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Overview

Biological researchers increasingly rely

on computational models to integrate

biological systems knowledge, test hypoth-

eses, and forecast system behavior. The

expanding size of these models requires

solutions for managing their complexity.

Modularity, a time-tested design principle

for managing complexity, can be applied

within the biological modeling field to

parallelize work, automate composition,

and promote effective model sharing. As

modelers of complex biological systems,

we aim to apply modular production to

accelerate our efforts and have therefore

investigated several currently available

approaches for modular modeling. We

argue that some traditional features of

modularity, in particular the isolation of a

module’s contents from the rest of the

system, can impede model sharing and

composition when applied within the

context of biological simulation. Alterna-

tive approaches that can automatically

interface model components based on the

biological meaning of their contents (their

semantics) avoid these limitations. Our

conclusions have strategic implications for

the design of systems biology, synthetic

biology, and integrated physiological mod-

eling technologies, as well as community-

level model curation efforts.

Introduction

Given the enormous increase in sys-

tems-level biological information in recent

years, along with concurrent advances in

computing power, researchers can now

simulate biological systems on an unprec-

edented scale. Contemporary models may

contain hundreds or thousands of vari-

ables and equations, and as these simula-

tions grow in scope and fidelity, managing

model complexity becomes increasingly

difficult. A solution to this challenge is to

apply modular modeling approaches that

break up complex models into more

manageable pieces, parallelize work, and

enable more automated model composi-

tion. As a design principle, modularity is a

powerful and time-tested approach for

managing complexity. For example, the

aircraft, automobile, and electronics in-

dustries all rely on modular product

development; mass production of their

complex goods is impossible without it.

We, as modelers of complex biological

systems and as members of larger research

communities developing systems biology,

synthetic biology, and multiscale physiol-

ogy models, are interested in applying this

same production philosophy to facilitate

model reuse among the greater modeling

community and increase research produc-

tivity. Modular modeling offers an oppor-

tunity to move beyond traditional model-

ing practices characterized by hand-

coded, custom-made models with limited

capabilities for reuse. Our vision is to

utilize the expanding set of publicly

available biological models as a library of

interoperable modeling components that

can be easily recombined to build com-

plex, integrated simulations of biological

systems.

Working towards this vision, we have

explored several technologies for modular

modeling to better understand how we

might implement a general approach for

automated model composition and com-

munity-level model sharing. Based on our

exploration, we assert that information-

hiding interfaces, one of the hallmarks of

traditional modular designs because of the

advantages it confers, can actually impede

reuse of biological models. In a biological

context, such interfaces are problematic

because they can hide critical points of

coupling between modules in the same

system. Working from this argument, we

describe an alternative approach that can

address this problem.

Modularity and Interfaces

Modularity, despite being an intuitive

design principle, can be difficult to for-

mally define. Here we summarize and

apply a definition articulated by Baldwin

and Clark [1] that was adapted from

McClelland and Rumelhart [2]. Accord-

ing to this definition, there are two central

ideas that comprise the concept of a

module:

(1) A module is a unit in a larger system

that retains an individual identity but

interacts with other system units.
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(2) The complexity within a module is

isolated from the larger system but

made accessible via an interface; the

interface defines how the unit can

interact with the larger system.

Modeling components that adhere to

this definition are suitable, and perhaps

optimal, when researchers agree on what

the appropriate coupling points and inter-

faces should be for larger model compo-

sitions. However, we argue that for

broader reuse of models across research

groups, or within groups that have evolv-

ing modeling needs, these types of modules

can be problematic. Our reasoning is as

follows:

By the above definition, a module’s

interface defines how it interacts within a

larger system. This presupposes two

things. First, that the ‘‘larger system’’ has

already been defined. However, because

there is no way to anticipate all the ways

that the biological modeling community

may repurpose a publicly available mod-

eling component, there is no way to define

the system in which that component

participates a priori. Second, that there is

a universal and unchanging agreement

about what constitutes a module and how

such modules communicate via predefined

interfaces. Our concern is that current

computational implementations of mod-

ules and interfaces, while suitable for

specific purposes, prematurely commit

modelers to modeling components that

may be difficult to recombine and repur-

pose in the face of changing knowledge

and evolving modeling needs. For exam-

ple, biological information from a new

experiment may raise the importance of a

variable hidden within a component.

