany OA, et al. 2014 Kehinda AO, et al. 2011 Kehinda AO, et al. 2011 Kehinda K, et al. 2013 Jolik K, et al. 2015 Jolik K, et al. 2017 Coord KJ, et al. 2017 Jolik AL, et al. 2018 Jolik AL, et al. 2018 Jolik AL, et al. 2019 Jolik Jolik AL, et al. 2019 Jolik Jolik Jo	
Igwegbe AO, et al. 2012 Imade PE, et al. 2010 Kahinda AO, et al. 2011 Kahinda AO, et al. 2010 Kahinda AO, et al. 2011 Kahinda AO, et al. 2012 Jowe Kong KA et al. 2020 Labi Ak, et al. 2013 Obrikkonang C., et al. 2014 Obrikkonang C., et al. 2017 Obrikkong KN, et al. 2017 Oko JO, et al. 2017 Okor KO, et al. 2017 Okor AO, et al. 2017 Okor JO, et al. 2016 Oli AL, et al. 2017 Okor JO, et al. 2017 Okor JO, et al. 2017 Demiker J, et al. 2016 Demiker J, et al. 2017 Demiker J, et al. 2017 Demiker J, et al. 2017	
Timage PE, et al. 2012 Kehinde AO., et al. 2010 Kehinde AO., et al. 2011 Koff KA et al. 2020 Labi AA., et al. 2012 Mokube MN., et al. 2013 Ophikorang C., et al. 2014 Ophikorang C., et al. 2015 Ophikorang C., et al. 2016 Opide CK., et al. 2017 Okon Ko., et al. 2017 Okon Ko., et al. 2018 Oli AN., et al. 2010 Oli AN., et al. 2010 Oli AN., et al. 2010 Our A., et al. 2010 Our A., et al. 2017 Okon Ko., et al. 2010 Our A., et al. 2016 Subtotal (I*2 = 98.34%, p < 0.001)	
made FE, et al. 2010 Kefin KA et al. 2020 Labi AA., et al. 2021 Jabi AA., et al. 2013 Okkube MN, et al. 2013 Dirik Ka et al. 2013 Opba OM, et al. 2014 Opba OM, et al. 2017 Opba OM, et al. 2017 Okon KO, et al. 2012 Okon KO, et al. 2017 Okon KO, et al. 2017 Okon KO, et al. 2016 Olde CK, et al. 2017 Okon KO, et al. 2017 Okon KO, et al. 2017 Okon KO, et al. 2016 Dur FA, et al. 2016 Dur FA, et al. 2017 Subtotal (I^2 = 98.34%, p < 0.001)	
Gehinde AO, et al. 2011 Gehinde AO, et al. 2020 Jabi Ak., et al. 2020 Jabi Ak., et al. 2015 Mokube MN, et al. 2013 Oblickorang C., et al. 2012 Opb OM, et al. 2012 Okokube AL. 2013 Okokube AL. 2014 Okokube AL. 2012 Oblickorang C., et al. 2011 Okon KO, et al. 2011 Okokube AL. 2013 Oli AN., et al. 2016 Onu FA., et al. 2015 Tourpin CA., et al. 2015 Douge AL. 2014 Dabele MA. et al. 2012 Damilia T., et al. 2012 Damilia T., et al. 2016 Damilia T., et al. 2017 Dasseese Y., et al.	
Koffi KA et al. 2020 Labi Ak., et al. 2015 Mokube MN, et al. 2013 Doirikorang C., et al. 2012 Ogbe OM, et al. 2013 Oido CK., et al. 2012 Obstown MS., et al. 2012 Okono KO., et al. 2017 Okono KO., et al. 2011 Okono KO., et al. 2012 Okono KO., et al. 2012 Okono KO., et al. 2012 Olido A., et al. 2012 Olido A., et al. 2013 Olido A., et al. 2016 On FA., et al. 2017 Subtotal (P2 = 98.34%, p < 0.001)	
Labi AK, et al. 2015 Mokube MN, et al. 2013 Obirkorang C, et al. 2012 Ogbe OM, et al. 2013 Oko JO., et al. 2017 Oko KO., et al. 2017 Oko KO., et al. 2017 Oko KO., et al. 2018 Okorondu SI., et al. 2019 Okorondu SI., et al. 2019 Ohur FA, et al. 2015 Tolulope A., et al. 2015 Tolulope A., et al. 2017 Obitotal (I^2 = 98.34%, p < 0.001) East East East East East M., et al. 2017 Omerse B., et al. 2017 Omerse B., et al. 2017 Tradesse S., et al. 2017 Tradesse S., et al. 2016 Tradesse S., et al. 2016 Tradesse S., et al. 2016 Tradesse S., et al. 2017 Tradesse S., et al. 2018 Tradesse S., et al. 2017 Tradesse S., et al. 2017 Tradesse S., et al. 2018 Tradesse S., et al. 2017 Kamel HA., et al. 2018 Southor	
Mokube NN, et al. 2013 Obirikorang C., et al. 2012 Opide OM, et al. 2012 Ojde CK, et al. 2012 Okorondu SI., et al. 2012 Okorondu SI., et al. 2012 Okorondu SI., et al. 2013 Okorondu SI., et al. 2013 Oldro CX, et al. 2013 Okorondu SI., et al. 2013 Oldro CX, et al. 2016 Obrikorang CX, et al. 2017 Subtotal (I^2 = 98.34%, p < 0.001)	i 9
Mokube NN, et al. 2013 Dbirkiorang C., et al. 2012 Opic OM, et al. 2016 Ojde CK, et al. 2012 Okorondu SI., et al. 2013 Okorondu SI., et al. 2012 Orido CA., et al. 2012 Orido CA., et al. 2013 Olido CA., et al. 2014 Orido CA., et al. 2013 Orido CA., et al. 2016 Orido CA., et al. 2016 Orido CA., et al. 2017 Subtotal (I^2 = 98.34%, p < 0.001)	
Obirikorang C., et al. 2012 Ogba OM, et al. 2016 Ogba OM, et al. 2020 Okor KO, et al. 2020 Okor KO, et al. 2017 Okor KO, et al. 2016 Olar V. et al. 2015 Toulpic A., et al. 2015 Toupic A., et al. 2015 Subtotal (I^2 = 98.34%, p < 0.001)	90
Ogba OM, et al. 2016 0.22 (0.15, 0.31) 1.94 Ojde CK, et al. 2020 0.11 (0.07, 0.15) 2.13 Oko JO, et al. 2017 0.23 (0.19, 0.29) 2.10 Oko NKO, et al. 2018 0.43 (0.19, 0.29) 2.10 Okor MKO, et al. 2017 0.43 (0.19, 0.29) 2.11 Oru FA, et al. 2016 0.23 (0.19, 0.28) 2.11 Oru FA, et al. 2015 0.25 (0.20, 0.30) 2.08 Oru FA, et al. 2007 0.27 (0.04, 0.12) 2.14 Subtotal (I^2 = 98.34%, p < 0.001)	2
Qide CK., et al. 2020 0.11 (0.07, 0.15) 2.13 Oko JO., et al. 2017 0.24 (0.19, 0.29) 2.10 Okor KO., et al. 2012 0.83 (0.55, 0.71) 1.83 Okor KO., et al. 2010 0.83 (0.55, 0.71) 1.83 Onu FA., et al. 2015 0.25 (0.20, 0.30) 2.08 Toulip CA., et al. 2015 0.25 (0.18, 0.33) 1.96 Tourpin CA., et al. 2010 0.07 (0.40, 0.12) 2.14 Subtotal (I^2 = 98.34%, p < 0.001)	
