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Abstract

Background: Downy mildew in sunflowers (Helianthus annuus L.) is caused by the oomycete Plasmopara halstedii
(Farl.) Berlese et de Toni. Despite efforts by the international community to breed mildew-resistant varieties, downy
mildew remains a major threat to the sunflower crop. Very few genomic, genetic and molecular resources are
currently available to study this pathogen. Using a 454 sequencing method, expressed sequence tags (EST) during
the interaction between H. annuus and P. halstedii have been generated and a search was performed for sites in
putative effectors to show polymorphisms between the different races of P. halstedii.

Results: A 454 pyrosequencing run of two infected sunflower samples (inbred lines XRQ and PSC8 infected with
race 710 of P. halstedii, which exhibit incompatible and compatible interactions, respectively) generated 113,720
and 172,107 useable reads. From these reads, 44,948 contigs and singletons have been produced. A bioinformatic
portal, HP, was specifically created for in-depth analysis of these clusters. Using in silico filtering, 405 clusters were
defined as being specific to oomycetes, and 172 were defined as non-specific oomycete clusters. A subset of these
two categories was checked using PCR amplification, and 86% of the tested clusters were validated. Twenty
putative RXLR and CRN effectors were detected using PSI-BLAST. Using corresponding sequences from four races
(100, 304, 703 and 710), 22 SNPs were detected, providing new information on pathogen polymorphisms.

Conclusions: This study identified a large number of genes that are expressed during H. annuus/P. halstedii compatible
or incompatible interactions. It also reveals, for the first time, that an infection mechanism exists in P. halstedii similar to
that in other oomycetes associated with the presence of putative RXLR and CRN effectors. SNPs discovered in CRN
effector sequences were used to determine the genetic distances between the four races of P. halstedii. This work
therefore provides valuable tools for further discoveries regarding the H. annuus/P. halstedii pathosystem.

Background
Downy mildew in sunflowers (Helianthus annuus L.) is
caused by the oomycete Plasmopara halstedii (Farl.)
Berlese et de Toni. Both the host plant and the patho-
gen species originated in North America, where co-

evolution has taken place [1]. As the result of the fast
evolution of the pathogen and despite considerable
efforts by public research and seed companies, downy
mildew remains a major risk for the crop, as new races
of the pathogen are bypassing the resistance of sun-
flower hybrids [2], which is generally based on race-spe-
cific Pl genes [3-6]. One of the strategies used to
enhance the durability of disease resistance to downy
mildew in the field consists of identifying quantitative
resistance loci in plants [7] and improving the
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knowledge about the genetic variability of the pathogen to
make molecular tools available that will assist in genotyp-
ing new P. halstedii isolates. Previous studies have already
been conducted at the molecular level to analyze the inter-
action between H. annuus and P. halstedii [4-6,8,9].
Downy mildew isolates have been collected from diseased
plants in the field and designated as races based on their
divergent virulence profiles in a set of differential hosts
that carry different Pl resistance genes [2]. Fourteen differ-
ent reference races of this pathogen have now been char-
acterized in France, nine of which emerged in the last ten
years [10]. Using a combination of SNP markers [11], Del-
motte et al. [10] analyzed 24 individual isolates covering
all 14 races that are found in France. Using these data,
they observed a strong correlation between genetic and
phenotypic structure, indicating that the 14 races fall into
three distinct groups. Each of these genetically differen-
tiated groups included one of the main races found in
France: 100, 703, and 710 [2]. However, the genetic struc-
ture evidence might only reflect the neutral genetic struc-
ture of French P. halstedii populations because the SNP
markers used do not provide any relevant functional infor-
mation with respect to pathogenicity profiles.
P. halstedii is an oomycete from the Peronosporaceae