Therefore, it becomes difficult to antici-

pate what information in a component

should be exposed or hidden by an

interface.

For example, researchers studying nu-

cleotide synthesis might repurpose a gly-

colysis model for integration with a

pentose phosphate pathway (PPP) model,

while another research group investigating

metabolism might integrate it with a

tricarboxylic acid (TCA) cycle model.

Both are valid modeling tasks, and mod-

eling approaches for community-level

reuse should be able to accommodate

both. If the interface to the glycolysis

model is specified ahead of time, this can

limit its reuse. Let us assume the model

was initially intended to link with a PPP

module and includes an interface that

exposes three variables: the concentrations

of glucose 6-phosphate, fructose 6-phos-

phate, and glyceraldehyde 3-phosphate.

Such an interface hides a critical point of

coupling between the glycolysis and TCA

models: there is no way to integrate them

so that the TCA cycle’s input pyruvate

concentration becomes dependent on the

glycolysis model’s dynamics (Figure 1A).

The interface on the glycolysis model,

although quite suitable for the original

modeling task, hides biological knowledge

critical to its reuse for modeling tasks

beyond its initial design goals. Besides

hiding the pyruvate concentration variable

‘‘Pyr’’ in Figure 1, the interface may hide

other variables, such as ATP and ADP

concentration, which can be critical for

connecting the glycolysis model to others

in a biologically consistent fashion.

The use of such predefined interfaces is

a standard approach in component-based

software engineering. This is known as

‘‘encapsulation’’ and allows software de-

velopers to work independently on a

system’s components without requiring

them to understand the details of other

components or accommodate changes to

the internals of components developed

externally. We do not argue against such

predefined interfaces, per se, as they can

be useful for composing models, organiz-

ing numerical solutions, and simplifying

communication about biological systems

among researchers. We also acknowledge

that in forward-engineering tasks, in which

engineers link modules with predefined

interfaces to create novel composite sys-

tems (such as modeling a novel electronic

circuit), it is not necessary to specify all

potential composite systems ahead of time

for the interfaces to be useful. Nonetheless,

these interfaces limit the number and type

of compositions available to the engineer;

they prevent editing or expanding the

mathematical machinery hidden within

the modules and can prevent effective

interfacing between modules coded for

different compositional packages. Very

often, these are exactly the modeling tasks

that biological modelers face when at-

tempting to reuse shared models. For

example, a modeler may wish to increase

a model’s biological detail to improve its

predictive accuracy or integrate multiple,

related models coded by different research

groups to explore a system more holisti-

cally.

A solution to the problems introduced

by predefined interfaces is to ‘‘white-box’’

module contents and to label the contents

with their biological meanings—their se-

mantics. We call this new approach

‘‘semantics-based, adaptable interface

modularity,’’ or SAIM (Figure 1B). As we

illustrate in the following sections, SAIM

can accelerate and facilitate the repurpos-

ing of legacy and emerging models by

representing their biological content free

of imposed computational interfaces.

SAIM leverages these semantic descrip-

tions to propose ‘‘on-the-fly’’ interfaces

between merged components that are

specific for particular, even transitory,

modeling purposes. The advantage we

foresee is a major increase in the ease

and speed by which modelers across the

modeling community can reuse available

modeling code.

In the following section we discuss our

exploration of modular biological model-

ing technologies so as to place SAIM

within the context of the broader effort to

build modular biological systems from

reusable models.

Current Modular Modeling
Technologies

In our exploration of modular modeling

technologies, we focused on those that use

declarative model description formats.