Oko JO, et al. 2017 0.4 (0.15, 0.29) 2.10 Okon KO, et al. 2012 0.63 (0.55, 0.71) 1.93 Okon KJ, et al. 2013 0.40 (0.30, 0.50) 1.81 Oli AN, et al. 2010 0.23 (0.19, 0.28) 2.11 Our LA, et al. 2015 0.25 (0.18, 0.33) 1.96 Tolulope A., et al. 2017 0.22 (0.17, 0.28) 2.14 Subtotal (I^2 2 98.34%, p < 0.001)	
Okon KO., et al. 2012 0.6 (0.30, 0.50) 1.81 Okorondu SI., et al. 2010 0.40 (0.30, 0.50) 1.81 Onu FA., et al. 2015 0.25 (0.20, 0.30) 2.08 Turpin CA., et al. 2007 0.25 (0.18, 0.33) 1.96 Subtotal (I*2 = 98.34%, p < 0.001)	
Okrorodu SI., et al. 2013 040 (0.30, 0.50) 1.81 Oli AN., et al. 2010 0.25 (0.20, 0.30) 2.08 Tolulope A., et al. 2015 0.25 (0.20, 0.30) 2.08 Turpin CA., et al. 2007 0.07 (0.04, 0.12) 2.14 Subtotal (I^2 = 98.34%, p < 0.001)	
Oli AN., et al. 2010 0.23 (0.19, 0.28) 2.11 Onu FA., et al. 2015 0.25 (0.18, 0.33) 1.96 Turpin CA., et al. 2007 0.07 (0.04, 0.12) 2.14 Subtotal (I^2 = 98.34%, p < 0.001)	
Onu FA, et al. 2015 Toluippe A., et al. 2015 Toluippe A., et al. 2016 Subtotal (I^2 = 98.34%, p < 0.001)	
Tolulope A., et al. 2015 Turpin CA., et al. 2007 Subtotal (I^2 = 98.34%, p < 0.001)	
Turpin CA, et al. 2007 Subtotal (I^2 = 98.34%, p < 0.001)	
Subtotal (I ^A 2 = 98.34%, p < 0.001) East Belete MA, et al. 2020 Chaula T, et al. 2017 Demilie T, et al. 2017 Demilie T, et al. 2016 Demilie T, et al. 2016 Demilie T, et al. 2016 Desses P, et al. 2016 Hagos K, et al. 2017 Hagos K, et al. 2017 Hagos K, et al. 2016 Mwainde, A, et al. 2016 Mwainde, A, et al. 2016 Tadesse S, et al. 2018 Niteziyaremye J, et al. 2018 Tadesse S, et al. 2018 Wabe YA, et al. 2018 Tadesse S, et al. 2018 Wabe YA, et al. 2018 Diverse S, et al. 2018 Mwabe YA, et al. 2019 Morth El-Sokkary M 2011 El-Sokkary M 201	
Subtotal (I ^A 2 = 98.34%, p < 0.001) East Belete MA, et al. 2020 Chaula T, et al. 2017 Derrise B, et al. 2016 Derrise B, et al. 2016 Gessese YA, et al. 2017 Hagos K, et al. 2017 Hagos K, et al. 2015 Mwainde, A, et al. 2016 Mwayanja R, et.al. 2016 Myaenja HZ, et al. 2016 Tadesse S, et al. 2018 North El-Sokkary M 2011 El-Sokkary M 2011 El-	
Belete MA, et al. 2020 0.12 (0.08, 0.17) 2.12 Chaula T., et al. 2017 0.17 (0.12, 0.22) 2.09 Demilie T., et al. 2016 0.08 (0.06, 0.12) 2.15 Deress B., et al. 2016 0.02 (0.15, 0.25) 2.09 Gessesse YA., et al. 2015 0.09 (0.06, 0.14) 2.12 Hamdan HZ, et al. 2016 0.12 (0.09, 0.16) 2.15 Masinde, A., et al. 2016 0.12 (0.09, 0.16) 2.15 Mayanja R., et al. 2016 0.12 (0.09, 0.16) 2.15 Mwei MK., et al. 2016 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.06) 2.16 Tadesse A., et al. 2018 0.21 (0.16, 0.27) 2.08 Masindu (MZ, et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA., et al. 2017 0.10 (0.06, 0.16) 2.10 North ElSayat MA., et al. 2017 0.10 (0.06, 0.16) 2.11	.48
Chaula T., et al. 2017 0.17 (0.12, 0.22) 2.09 Demilie T., et al. 2016 0.08 (0.06, 0.12) 2.15 Deress B., st al. 2016 0.20 (0.15, 0.25) 2.09 Gesses YA., et al. 2017 0.18 (0.14, 0.22) 2.11 Hagos K., et al. 2015 0.09 (0.06, 0.14) 2.12 Hamdan HZ., et al. 2016 0.12 (0.08, 0.17) 2.11 Mayanja R., et al. 2009 0.12 (0.09, 0.16) 2.15 Mwei MK., et al. 2016 0.12 (0.09, 0.16) 2.15 Mwei MK., et al. 2018 0.09 (0.06, 0.12) 2.15 Mwei MK., et al. 2018 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.06) 2.16 Mabe YA, et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA, et al. 2020 0.17 (0.13, 0.22) 2.11 South 0.01 (0.06, 0.16) 2.10 0.12 (0.09, 0.15) 35.9 North Elsayat MA., et al. 2017 0.10 (0.06, 0.16) 2.10 Kamel HA., et al. 2017 0.11 (0.01, 0.22) 6.43	
Demilie T., et al. 2012 0.08 (0.06, 0.12) 2.15 Derese B., et al. 2020 0.20 (0.15, 0.25) 2.09 Gessese YA., et al. 2017 0.18 (0.04, 0.22) 2.11 Hagos K., et al. 2015 0.99 (0.06, 0.14) 2.12 Hamdan HZ., et al. 2011 0.12 (0.08, 0.17) 2.11 Masinde, A., et al. 2009 0.13 (0.09, 0.16) 2.15 Mwayanja R., et al. 2016 0.12 (0.09, 0.16) 2.15 Musinde, A., et al. 2016 0.12 (0.09, 0.16) 2.15 Musinde, A., et al. 2018 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2011 0.04 (0.02, 0.08) 2.16 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Taye S., et al. 2010 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Derese B., et al. 2016 0.06 (0.03, 0.10) 2.14 Edae M., et al. 2020 0.20 (0.15, 0.25) 2.09 Gessese YA., et al. 2015 0.09 (0.06, 0.14) 2.12 Handan HZ, et al. 2011 0.13 (0.09, 0.16) 2.11 Masinde, A., et al. 2009 0.13 (0.09, 0.16) 2.11 Mayarija R., et.al. 2016 0.12 (0.08, 0.17) 2.11 Myarija R., et.al. 2016 0.12 (0.09, 0.16) 2.15 Onyargo HA, et al. 2020 0.04 (0.02, 0.06) 2.16 Tadesse A., et al. 2011 0.14 0.12 (0.09, 0.15) 2.19 Tadesse S., et al. 2018 0.04 (0.02, 0.06) 2.16 Tadesse S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA, et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Edae M., et al. 2020 0.20 (0.15, 0.25) 2.09 Gessese YA, et al. 