family. Oomycetes form a group which is distinct from
fungi [12,13] and include many plant pathogens, such as
Phytophthora and downy mildews (Bremia, Peronospora,
Plasmopara). The pathosystems Hyaloperonospora ara-
bidopsidis/Arabidopsis thaliana and Bremia lactucae/
Lactuca sativa are well-studied model systems for
downy mildews (see [14] and [15] for review). Downy
mildews are obligate biotrophs and therefore require liv-
ing hosts to survive. Using infection structures, such as
haustoria, the pathogen draws nutrients from its host
and releases enzymes and effectors into the host’s cells.
Effectors are defined as key elements of pathogenicity

that have been shown modulating the host’s defense sys-
tem and enabling tissue colonization in other model
pathosystems [16-18], but not in the Helianthus annuus
* Plasmopara halstedii pathosystem up to now. In
oomycetes, two classes of cytoplasmic effectors have
been characterized, RXLR and CRN (for crinkling and
necrosis) [19,20]. The RXLR-dEER motif of the RXLR
protein family was discovered by comparing the protein
sequences of AVR1b, AVR3a, ATR1 and ATR13
[20-22]. CRN1 and CRN2 are two cell-death-inducing
proteins that cause crinkling and necrosis phenotypes in
the leaves of infected plants [23].
Bouzidi et al. [8] used a genomics approach to identify

genes involved in the H. annuus/P. halstedii interaction.
They employed a subtractive hybridization method
(SSH) in sunflower seedlings infected by P. halstedii. A
total of 145 ESTs were identified as specific to the
oomycete, but no effector was highlighted.

The advent of next-generation sequencing methods
with reduced costs and higher throughput has encour-
aged the generation of more comprehensive and in-
depth studies for a wider range of organisms and tran-
scriptomes [24-26]. One of these methods that makes it
possible to generate valuable information for species
with high economic interest but limited genomic
resources is 454 pyrosequencing technology [27]. In
addition, 454 sequencing allows the identification of
allelic variations and constitution of haplotypes [28].
In the context of sustainable agriculture, management

of durable genetic resistance and minimization of selec-
tive pressure on pathogens are key objectives. Enriching
the genomic resources available for exploring the inter-
action between H. annuus and P. halstedii is crucial for
research on P. halstedii, especially with respect to disco-
vering the effectors involved in its pathogenicity. In this
study, a 454 FLX pyrosequencing of cDNAs from H.
annuus seedlings infected by P. halstedii was performed
to produce sequences expressed by either organism in
the frame of their interaction. The resulting assembly
was searched for effectors, such as RXLR and CRN; the
polymorphisms of these effectors between the four races
of P. halstedii were used as markers for re-evaluating
their genetic relationships.

Results and Discussion
454 pyrosequencing and assembly of HP clusters
Two sunflower lines that are susceptible (PSC8) or resis-
tant (XRQ) to infection by P. halstedii race 710 were
analyzed. The PSC8 samples infected with P. halstedii
race 710 (a compatible interaction) generated 251,126
reads (with an average length of 176 bp and a median
length of 161 bp), while the infected XRQ samples (an
incompatible interaction) generated 161,526 reads (with
an average length of 184 bp and a median length of 179
bp). After trimming and cleaning procedures, 172,107
(XRQ) and 113,720 (PSC8) useable reads were obtained.
These reads were pooled with 134,030 H. annuus EST

and mRNA sequences and 145 P. halstedii EST and
mRNA sequences that were available in GenBank (Janu-
ary 2009) to assemble clusters. This clustering produced
44,948 contigs and singletons. The HP database pro-
duced is available at http://www.heliagene.org/HP. Of
these, 25,381 HP clusters are considered new because
they could not be assembled with any publically avail-
able H. annuus or P. halstedii ESTs. The clusters
obtained were annotated as HPXXXXX (where × repre-
sents a digit), and for simplicity, they will be designated
as HP clusters hereafter.
Information sequence similarities for each cluster were

collected from the Heliagene (a sunflower database,
http://www.heliagene.org; see Methods for more infor-
mation), GenBank (NCBI), TAIR, PUT (PlantGDB-
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assembled Unique Transcripts [29]), InterPro, and Swis-
sProt databases and were incorporated in the HP data-
base. An oomycete database (OOM) was created from
all of the oomycete sequences available in GenBank
(February 2010) and was thereafter updated to include
the Hyaloperonospora arabidopsidis sequences that were
made available to the scientific community in December
2010 ([30], see Methods for more information). This
database was used to search for similarities with oomy-
cete sequences. This information was also incorporated
in the HP database. Figure 1 describes the analysis
workflow used in this study.