These formats, in contrast to imperative

(procedural) formats, describe models in a

more sharable fashion, allow for model

exchange across modeling software, and

separate the model description from anal-

ysis and visualization workflows. These

characteristics are important for sharing

models because the broader biological

modeling community uses a variety of

modeling software tools and computation-

al research pipelines.

Among the modular modeling technol-

ogies we explored, we found three distinct

types of modular composition, which we

discuss in turn.

Type 1: Black-box, code-level
coupling using information-hiding
interfaces

In these types of compositions, infor-

mation-hiding interfaces are applied to

modeling components and the modeler

links the components according to model

variables’ input/output assignments. This

is the standard approach for component-

based software engineering and is often

used by modelers working in procedural,

object-oriented languages such as MA-

TLAB, Java, C++, etc. It is also a

compositional approach supported by

CellML [3], a declarative, XML-based

modeling format developed for the Inter-

national Union of Physiological Sciences

(IUPS) Physiome effort [4] that includes

explicit constructs for delineating reusable

modeling components with predefined

interfaces. CellML modeling tools such

as OpenCell [5] (http://www.opencell.

org) and Cellular Open Resource (COR)
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[6] (http://cor.physiol.ox.ac.uk/) use

these interfaces to guide and validate the

model composition process.

The unit of modular composition in

CellML models is the ‘‘component’’ ele-

ment. Each CellML model must declare at

least one component, and all model

variables and equations are declared

within components. Each component is a

computational block within the model

with a predefined interface that indicates

whether a variable is an input, output, or

hidden. A CellML component may repre-

sent a distinct computational or biological

aspect within a model. As of CellML

version 1.1, modelers can reuse any

component in a CellML model through

the CellML ‘‘import’’ element. This cre-

ates a new instance of the component in

the model, linking in the component’s

computational machinery. Components

can also be arranged hierarchically using,

for example, an encapsulation relation-

ship.

Importing components, as performed in

OpenCell, reduces modeling costs by

allowing modelers to refer to previously

developed model components rather than

code them anew. For an example of this

kind of composition, see Cooling et al. [7].

When a component is imported into a new

model, the modeler can then specify

connections that map the imported com-

ponent’s exposed variables to other ex-

posed variables in the model. This links

the imported component to the rest of the

model’s mathematical structure.

Type 2: White-box, code-level
coupling

In this type of model composition,

information-hiding interfaces are absent

and all code-level elements of a modeling

component are available as potential

Figure 1. A modular model composition task using traditional, information-hiding approaches versus semantics-based, adaptable
interface modularity (SAIM). A: Predefined interfaces applied to publicly-available glycolysis, pentose phosphate pathway (PPP) and tricarboxylic
acid cycle (TCA) modules may allow appropriate computational linkage (double-headed arrows) between the first two models but prevent linkage
with the third. The interfaces on the glycolysis and PPP models expose codewords representing the concentrations of glucose 6-phosphate
(‘‘Gluc6P,’’ ‘‘g6p’’), fructose 6-phosphate (‘‘Fruc6P,’’ ‘‘f6p’’), and glyceraldehyde 3-phosphate (‘‘Glyc3P,’’ ‘‘g3p’’) but conceal the glycolysis model
codeword representing pyruvate concentration (‘‘Pyr’’), a critical coupling point between the glycolysis and TCA cycle models. B: Using SAIM, all
modeling elements are exposed and semantically defined, allowing biologically consistent coupling of the three modeling components at the time of
composition.
doi:10.1371/journal.pcbi.1003849.g001
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coupling points with other components. As

in Type 1 compositions, the modeler

establishes links between models by creat-

ing mappings between code-level con-

structs such as model variables. Technol-

ogies that support this type of composition

include Antimony [8] (http://antimony.

sourceforge.net), the Systems Biology

Markup Language (SBML) Hierarchical

Model Composition package (SBML-

comp—http://sbml.org/Documents/Speci

fications/SBML_Level_3/Packages/comp),

and TinkerCell [9] (http://www.tinkercell.

com).