2017 0.18 (0.14, 0.22) 2.11 Hagos K, et al. 2015 0.09 (0.06, 0.14) 2.12 Hamdan HZ, et al. 2011 0.12 (0.08, 0.17) 2.11 Masinde, A, et al. 2009 0.13 (0.09, 0.16) 2.11 Mayanja R., et al. 2016 0.12 (0.09, 0.16) 2.15 Nteziyaremye J., et al. 2018 0.09 (0.06, 0.12) 2.15 Nteziyaremye J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA, et al. 2018 0.04 (0.02, 0.06) 2.16 Tadesse S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA, et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Gessese YA., et al. 2017 0.18 (0.14, 0.22) 2.11 Hagos K., et al. 2015 0.09 (0.06, 0.14) 2.12 Hamdan HZ., et al. 2011 0.12 (0.08, 0.17) 2.11 Masinde, A., et al. 2009 0.13 (0.09, 0.18) 2.11 Mayaing R., et al. 2016 0.12 (0.08, 0.17) 2.11 Mayaing R., et al. 2016 0.12 (0.09, 0.16) 2.15 Niteziyaremy J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.08) 2.16 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Tadesse S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA., et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	i 4
Hagos K., et al. 2015 Hamdan HZ, et al. 2011 Masinde, A., et al. 2009 Masinde, A., et al. 2009 Masinde, A., et al. 2016 Misel MK, et al. 2018 Onyango HA, et al. 2018 Tadesse A., et al. 2018 Tadesse S., et al. 2018 Wabe YA., et al. 2018 Wabe YA., et al. 2018 Subtotal (I^2 = %, p = .) South)9
Hagos K., et al. 2015 Hamdan HZ, et al. 2011 Masinde, A., et al. 2009 Masinde, A., et al. 2009 Masinde, A., et al. 2016 Misel MK, et al. 2018 Onyango HA, et al. 2018 Tadesse A., et al. 2018 Tadesse S., et al. 2018 Wabe YA., et al. 2018 Wabe YA., et al. 2018 Subtotal (I^2 = %, p = .) South	11
Hamdan HZ, et al. 2011 Masinde, A., et al. 2009 Mayanja R., et al. 2016 Mwei MK., et al. 2018 Onyango HA., et al. 2018 Tadesse A., et al. 2018 Tadesse S., et al. 2018 Wabe YA., et al. 2017 Subtotal (I^2 = .%, p = .) South	
Masinde, A., et al. 2009 0.13 (0.09, 0.16) 2.11 Mayanja R., et.al. 2016 0.12 (0.09, 0.16) 2.15 Mwei MK., et al. 2018 0.09 (0.06, 0.12) 2.15 Nteziyaremye J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.06) 2.19 Tadesse A., et al. 2001 0.10 (0.06, 0.15) 2.10 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Tadesse S., et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Mayanja R., et al. 2016 0.12 (0.09, 0.16) 2.15 Mwei MK., et al. 2018 0.09 (0.06, 0.12) 2.15 Nteziyaremye J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.06) 2.19 Tadesse A., et al. 2001 0.04 (0.02, 0.06) 2.19 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Wabe YA., et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Mwei MK, et al. 2018 0.09 (0.06, 0.12) 2.15 Nteziyaremye J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA, et al. 2018 0.04 (0.02, 0.06) 2.19 Tadesse A., et al. 2001 0.10 (0.06, 0.15) 2.10 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Taye S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA, et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I*2 = 90.29%, p < 0.001)	
Nteziyaremye J., et al. 2020 0.04 (0.02, 0.06) 2.19 Onyango HA., et al. 2018 0.04 (0.02, 0.06) 2.16 Tadesse A., et al. 2001 0.10 (0.06, 0.15) 2.10 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Tadesse S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA., et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I*2 = 90.29%, p < 0.001)	
Onyango HA., et al. 2018 Tadesse A., et al. 2001 Fadesse A., et al. 2011 Fadesse S., et al. 2018 Taye S., et al. 2018 Vabe YA., et al. 2020 Subtotal (I*2 = 90.29%, p < 0.001)	
Tadesse A., et al. 2001 0.10 (0.06, 0.15) 2.10 Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Taye S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA,. et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Tadesse S., et al. 2018 0.21 (0.16, 0.27) 2.08 Taye S., et al. 2018 0.22 (0.15, 0.31) 1.94 Wabe YA,. et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I*2 = 90.29%, p < 0.001)	
Taye S., et al. 2018 Wabe YA., et al. 2020 Subtotal (I^2 = 90.29%, p < 0.001)	
Wabe YA,. et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Wabe YA, et al. 2020 0.17 (0.13, 0.22) 2.11 Subtotal (I^2 = 90.29%, p < 0.001)	
Subtotal (I^2 = 90.29%, p < 0.001)	11
EI-Sokkary M 2011 0.20 (0.18, 0.22) 2.18 EIzayat MA., et al. 2017 0.10 (0.06, 0.16) 2.10 Kamel HA., et al. 2018 0.04 (0.02, 0.09) 2.15 Subtotal (I ^A 2 = .%, p = .) 0.11 (0.01, 0.22) 6.43	
Elzayat MA., et al. 2017 0.10 (0.06, 0.16) 2.10 Kamel HA., et al. 2018 0.04 (0.02, 0.09) 2.15 Subtotal (I^2 = .%, p = .) 0.11 (0.01, 0.22) 6.43	
Kamel HA., et al. 2018 Subtotal (1^2 = .%, p = .) 0.04 (0.02, 0.09) South 0.11 (0.01, 0.22)	
Subtotal (1/2 = .%, p = .) 0.11 (0.01, 0.22) 6.43 South	
South	5
	13
Widmer I.A., et al. 2010 🕐 🚍 🔢 0.08 (0.06, 0.12) 2.16	
	.6
Heterogeneity between groups: p < 0.001	
Overall ($l^2 = 97.47\%$, p < 0.001); \bullet 0.18 (0.15, 0.21)100.12	0.00
.25 .5 .75 1 Proportion	