In silico identification of P. halstedii sequences
The HP clusters originated from cDNAs of infected
sunflower samples and could therefore correspond to
either H. annuus or P. halstedii. To identify putative
Plasmopara sequences, an in silico selection procedure
was applied, based on TBLASTX results that were

obtained from different databases (PUT, Heliagene and
OOM) [31].
First, using TBLASTX searches with (i) an expect

value (E-value) lower than 1e-07 against the OOM
database and (ii) an E-value greater than 1e-04 against
the PUT or Heliagene databases, which indicated poor
match with plant sequences, 405 HP clusters were
defined as specific oomycete sequences (Figure 2,
Additional files 1 &2). Among these, 350 clusters were
found to be specific to the infected, susceptible sun-
flower line, PSC8, while 11 clusters were specific to
the infected, resistant sunflower line, XRQ. A total of
42 clusters were found to be common to both samples.
Among the 405 candidate oomycete clusters, 51 clus-
ters were highly represented in the infected PSC8 line
(corresponding to more than 90% of the reads for the
clusters that generated at least 10 reads), whereas none
of the clusters were highly represented in XRQ. This
can be explained by the resistant genetic background

Figure 1 Workflow of the study analysis. HU = Heliagene database (DB), * = performed on Heliagene DB, GenBank DB, PUT DB, SwissProt DB,
TAIR DB and a local oomycete database (OOM).
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of the XRQ line with respect to race 710, which results
in very little multiplication of P. halstedii in the tissues
of these plants in contrast to the susceptible PSC8
plants. The high level of oomycete multiplication in
infected PSC8 plants was expected given the suscept-
ibility of PSC8 to the race 710, and was confirmed
based on the large amount of P. halstedii ribosomal
RNA in the total RNA in the PSC8 sample compared
to the total RNA in the sample from the infected XRQ
resistant line (data not shown).
Next, as some HP candidates could belong to either

H. annuus or P. halstedii due to the in silico
(TBLASTX) proximity of the two species, a class of
“non-specific oomycete” clusters was selected using two
TBLASTX criteria: (i) only HP clusters with an E-value
< 1e-07 against the OOM database were considered,
and (ii) among those, only the HP clusters for which E-

values against the OOM database were 1,000 times
smaller than the E-values against the PUT or Heliagene
databases were retained. This selection led to the identi-
fication of 172 HP clusters as “non-specific oomycete”
sequences that are expressed by the pathogen during
interactions with the plant (Figure 2, Additional files 3
&4). Of these, 20 clusters were selected for validation
based on the high proportion of reads (greater than
90%) in the PSC8-infected sample.

Validation of the in silico-predicted oomycete sequences
by PCR amplification with genomic DNA
Fifty-two sequences that were highly expressed in
PSC8 (Additional file 5) were selected to check the
accuracy of the in silico filtering. Thirty-five of these
were specific oomycete clusters, while the remaining
17 sequences belonged to the non-specific oomycete