Part of the reason Antimony and

SBML-comp apply a white-box ap-

proach is to support compositions of

SBML models. SBML, which is an

XML-based modeling format designed

to facilitate reuse of molecular systems

models across software tools, intention-

ally excludes constructs for information-

hiding interfaces. One reason for this is

that SBML has long supported the reuse

of models in new contexts and is

intended to allow different computa-

tional implementations of the same

model. For example, an SBML model

can be solved in a continuous or a

stochastic manner, depending on the

modeler’s needs. Core SBML specifies

the reactions in the model, their partic-

ipating chemical species, their kinetic

rates, and any necessary kinetic param-

eters. It leaves the model’s full compu-

tational implementation, including the

construction of the necessary conserva-

tion equations, to external simulation

software tools. SBML’s exclusion of

delineated model components and in-

terfaces also allows for maximal flexibil-

ity and customization when intercon-

necting SBML models or decomposing

them into reusable subcomponents [10].

(This is also the rationale behind Tin-

kerCell’s white-box approach for sup-

porting compositions of synthetic biolo-

gy models.) However, white boxes

require modelers to take explicit care

that new connections do not violate

assumptions inherent in the models

being connected. For example, some

models are only accurate if the biolog-

ical outputs stay within a certain range.

If a model is connected to another that

causes the first to exceed that range of

accuracy, the combined model may be

biologically invalid. If Type 1 (black-

box) composition is desired, Antimony,

SBML-comp, and TinkerCell all pro-

vide the ability to define a suggested

interface, to which the modeler may

choose to restrict themselves. But in

all three systems, nothing prevents a

modeler from creating new mappings to

otherwise internal elements.

The Antimony software package [8]

allows modelers to create hierarchical

model compositions from SBML as well

as CellML source models. To build

composite systems, modelers use Anti-

mony’s shorthand text commands to

manually identify and declare links be-

tween code-level elements in component

models. Antimony provides a nonbinding,

suggested interface for hierarchical mod-

els, allowing modelers to choose whether

to use Type 1 or Type 2 compositions, or

some combination of the two. It does not

impose any particular interface on source

SBML models and it programmatically

exposes the contents of CellML’s black

boxes—converting them into white box-

es—so that users may couple these models

as their research tasks demand. Impor-

tantly, this process requires users to have a

detailed, code-level understanding of each

model’s contents before interconnecting

them into a larger system. These same

contingencies apply to SBML-comp and

TinkerCell.

Type 3: White-box, biological-level
coupling

As in Type 2 compositions, the compu-

tational elements of the modules used in

Type 3 compositions are all exposed

(white-boxed) as potential coupling points.

What distinguishes these modules from

purely white-box, Type 2 modules, is that

machine-readable annotations are applied

to each model that help guide the creation

of biologically consistent links between

modeling components. This is designed

to expedite the composition process by

automatically proposing a set of couplings

between modeling components and by

allowing modelers to work at the biolog-

ical, rather than computational, level of

abstraction. In other words, modelers are

not required to know the idiosyncratic

names of model elements (variables, etc.)

to link systems together. Instead, they can

perform their compositions based solely on

what is represented by the model, biolog-

ically (Figure 1B).

The semanticSBML toolkit [11] is one

technology that supports this type of

composition (http://www.semanticsbml.

org). Curated SBML models in the

BioModels database [12] are rich in

machine-readable, semantic annotations

that define their species, reactions, etc.

When merging models with seman-

ticSBML, the software automatically iden-

tifies biologically equivalent reactions and

chemical species among the models to be

merged. The user then chooses which

mathematical representation of these com-

monalities they wish to preserve in the

merged system (otherwise, the merged

model would be biologically overdeter-

mined). This process establishes the links

that couple the models. By establishing

model–model connections at the semantic

level, semanticSBML reduces the need for

modelers to develop code-level knowledge

of modeling components.