Fig. 2. Forest plot showing Subgroup analysis by region and the overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa.

anatomic abnormalities, age, previous history of UTI, multiple pregnancies, diabetes, lack of personal hygiene and socioeconomic status [64].

E. coli was the most common bacterial isolate which cause ABU in this systematic review and meta-analysis. This is similar with the report from Infectious Diseases Society of America Guidelines for the Diagnosis and Treatment of Asymptomatic Bacteriuria in Adults [63] and WHO [65], and Meta analyses of randomized clinical trials [66]. For health women *E. coli* had lower levels of virulence factors such as specific lipopolysaccharide, adhesions, toxins, mobility factors, and

other proteins. But due to physiologic change in pregnancy the strain might have a higher level of virulence [64].

Although this systematic review and meta-analysis presented upto-date evidence on prevalence of ABU in Africa, it might have faced the following limitations. First, lack of studies from central African countries and only one study included from South region of Africa, this may affect the generalizability of the finding to Africa and warrants further investigation in central and south regions of Africa on prevalence of ABU among pregnant women. Secondly, significant heterogeneity was observed cross-study despite the analysis was

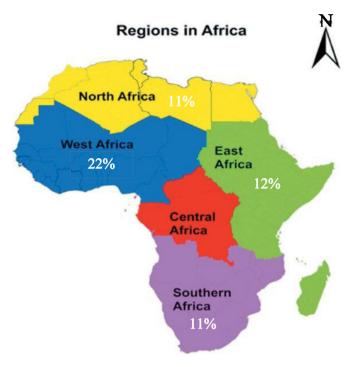


Fig. 3. Overall pooled prevalence of asymptomatic bacteriuria among pregnant women in Africa regions.

Table 2

Meta-regression analysis of factors affecting between-study heterogeneity.

Heterogeneity source	Coefficients	Std. Err.	P-value
Publication year	-0.0722	0.0573	0.214
Sample size	-0.0003	0.0006	0.618

conducted on random effect Meta-analysis model to manage it. Thirdly, there is significant publication bias in this meta-analysis which is evaluated graphically by funnel plots and statistically tested for the presence of small study effect by Egger test due to this the result should be interpreted cautiously. Hence, the pooled prevalence was corrected by Duval and Tweedie's trim and fill analysis. Finally, lack of similar meta-analysis at other continents to compare with our finding which might have influenced the discussion of our result.

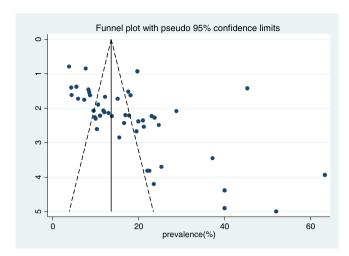


Fig. 4. Funnel plot to test the publication bias in 48 studies with 95% Confidence limits.

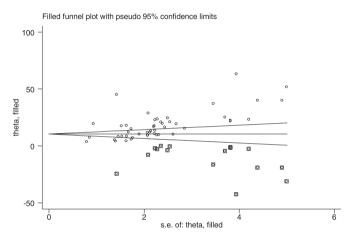


Fig. 5. Filled funnel plot after adjusting for publication bias with 95% Confidence limits.

The results of this meta-analysis indicated the prevalence of asymptomatic bacteriuria is substantial among pregnant women in Africa. Therefore, pregnant women should be screened for bacteriuria by urine culture at least once in early pregnancy. Positive pregnant women should receive standard antibiotics regimen and thereafter

Table 3

Type of bacterial isolates extracted from studies included in the systematic review and meta-analysis of asymptomatic bacteriuria among pregnant women in Africa.