Figure 2 Venn diagram sorting clusters between Plasmopara and Helianthus putative sequences. In italics: numbers in the subclass.
Surrounded by a square: a subset of clusters that were tested by PCR amplification to check their belonging subclass. PSC8 > 90%: clusters
formed mainly by reads originated from PSC8 sample (compatible reaction). XRQ > 1: clusters having at least one read originated from XRQ
sample (incompatible interaction). PSC8 > 1: clusters having at least one read originated from PSC8 sample.
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category. They were tested by PCR amplification using
H. annuus (inbred line XRQ) and P. halstedii (race
710) genomic DNA. A total of 39 amplifications pro-
duced a unique band when tested in P. halstedii DNA.
Seven amplifications produced a band when using
either H. annuus (H) or P. halstedii (P) DNA. No
amplification was obtained with the last six clusters for
either type of genomic DNA. Importantly, none of the
52 sequences produced amplified bands only when
tested with H. annuus DNA, thus validating the in
silico filtering process which was used in this study.
Similar amplification patterns were obtained with
PSC8 and race 710 genomic DNA. Regarding the six
clusters that amplified both plant and oomycete geno-
mic DNA, the band amplified from P. halstedii DNA
exhibited the expected size, while the bands amplified
using H. annuus DNA presented a lower molecular
size (indicated by a star in Figure 3), suggesting that
they are likely due to non-specific amplification, which
can be caused by a homologous but shorter sequence
in Helianthus or low-specificity primers. Due to the
approximately 85% correct predictions and the lack of
any amplifications being obtained only with Helianthus
DNA, the in silico filtering method was considered as
providing reliable results, and it was therefore assumed
that a large majority of clusters were accurately allo-
cated to their respective categories.

Biological features of the P. halstedii predicted sequences
The 405 oomycete-specific clusters and the 20 non-spe-
cific oomycete clusters that were confirmed by PCR to
be of P. halstedii origin were examined to describe the
biological features of the potential new P. halstedii
sequences. Among these 425 clusters, only 36 (8.5%)
corresponded to P. halstedii sequences that were already

present in the GenBank database, indicating that this
study provides 389 potentially new P. halstedii genes
that are expressed during interaction with sunflowers,
increasing the number of sequences present in the data-
base by at least 3 fold [8]. Of these 36 previously identi-
fied P. halstedii sequences, nine clusters correspond to
ribosomal protein gene sequences (HP000627,
HP001039, HP002564, HP003353, HP016471,
HP018679, HP033486, HP034141, and HP034474); two
encode a protein with an InterPro NAC motif (for nas-
cent polypeptide-associated complex) (HP000902 and
HP030154); one contained a putative WD40 domain;
one was similar to a glucose transporter; one was similar
to F1-ATP synthase; and one had an NADPH oxidore-
ductase domain. The remaining 21 clusters encoded
unknown P. halstedii proteins and showed no significant
similarities to other organisms (Additional files 1 and 3).
Most of the 389 new P. halstedii sequences encoded
putative proteins with unknown functions, and only 32
of the predicted proteins had an InterPro motif. These
new P. halstedii cluster sequences presented strong
TBLASTX E-values associated with different oomycete
sequences present in the OOM database. A total of 310
clusters (73%) exhibited highest TBLASTX homology to
seven Phytophthora species, with the most represented
being P. infestans (27% of the hits) and P. capsici (27%).
The other top similarity scores were found with Hyalo-
peronospora arabidopsidis (16.5% of the hits) and, to a
much lesser extent, with Phytophthora parasitica (7%), P.
sojae (6%), P. brassicae (4%) and Pythium ultimum (1.6%).
No significant similarity was found with Aphanomyces
euteiches sequences. These proportions are expected to be
partly biased by the representation of the different oomy-
cete species in the OOM database that was built (see
Material and Methods) but likely also correspond to the