The semanticSBML toolkit was de-

signed to work with SBML models; thus,

its focus is on composition of chemical

network models. SemGen [13–15], a

software suite for semantics-based model

annotation, composition and decomposi-

tion, is intended to provide these capabil-

ities for a broader range of models and

modeling languages (http://sbp.bhi.

washington.edu/projects/semgen). With

SemGen, users can perform Type 3

compositions with models that adhere to

the SemSim framework [13–15], a seman-

tics-based knowledge architecture de-

signed to explicitly capture the computa-

tional and biological aspects of simulation

models across biological scales. Currently,

SemSim models are represented and

stored in the Web Ontology Language

(OWL [16]), but could theoretically be

encoded in other knowledge-representa-

tion formats such as the Open Biomedical

Ontology format (http://www.geneonto

logy.org/GO.format.obo-1_2.shtml) or

Turtle (http://www.w3.org/TR/turtle/).

In the SemSim approach, annotations

against biomedical ontologies are created

to compose precise, descriptive definitions

of the biophysical phenomena simulated in

a model. As with semanticSBML, when

SemSim models are integrated into a

merged system, these annotations are used

to couple the models in a biologically

consistent manner. SemSim model vari-

ables are not assigned an explicit input/

output status a priori, nor are they hidden

by interfaces. Instead, the interface be-

tween merged models is created at the

time of composition and depends on the

biological commonalities they share.

The merging task presented in Fig-

ure 1B provides a specific example of this

type of composition. By examining the

annotations on the model variables, a

Type 3 composition tool could identify

where the models overlap, biologically.

For example, the TCA and glycolysis

models both simulate pyruvate concentra-

tion. With these biological commonalities

identified, the user then chooses which

mathematical representation of the con-

centration they wish to preserve in the

merged system. Let us suppose that

pyruvate concentration is a static constant
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in the TCA model but a dependent

variable in the glycolysis model. If the

user chooses the TCA representation, then

the static constant from the TCA model

would become an input to the glycolysis

model, effectively clamping pyruvate con-

centration in the merged system. If the

user chooses the glycolysis representation,

then the glycolysis variable becomes an

input to the TCA cycle model, and any

variables that previously depended on the

static constant become mathematically

dependent on the output of the glycolysis

model instead. For more detailed exam-

ples of other Type 3 compositions using

SemGen, see Gennari et al. [14], Beard et

al. [13], and Neal [15].

Type 3 model composition offers the

traditional benefits of a modular modeling

architecture in that modelers can construct

systems from externally developed, inter-

operable pieces, but the component mod-

els do not have predefined interfaces.

Thus, the components used in these types

of compositions do not meet the definition

of a module put forth in the Introduction.

We therefore reify this new approach to

modular model composition, naming it

SAIM. To our knowledge, this composi-

tional approach has not been explicitly

defined previously. This may be because it

requires two key technological ingredients

that have appeared only recently: model

interchange formats for community-level

reuse and semantic web standards that can

provide machine-readable definitions of

model components.

Although they do not have predefined

interfaces, SAIM components retain an

independent identity apart from the sys-

tems in which they are used (each

component used in an integration task

originally exists apart from the merged

system). It is only when these components

are incorporated into a larger system that

the input/output connections between

them are established. This way, SAIM

avoids the ‘‘inaccessible variable problem’’

associated with traditional, information-

hiding approaches for software composi-

tion articulated in the Introduction. While

Type 2 compositions also avoid these

problems by applying a white-box ap-

proach, SAIM provides an important

advantage that can expedite and simplify

the model composition process: in lieu of

predefined interfaces, the model’s seman-

tics provide a guide for how to couple

modeling components. Interfaces are one

of the hallmarks of traditional modular

designs because they make component

coupling simpler and more intuitive. If

they are removed in favor of white-boxing

the components’ contents, system creators

must have a detailed understanding of

each component’s internal structure be-

fore they can appropriately link them.

This, in effect, reduces much of the

timesaving compositional power that a

modular design is supposed to provide.