S/N	Type of microorganisms [Ref]	Number of included study	Total sample size	Pooled prevalence	Study heterogeneity	
			SIZE	(95% CI)	I ² %	P- value
1	<i>E.coli</i> [14–21,23–25,28–34,38,39,42,44–53,55,56,58–61]	37	2723	33.4 (27.3 - 39.4)	92.8	< 0.001
2	S. aureus [14-18,20-25,28-30,32-34,38,44,47-53,55,56,58-61]	32	2634	23.9 (18.9 - 29.0)	91.6	< 0.001
3	CoNS [18,25,28–30,34,51]	7	453	20.9 (8.0 - 33.8)	91.1	< 0.001
4	Klebsiella Spp [14,17,20–24,29,30,34,38,47,48,51,52,56,58–60]	19	1673	12.2 (8.0 - 16.5)	90.1	< 0.001
5	S. saprophyticus [49,52,56,59–61]	6	260	11.1 (7.3 14.9)	0	0.524
6	<i>C. albicans</i> [14,15,20,38,49,52,60]	7	1311	10.0 (6.6 - 13.5)	69	0.004
7	S. faecalis [20,33,44,48]	4	212	9.3 (0.5 - 18.1)	85	< 0.001
8	Proteus mirabilis [18,23,24,28,32,34,42,44,46,48,50,52,53,56,61]	15	873	9.3 (5.6 - 12.9)	80.7	< 0.001
9	Streptococci species [15,25,28,35,46,49]	6	492	9.0 (6.5 - 11.5)	0	0.504
10	Other coliforms [18,47,53,59]	4	182	8.7 (1.1 - 16.3)	66.1	0.031
11	K. pneumoniae [15,16,18,25,28,31,32,34,35,39,44–46,55,60,61]	16	1050	6.9 (3.9 - 9.9)	72	< 0.001
12	Staphylococcus epidermidis [20,42,55]	3	82	6.7 (1.3 - 12.1)	0	0.730
13	Proteus spp [14,15,17,20,21,29,30,33,34,38,39,49,51,55,58].	15	1801	6.2 (3.8 - 8.6)	75.3	< 0.001
14	Pseudomonas spp. [14,16–18,20,28–30,33,38,44,45,48,51,56,58]	16	1375	4.7 (3.6 - 5.8)	31.8	0.108
15	C. freundii [18,28,55,56]	4	173	3.3 (0.6 - 5.9)	0	0.455
16	Enterococcus [16,20,32,35,42,49,59,60,61]	9	345	3.1 (1.2 - 5.1)	6.7	0.379

CoNS*= Coagulase negative Staphylococci.

periodic screening for recurrent bacteriuria should be undertaken after therapy.

8. List of abbreviations

ABU: Asymptomatic bacteriuria, CoNS: Coagulase negative *Staphylococci*, **NOS:** Newcastle Ottawa Scale, **PRISMA:** Preferred Reporting Items for Systematic Reviews and Meta-Analyses, **UTI:** Urinary Tract Infection,

9. Data sharing statement

The data analyzed during the current systematic review and meta-analysis is available from the corresponding author on reasonable request.

Declaration of Competing Interest

The authors declare that they have no competing interests.

Funding

There was no funding source for this study.

Contributors

NA developed the protocol and involved in the design, selection of study, data extraction, quality assessment, statistical analysis, results interpretation and developing the initial and final drafts of the manuscript. TT, MT, TL, GD, and MS involved in data extraction, quality assessment, statistical analysis and revising subsequent drafts. All authors read and approved the final draft of the manuscript.

Acknowledgment

We would like to thank all authors of studies included in this systematic review and meta-analysis.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.eclinm.2021.100952.

References

- Ansari HQ, Rajkumari A. Prevalence of asymptomatic bacteriuria and associated risk factors among antenatal patients attending a tertiary care hospital. J Med Allied Sci 2011 Jul;1(2):74.
- [2] Perera J, Randeniya C, Perera P, Gamhewage N, Jayalatharchchi R. Asymptomatic bacteriuria in pregnancy: prevalence, risk factors and causative organisms. Sri Lankan J Infect Dis 2012 Jan;2(1) http://dx.doi.org/10.4038/sljid.v2i1.3810.
- [3] Smaill FM, Vazquez JC. Antibiotics for asymptomatic bacteriuria in pregnancy. cochrane database of systematic reviews. https://doi.org/10.1002/14651858. CD000490.pub3.
- [4] Sujatha R, Nawani M. Prevalence of asymptomatic bacteriuria and its antibacterial susceptibility pattern among pregnant women attending the antenatal clinic at kanpur, india. journal of clinical and diagnostic research. JCDR; 2014 Apr 8DC01. https://doi.org/10.7860/JCDR/2014/6599.4205.
- [5] Al Senani NS. Asymptomatic bacteriuria in pregnant women. Bahrain Med Bull 2011 Dec;33(4):3. Available at: https://www.bahrainmedicalbulletin.com/ december_2011/Asymptomatic-Bacteriuria.pdf.
- [6] Mukherjee K, Golia S, Vasudha CL, Babita BD, Chakroborti G. A study on asymptomatic bacteriuria in pregnancy: prevalence, etiology and comparison of screening methods. Int J Res Med Sci 2014 Aug;2(3):1085–91 https://doi.org/10.5455/ 2320-6012.ijrms20140886.
- [7] Garnizov TM. Asymptomatic bacteriuria in pregnancy from the perspective of public health and maternal health care: review and case report. Biotechnol Biotechnol Equip 2016 May;30(3):443–7. doi: 10.1080/13102818.2015.1114429.
- [8] Kasinathan A, Thirumal P. Prevalence of asymptomatic bacteriuria in antenatal women attending a tertiary care hospital. Int J Reprod Contracept Obstet Gynecol 2014;3(2):437–41 Junhttps://doi.org/10.5455/2320-1770.IJRCOG20140631.