Figure 3 PCR amplification of a subset of the 49 predicted oomycete sequences. PCR amplification was performed with H.annuus PSC8
DNA (H) and P. halstedii race 710 DNA (P) with 24 primer couples, and loaded on an agarose gel (1.5%) stained with ethidium bromide. Ladder
used was 1Kb (BioLabs). The star indicates an amplification on both H and P but with the H amplified band size smaller than that of P. The
amplified HP represented are: HP003248, HP000331, HP001113, HP000314, HP003279, HP003590, HP003584, HP000639, HP003940, HP001561,
HP001957, HP000353, HP001963, HP001040, HP001711, HP000298, HP003084, HP003006, HP000301, HP001391, HP000977, HP001858, HP002621,
HP002636. The predicted amplified band sizes are indicated in Additional file 5.
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phylogenetic relationships between the different oomy-
cetes. Surprisingly, fewer hits were found against Hyalo-
peronospora arabidopsidis, which is considered as a
phylogenetically close relative to P. halstedii [32]. Because
P. halstedii is a member of the Peronosporaceae, it was
not surprising to find that it is more closely related to Phy-
tophthora species than to P. ultimum or A. euteiches
(Saprolegniales). Phytophthora species are phylogenetically
close to downy mildews, such as P. halstedii and Hyaloper-
onospora arabidopsidis [32]; both exhibit specialized infec-
tion structures called haustoria, and their genomes encode
RXLR-EER type effectors (in contrast to P. ultimum and
A. euteiches) ([33] and this study).

Searching for H. annuus sequences expressed during
infection by P. halstedii
Using a TBLASTX analysis with a cut-off E-value of 1e-30
against the PUT and Heliagene databases and no match to
the OOM database, 12,000 HP clusters were predicted to
be of plant origin. Among these, searches were carried out
using the keywords “defense”, “disease” and “pathogenesis”
within the InterPro and GO fields of the TBLASTX results
against different databases (PUT, Heliagene and SwissProt)
and the InterPro Scan results. A total of 130 clusters was
obtained (Figure 2, Additional file 6), and a total of 74 of
those was tested to determine their host origin by PCR
amplification using sunflower and downy mildew genomic
DNA. Only 30% of the clusters were found to be specific
to H. annuus (XRQ genomic DNA) (Additional file 7). Of
these, eight putative NBS-LRRs (HP009300, HP009882,
HP010230, HP020625, HP021629, HP022037, HP022395
and HP027120) were detected as well as an EDS-1 (for
Enhanced Disease Susceptibility, HP016054), EDS-5
(HP021975) and EIN2 (for Ethylene Insensitivity,
HP004696), while 40.5% of the clusters led to an amplified
band of the same size using both P. halstedii (race 710)
and H. annuus DNA. These results indicate that the filter
requiring no match to the OOM database was insuffi-
ciently selective, likely due to the lack of Plasmopara
sequences in the OOM database.

Searching for P. halstedii putative effector sequences
using PSI-BLAST
Recently, many studies have shown a vast repertoire of
cytoplasmic and apoplastic effector proteins in oomy-
cetes. Within the class of cytoplasmic effectors, the
RXLR and Crinkler (CRN) families have been especially
well studied [19,20]. RXLR and CRN proteins are
secreted in haustoria and translocated into host cells to
modulate host defenses and enable pathogenicity [34]. In
addition to a signal peptide, RXLR proteins exhibit a
characteristic RXLR amino acid motif that is sometimes
associated with a -dEER motif, while CRN proteins show
a characteristic LXLFLAK motif. The OOM database was

searched for similarity to known oomycete effectors
using the PSI-TBLASTN method (with an E-value cutoff
of < 1e-04) [35]. All of the RXLR and CRN sequences
available in GenBank were used to construct two corre-
sponding matrices for the PSI-TBLASTN search. A total
of 15 putative CRN clusters and five putative RXLR clus-
ters were found in the HP database. These relatively
short clusters obtained from cDNA that came from
plants infected by race 710 were elongated using other
cDNA sequences obtained by germinating spore materi-
als from different races (see Methods and unpublished
data from F. Delmotte et al.). The elongated, generated
clusters are described in Additional files 8 &9.