Therefore, effectively guiding component

coupling is one of the primary challenges

for any white-box compositional ap-

proach. To provide a more concrete

example, consider that linking household

audio components does not require the

user to understand their internal circuitry,

only where to connect the cables. In the

absence of predefined interfaces on these

components, one would need circuit-level

knowledge of their internal structure to

link them appropriately. In biological

modeling, SAIM helps retain some of the

compositional power that is lost by

eliminating predefined interfaces: the ma-

chine-readable biological annotations on

SAIM components can be used to propose

inter-model links at the time of merging.

This allows modelers to connect modeling

components in terms of their biology, not

necessarily their code. SemGen and se-

manticSBML provide this semantics-guid-

ed approach: both use metadata annota-

tions from a core set of reference

ontologies to identify the biological com-

monalities between models, suggest the

appropriate links to merge them, and then

make the necessary changes to equations,

physical units, etc., when the merged

model is exported for simulation (Fig-

ure 1B).

Discussion

Generally speaking, our intention is not

to advocate any specific type of model

composition over another. Each approach

described here has advantages and disad-

vantages. Our intention is to point out the

specific advantages that SAIM provides

within the context of community-wide

modular modeling and reuse. The stan-

dard approach to modularity used in

software engineering is problematic in this

context because information-hiding inter-

faces can limit the ways modeling compo-

nents can be recombined. SAIM provides

a solution by white-boxing model contents

and then guiding the coupling process

using machine-readable descriptions of the

model’s underlying biology. After this

process, the model could once again be

used in a black-box fashion, if desired.

Also, it is not our intention to champion

any particular biological modeling format.

Collectively, we constitute a group of

modelers who are active in the develop-

ment of CellML, SBML, and the SemSim

framework; therefore, our perspective on

model reuse and modularity extends

across these, and other, formats. CellML,

SBML, and SemSim are each expressive

enough to allow all three styles of model

composition that we have discussed. In our

view, enabling such composition is pri-

marily a matter of developing the software

technologies that support working with

these models in the different compositional

styles. For example, while CellML models

do use predefined interfaces on modeling

components, software can turn these black

boxes into white boxes without altering the

original CellML model (as in the Antimo-

ny package). Each block of mathematical

equations in a CellML component can be

analyzed to determine how each variable

in the component is computed irrespective

of its input/output designation. Further-

more, Resource Description Framework

(RDF)-formatted semantic metadata can

be applied to CellML models to support

SAIM (Type 3) compositions, and the

CellML community is currently testing

new features in SemGen that support the

semantic annotation of these models.

To realize the advantages that seman-

tics-based composition offers in terms of

model sharing and reuse, biological con-

tent within models must be precisely and

thoroughly annotated. This presents a

number of challenges. First, despite the

rich set of biomedical ontologies and

controlled vocabularies now in existence,

they often cannot provide the level of

semantic detail that is required for

annotating biological models precisely.

For example, while ‘‘cytoplasmic glucose

concentration of pancreatic beta cell’’ is

simulated in several publicly available

models of pancreatic beta cell dynamics,

to our knowledge it is not a concept that

is currently represented in any biomedi-

cal ontology or other knowledge re-

source. To address this limitation, the

developers of SemSim and SemGen have

devised a composite annotation approach

[14] in which existing terms in biomed-

ical knowledge resources are linked via

standardized ontological relations to form

the new, more exact terms needed for

annotating concepts in biological models.

Using this approach, a composite anno-

tation for ‘‘cytoplasmic glucose concen-

tration of pancreatic beta cell’’ can be

created by linking ‘‘Chemical concentra-

tion’’ from the Ontology of Physics for

Biology [17], ‘‘D-Glucose’’ from Chem-

ical Entities of Biological Interest

(ChEBI), ‘‘Cytoplasm,’’ from the Foun-

dational Model of Anatomy (FMA) [18],

and ‘‘Type B cell of pancreatic islet’’

from the FMA (Figure 2, left).
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Another challenge associated with mod-

el annotation is that annotations must be

consistent for the same biophysical content

across models. Otherwise, recognizing the

points of semantic overlap during model

merging becomes difficult. Controlled

biomedical knowledge resources such as

ontologies can provide a standard set of

reference terms to achieve this consistency,

and we advocate their use in the annota-

tion process; however, these knowledge

resources can contain significant semantic

overlap, which can result in inconsistencies

between annotators. Figure 2 demon-

strates that an alternative, semantically

equivalent composite annotation for ‘‘cy-

toplasmic glucose concentration of pan-

creatic beta cell’’ could be created using

terms from a different set of ontologies.