- [9] Edae M, Teklemariam Z, Weldegebreal F, Abate D. Asymptomatic bacteriuria among pregnant women attending antenatal care at Hiwot Fana specialized university hospital, Harar, eastern Ethiopia: magnitude, associated factors, and antimicrobial susceptibility pattern. Int J Microbiol 2020 2020 Jul 20https://doi.org/ 10.1155/2020/1763931.
- [10] Hooton TM, Stamm WE. Urinary tract infections and asymptomatic bacteriuria in pregnancy. uptodate, rose, bd (Ed), uptodate, waltham, Ma. Available from https://www.uptodate.com/contents/urinary-tract-infections-and-asymptomatic-bacteriuria-in-pregnancy.
- [11] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100 https://doi.org/ 10.1371/journal.pmed.1000100.
- [12] Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in metaanalyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/ oxford.asp [cited 2020 Nov 07].
- [13] Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Community Health 2013 Nov;67(11):974–8 http://dx.doi.org/10.1136/ jech-2013-203104.
- [14] Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol 2011;64:1283–93 21839614 https://doi.org/10.1016/j.jclinepi.2011.01.012.
- [15] Ilusanya OA, Adesetan TO, Egberongbe HO, Otubushin AT. Asymptomatic bacteriuria in antenatal patients attending state hospital, Ado-Ekiti, Ekiti State, Nigeria. Current Res J Biol Sci 2012 Apr;4(3):261–4 Available at https://maxwellsci.com/ print/crjbs/v4-261-264.pdf.
- [16] El-Sokkary M. Prevalence of asymptomatic bacteriuria in antenatal women with preterm labor at an Egyptian Tertiary Center. J Am Sci 2011;7(4):605–10 Available at: https://ejhm.journals.ekb.eg/article_18699_c6db97e0c310c818d9daab4aaf4a5ecb.pdf.
- [17] Nteziyaremye J, Iramiot SJ, Nekaka R, Musaba MW, Wandabwa J, Kisegerwa E, Kiondo P. Asymptomatic bacteriuria among pregnant women attending antenatal care at Mbale Hospital, Eastern Uganda. PloS one. 2020 Mar;15(3):e0230523 https://doi.org/10.1371/journal.pone.0230523.
- [18] Okon KO, Nkwalaku L, Balogun ST, Usman H, Adesina OO, Akuhwa RT, Uba A, Shidali NN. Antimicrobial susceptibility profile of bacterial pathogens isolated from pregnant women with asymptomatic Bacteriuria at tertiary Hospital in Northeastern Nigeria. Sierra Leone J Biomed Res 2012;4(1):32–42 https://doi.org/ 10.9734/JAMPS/2016/27929.
- [19] Aboderin AO, Ako-Nai AK, Zailani SB, Ajayi A, Adedosu AN. A study of asymptomatic bacteriuria in pregnancy in Ile-Ife, Southwestern Nigeria. African J Clin Experiment Microbiol 2004 Sep;5(3):252–9 https://doi.org/10.4314/ajcem.v5i3.7387.
- [20] Ajayi AB, Nwabuisi C, Aboyeji AP, Ajayi NS, Fowotade A, Fakeye OO. Asymptomatic bacteriuria in antenatal patients in Ilorin, Nigeria. Oman Med J 2012 Jan(1):31. Available from http://www.omjournal.org/fultext_PDF.aspx? DetailsID=191&type=fultext.
- [21] Akinloye O, Ogbolu DO, Akinloye OM, Terry Alli OA. Asymptomatic bacteriuria of pregnancy in Ibadan, Nigeria: a re-assessment, 63. British journal of biomedical science; 2006 Jan. p. 109–12.
- [22] Akujobi CO, Ogbulie JN, Umeh SI, Abanno NU, Nwachukwu IN. Asymptomatic bacteriuria in pregnant women at the outpatient clinic of some governmental hospitals in Imo State, Nigeria. Int J Biol Chem Sci 2009;3(3) http://doi.org/10.4314/ ijbcs.v3i3.45328.
- [23] Alfred AO, Chiedozie I, Martin DU. Pattern of asymptomatic bacteriuria among pregnant women attending an antenatal clinic at a private health facility in Benin, South-South Nigeria. Ann Afr Med 2013 Jul;12(3):160. Available from: https:// www.annalsafrmed.org/text.asp?2013/12/3/160/117625.
- [24] Awolude OA, Adesina OA, Oladokun A, Mutiu WB, Adewole IF. Asymptomatic bacteriuria among HIV positive pregnant women. Virulence 2010 May 1;1(3):130–3 http://doi.org/10.4161/viru.1.3.11384.
- [25] Banda JM, Cletus D, Zakka Sheyin SA, John B, Mohammed SS, Damen JG. Prevalence of asymptomatic bacteriuria among pregnant women attending antenatal clinic at plateau state specialist hospital, Jos, Nigeria. Arch Microbiol Immunol 2020;4(3):121–30 https://doi.org/10.26502/ami.93650051.
- [26] Belete MA. Bacterial profile and ESBL screening of urinary tract infection among asymptomatic and symptomatic pregnant women attending antenatal care of northeastern ethiopia region. Infect Drug Resist 2020;13:2579. https://doi.org/ 10.2147/IDR.S258379.
- [27] Chaula T, Seni J, Ng'walida N, Kajura A, Mirambo MM, DeVinney R, Mshana SE. Urinary tract infections among HIV-positive pregnant women in Mwanza city, Tanzania, are high and predicted by low CD4+ count. International journal of microbiology. https://doi.org/10.1155/2017/4042686.
- [28] Chukwu OS, Ezeonu IM, Victor MA, Moses NA, Uchenna UG, Owolabi JO, Incidence Olaosebikan OO. Aetiology and antibiotic susceptibility profile of asymptomatic bacteriuria in pregnant women in Nsukka Urban, Enugu State, Nigeria. World J Life Sci Med Res 2014 May;3(3):94.
- [29] Demilie T, Beyene G, Melaku S, Tsegaye W. Urinary bacterial profile and antibiotic susceptibility pattern among pregnant women in North West Ethiopia. Ethiop J Health Sci 2012;22(2).
- [30] Derese B, Kedir H, Teklemariam Z, Weldegebreal F, Balakrishnan S. Bacterial profile of urinary tract infection and antimicrobial susceptibility pattern among pregnant women attending at Antenatal Clinic in Dil Chora Referral Hospital, Dire Dawa, Eastern Ethiopia. Ther Clin Risk Manag 2016;12:251. https://doi.org/ 10.2147/TCRM.S99831.