For example, while one annotator may

refer to the concept ‘‘D-glucose’’ from

the ChEBI knowledge base [19],

another may refer to the term ‘‘Glucose’’

from the Systematized Nomenclature

of Medicine—Clinical Terms resource

(SNOMED-CT [20]). We believe a tena-

ble solution to this problem is for the

various active model curation groups to

agree on a core set of orthogonal reference

ontologies for use in biological annotation

(see, for example, the efforts to develop the

CellML Biological Annotation Metadata

Specification—https://cellml-metadata-sp

ec-20.readthedocs.org/en/latest/cellmlme

taspec-biological.html). Our hope is that

this solution will promote consistency

among annotators within and between

model curation groups. We also encourage

a sustained, community-wide discussion

on semantic annotation standards across

modeling formats and domains. It is

important that this discussion involve

members of both the modeling and

knowledge representation communities,

not only to ensure consistency in annota-

tion efforts but because as new scientific

knowledge is articulated in mathematical

models, it will be crucial that knowledge

resource developers incorporate this infor-

mation into existing resources so that

model annotators have timely access to

emerging biological concepts. Further-

more, as scientific knowledge evolves,

terms previously used for annotation may

become obsolete. Therefore, a dynamic

collaboration between modelers and

knowledge resource developers is also

important for ensuring that such annota-

tions can be replaced with terms repre-

senting more current scientific under-

standing.

We recognize that creating unambigu-

ous annotations can be time-consuming

and requires expertise in existing ontolo-

gies. Thus, critical challenges for SAIM

modeling include incentivizing model cu-

rators to annotate at this level of detail

and developing intuitive software that

minimizes annotation costs. In terms of

incentives, annotation provides important

advantages for model sharing, modularity,

and reuse. It also provides a basis for

linking models with other annotated

knowledge resources, including experi-

mental datasets. For modelers, such links

can help uncover datasets useful for

driving and/or validating models of inter-

est. For experimentalists, they can help

uncover biological models that show how

the elements of a biological system under

investigation influence each other. As

demonstrated recently, semantic annota-

tions can also be used to organize the

biological content of model collections into

integrated knowledge resources that can

represent causal biological pathways

across multiple physical and temporal

scales [21]. A rich semantic layer applied

to models can also greatly facilitate the

search and retrieval of models and their

sub-components within online repositories

[10,21].

As more and more biological models

become publicly available, researchers

will have more opportunities to build

upon previous modeling efforts and

investigate complex, integrated biologi-

cal systems in silico. By taking advan-

tage of this growing number of sharable

Figure 2. Two possible composite annotations that represent the concept ‘‘cytoplasmic glucose concentration of pancreatic beta
cell.’’ Although the annotations are semantically equivalent, an automated model-merging tool may not recognize them as such, as their
component terms originate from different ontologies. Adhering to an agreed-upon set of orthogonal ontologies may help model annotators address
this challenge. Abbreviations: OPB, Ontology of Physics for Biology; ChEBI, Chemical Entities of Biological Interest; SNOMED-CT, Systematized
Nomenclature of Medicine—Clinical Terms; FMA, Foundational Model of Anatomy; GO, Gene Ontology [22]; NCIT, National Cancer Institute Thesaurus
[23].
doi:10.1371/journal.pcbi.1003849.g002
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models, we anticipate that modular

modeling solutions will significantly

accelerate quantitative research in sys-

tems biology, synthetic biology, inte-

grated physiology, and all other fields

that utilize complex biological models.

We hope that our arguments presented

here will inform the development of

these solutions and ensure their utility

across the greater modeling community.
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