- [31] Elzayat MA, Barnett-Vanes A, Dabour MF, Cheng F. Prevalence of undiagnosed asymptomatic bacteriuria and associated risk factors during pregnancy: a crosssectional study at two tertiary centres in Cairo, Egypt. BMJ Open 2017 Mar;7(3): e013198 http://dx.doi.org/10.1136/bmjopen-2016-013198.
- [32] Ezechi OC, Gab-Okafor CV, Oladele DA, Kalejaiye OO, Oke BO, Ekama SO, Audu RA, Okoye RN, Ujah IA. Prevalence and risk factors of asymptomatic bacteriuria among pregnant Nigerians infected with HIV. J Matern Fetal Neonatal Med 2013 Mar;26(4):402–6 https://doi.org/10.3109/14767058.2012.733782.
- [33] Ezeome IV, Ikeme AC, Okezie OA, Onyebueke EA. Asymptomatic bacteriuria (ABU) in pregnant women in Enugu, Nigeria. Tropical J Obstetr Gynaecol 2006 Nov;23:12–3 https://doi.org/10.4314/tjog.v23i1.14556.
- [34] Gessese YA, Damessa DL, Amare MM, Bahta YH, Shifera AD, Tasew FS, Gebremedhin EZ. Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, central Ethiopia: a cross-sectional study. Antimicrobial Resistance Infect Control 2017 Dec; 6(1):132. https://doi.org/10.1186/s13756-017-0289-6.
- [35] Hagos K, Tesfamariam A, Adugna B, Amanuel H, Ghebray E, Eman D, Kassm NM, Fadlelmola FM. Prevalence of asymptomatic bacteriuria among pregnant women attending antenatal care at Semienawi Asmara Health Center. Br J Appl Sci Technol 2015 Jan;6(2):172. https://doi.org/10.9734/BJAST/2015/14003.
- [36] Hamdan H.Z., Ziad A.H., Ali S.K., Adam I. Epidemiology of urinary tract infections and antibiotics sensitivity among pregnant women at Khartoum North Hospital. Annals of clinical microbiology and antimicrobials. 2011 Jan; 10(1):2. https://doi. org/10.1186/1476-0711-10-2
- [37] Igwegbe AO, Ugboaja JO, Okoli OA. Prevalence of asymptomatic bacteriuria among pregnant women in Nnewi, southeast Nigeria. Int J Biol Chem Sci 2012;6 (1):88–98 https://doi.org/10.4314/ijbcs.v6i1.8.
- [38] Imade PE, Izekor PE, Eghafona NO, Enabulele OI, Ophori E. Asymptomatic bacteriuria among pregnant women. N Am J Med Sci 2010 Jun;2(6):263. https://doi.org/ 10.4297/najms.2010.2263.
- [39] Kamel HA, Hegab MH, Al-Sehrawey AA, Hassan HM. Prevalence of asymptomatic bacteriuria in patients with preterm labor. Egypt J Hospital Med 2018 Oct 1;73 (9):7444–7 https://doi.org/10.12816/ejhm.2018.18699.
- [40] Kehinde AO, Adedapo KS, Aimaikhu CO, Odukogbe AT, Olayemi O, Salako B. Significant bacteriuria among asymptomatic antenatal clinic attendees in Ibadan, Nigeria. Trop Med Health; 2011 Sep; 39. p. 73–6.
- [41] Koffi KA, Aka EK, Apollinaire H, Mlan-Britoh A, Konan JMP. Epidemiological, bacteriological profile and bacterial resistance of urinary tract infections at pregnant woman in prenatal consultation in African setting. Int J Reprod Contracept Obstet Gynecol 2020;9:461–7 http://dx.doi.org/10.18203/2320-1770.ijrcog20200329.
- [42] Labi AK, Yawson AE, Ganyaglo GY, Newman MJ. Prevalence and associated risk factors of asymptomatic bacteriuria in ante-natal clients in a large teaching hospital in Ghana. Ghana Med J 2015;49(3):154–8 https://doi.org/10.4314/gmj.v49i3.5.
- [43] Masinde A, Gumodoka B, Kilonzo A, Mshana SE. Prevalence of urinary tract infection among pregnant women at Bugando Medical Centre, Mwanza, Tanzania. Tanzania J Health Res 2009;11(3) https://doi.org/10.4314/thrb.v11i3.47704.
- [44] Mayanja R, Kiondo P, Kaddu S, Ógwange F, Andrew C, Ngonzi J, Kiggundu C. The prevalence of asymptomatic bacteriuria and associated factors among women attending antenatal clinics in Lower Mulago Hospital, Uganda. Am Sci Res J Eng, Technol Sci (ASRJETS) 2016;25(1):131–48 Available from https://asrjetsjournal. org/index.php/American_Scientific_Journal/article/view/2026/886.
- [45] Mokube MN, Atashili J, Halle-Ekane GE, Ikomey GM, Ndumbe PM. Bacteriuria amongst pregnant women in the Buea Health District, Cameroon: prevalence, predictors, antibiotic susceptibility patterns and diagnosis. PLoS One 2013 Aug;8 (8):e71086. https://doi.org/10.1371/journal.pone.0071086.
- [46] Mwei MK, Mchome B, John B, Maro E. Asymptomatic bacteriuria among pregnant women attending antenatal care at Kilimanjaro Christian Medical Centre in Northern Tanzania. Tanzan J Health Res 2018;20(4) http://dx.doi.org/10.4314/ thrb.v20i4.8.
- [47] Obirikorang C, Quaye L, Bio FY, Amidu N, Acheampong I, Addo K. Asymptomatic bacteriuria among pregnant women attending antenatal clinic at the uni-versity Hospital, Kumasi, Ghana. J Med Biomed Sci 2012;1(1):38–44.
- [48] Ogba OM, Eno JU, Eyo AA. Asymptomatic urinary tract infections among pregnant women in a nigerian referral hospital. J Dis Glob Health 2016;6:56–60 Retrieved from https://www.ikprress.org/index.php/JODAGH/article/view/1726.
- [49] Ojide CK, Wagbatsoma VA, Kalu EI, Nwadike VU. Asymptomatic bacteriuria among antenatal care women in a tertiary hospital in Benin, Nigeria. Nigeria J Experiment Clin Biosci 2014 Jul;2(2):79. Available from: https://www.njecbonline.org/text.asp?2014/2/2/79/144841.

- [50] Oko JO, Abriba C, Umar M, Asitok AD, Audu JA, Jakheng SP, Ojeleye FS, Amos AK. Antibiotics susceptibility study of uropathogens isolated from asymptomatic pregnant women attending a tertiary maternity clinic in Northern Nigeria. J Complement Alternat Med Res 2017 Mar:1–9 http://dx.doi.org/10.9734/JOCAMR/ 2017/32159.
- [51] Okorondu SI, Akujobi CO, Nnadi CB, Anyado-Nwadike SO, Okorondu MM. Prevalence and antibiotic sensitivity profile of urinary tract infection pathogens among pregnant and non-pregnant women. Int J Biol Chem Sci 2013;7(4):1668–77 http://dx.doi.org/10.4314/ijbcs.v7i4.22.
- [52] Oli AN, Okafor CI, Ibezim EC, Akujiobi CN, Onwunzo MC. The prevalence and bacteriology of a symptomatic bacteriuria among antenatal patients in Nnamdi Azikiwe University teaching hospital Nnewi; South Eastern Nigeria. Niger J Clin Pract 2010;13(4) Retrieved from https://www.njcponline.com/temp/NigerJClin-Pract134409-6167322_170753.pdf.
- [53] Onu FA, Ajah LO, Ezeonu PO, Umeora OU, Ibekwe PC, Ajah MI. Profile and microbiological isolates of asymptomatic bacteriuria among pregnant women in Abakaliki, Nigeria. Infect Drug Resistance 2015;8:231. https://doi.org/10.2147/IDR. S87052.
- [54] Onyango HA, Ngugi C, Maina J, Kiiru J. Urinary tract infection among pregnant women at pumwani maternity hospital. Bacterial etiologic agents, antimicrobial susceptibility profiles and associated risk factors, 8. Nairobi, Kenya: Advances in Microbiology; 2018 Mar 21. p. 175.
- [55] Tadesse A, Negash M, Ketema LS. Asymtomatic bacteriuria in pregnancy: assesment of prevlence, microbial agents and ther antimicrobial sensitivty pattern in Gondar Teaching Hospital, North West Ethiopia. Ethiop Med J 2007 Apr; 45 (2):143–9.
- [56] Tadesse S, Kahsay T, Adhanom G, Kahsu G, Legese H, Derbie A. Prevalence, antimicrobial susceptibility profile and predictors of asymptomatic bacteriuria among pregnant women in Adigrat General Hospital, Northern Ethiopia. BMC Res Notes 2018 Dec;11(1):740. https://doi.org/10.1186/s13104-018-3844-1.
- [57] Taye S, Getachew M, Desalegn Z, Biratu A, Mubashir K. Bacterial profile, antibiotic susceptibility pattern and associated factors among pregnant women with Urinary Tract Infection in Goba and Sinana Woredas, Bale Zone, Southeast Ethiopia. BMC Res Notes 2018 Dec;11(1):799. https://doi.org/10.1186/s13104-018-3910-8.
- [58] Tolulope A, Deborah O. Urinary tract infection amongst pregnant women in Amassoma, Southern Nigeria. Afr J Microbiol Res 2015 Feb;9(6):355–9 https:// doi.org/10.5897/AJMR2014.7323.
- [59] Turpin CA, Minkah B, Danso KA, Frimpong EH. Asymptomatic bacteriuria in pregnant women attending antenatal clinic at komfo anokye teaching hospital, kumasi, ghana. Ghana Med J 2007 Mar;41(1):26. Retrieved from https://www. ncbi.nlm.nih.gov/pmc/articles/PMC1890540/pdf/GMJ4101-0026.pdf.
- [60] Wabe YA, Reda DY, Abreham ET, Gobene DB, Ali MM. Prevalence of Asymptomatic Bacteriuria, Associated Factors and Antimicrobial Susceptibility Profile of Bacteria Among Pregnant Women Attending Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia. Ther Clin Risk Manag 2020;16:923. https://doi. org/10.2147/TCRM.S267101.
- [61] Widmer TA, Theron G, Grove D. Prevalence and risks of asymptomatic bacteriuria among HIV-positive pregnant women. Southern African J Epidemiol Infect 2010 Jan;25(1):28–32 https://doi.org/10.1080/10158782.2010.11441374.
- [62] Ghafari M, Baigi V, Cheraghi Z, Doosti-Irani A. The prevalence of asymptomatic bacteriuria in Iranian pregnant women: a systematic review and meta-analysis. PLoS ONE 2016 Jun;11(6):e0158031 https://doi.org/10.1371/journal. pone.0158031.
- [63] Nicolle LE, Bradley S, Colgan R, Rice JC, Schaeffer A, Hooton TM. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis 2005 Mar;1:643–54 https://doi.org/ 10.1086/427507.
- [64] Azami M, Jaafari Z, Masoumi M, Shohani M, Badfar G, Mahmudi L, Abbasalizadeh S. The etiology and prevalence of urinary tract infection and asymptomatic bacteriuria in pregnant women in Iran: a systematic review and Meta-analysis. BMC Urol 2019 Dec;19(1):43. https://doi.org/10.1186/s12894-019-0454-8.
- [65] WHO. recommendation on antibiotics for asymptomatic bacteriuria. Available from. https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirthand-postpartum-care/antenatal-care/who-recommendation-antibiotics-asymptomatic-bacteriuria Retrieved on.
- [66] Widmer M, Lopez I, Gülmezoglu AM, Mignini L, Roganti A. Duration of treatment for asymptomatic bacteriuria during pregnancy. Cochrane Database Systemat Rev 2015(11) Available at https://www.cochrane.org/CD000491/PREG_durationtreatment-asymptomatic-bacteriuria-during-pregnancy.