• RXLR putative sequences: The five putative P.
halstedii RXLR proteins detected as being homolo-
gous to oomycete effectors by PSI-TBLASTN
included a predicted signal peptide and are therefore
likely secreted along with the EER motif. The follow-
ing RXLR motives were found: RLLI (PhRXLR_02
and _03), RLLR (PhRXLR_05), or a putative motif
(RKLQ in PhRXLR_01 or RALT in PhRXLR_04).
The encoded predicted peptide sequences (Addi-
tional file 10) did not show any significant homology
with known peptide sequences due in part to the
large variability of RXLR sequences but also because
they are short (70 to 140 amino acids), with the
exception of PhRXLR_04 (334 amino acids).
• CRN putative sequences: Among the putative P.
halstedii CRN sequences, 7 included the characteris-
tic LXLFLAK CRN translocation motif 50 amino
acids after the first methionine [33], and the eight
others exhibited a close variant motif or LXLSLAK.
Only 4 of these sequences presented a predicted sig-
nal peptide, but previous studies have made similar
observations for CRN [36]. The Multalin [37] align-
ment of 13 of the PhCRN sequences showed a con-
served N-terminal region of approximately 90 amino
acids. In 8 out of 9 of the predicted peptides longer
than 130 amino acids, a conserved HVLV(L/V)VP
motif (at 120 amino acids) followed by variable C-
terminal regions was found (Figure 4). This organi-
zation is reminiscent of CRN proteins from Phy-
tophthora [38]. Alignment with 8 CRN proteins
from Hyaloperonospora arabidopsidis (https://www.
vbi.vt.edu/) showed a high degree of conservation of
the first 90 amino acids between the two oomycete
species, with 23 conserved (> 90% identity) and 20
conservative (> 50% identity) amino acid residues
being observed, likely related to their close phyloge-
netic relationship (Figure 4) [32]. All of the PhCRN
predicted peptide sequences exhibited TBLASTN
hits with the OOM database of predicted gene mod-
els, which includes data on H. arabidopsidis. Ten out
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of 15 of these PhCRN sequences showed the best hit
against Phytophthora infestans; the remaining
sequences best matched Phytophthora capsici (Addi-
tional file 11). This result suggests that P. halstedii is
closer to Phytophthora species than to H. arabidopsi-
dis based on their CRN profiles. This provides new
insight with respect to the relationship between the
pathogenicity profiles of the oomycetes, which was
not anticipated according to [32]. Most of the pre-
dicted sequences exhibited the best hit against
uncharacterized proteins from Phytophthora sp. and
did not give any clue regarding their putative func-
tion. Intriguingly, PhCRN_04, _06 and _11 include an
InterPro domain, IPR002575, which corresponds to
an aminoglycoside phosphotransferase domain that is
typically found in bacterial genes and confers antibio-
tic resistance by phosphorylation [39]. As none of the
predicted PhRXLR effector peptide sequences showed
a hit against the same database, this suggests less spe-
cificity in PhCRN effectors than in RXLR effectors.

Our data indicate, for the first time, that P. halstedii
exhibits the same kind of CRN and RXLR cytoplasmic
effectors that have been found in other oomycetes and
that there is greater specificity in RXLR effectors than in
CRN effectors.

Time course for PhCRN effector expression during H.
annuus * P. halstedii interactions
To validate the in planta expression of some of these
putative effectors, time course expression experiments

were performed for 8 of them using quantitative RT-
PCR (qRT-PCR). cDNA samples were obtained from
three independent inoculation tests from two genotypes
(XRQ and PSC8) infected with two P. halstedii races
(710 and 334), which induced incompatible (XRQ/710
and PSC8/334) and compatible (XRQ/334 and PSC8/
710) interactions. In the non-inoculated plant samples
(control), no expression was detected with the set of pri-
mers that was used, suggesting P. halstedii specificity. In
the inoculated plant samples, time course expression
values (-ΔCt) were calculated and tested for statistical
significance using ANOVA with the following variation
factors: days post inoculation (dpi), type of interaction
(compatible vs. incompatible), and P. halstedii race (Fig-
ure 5a).
The time course response was found highly statisti-

cally significant as stated by ANOVA (see Methods and
Figure 5a), with a general increase in expression
observed between 3 and 14 dpi for PhCRN_01,
PhCRN_02, PhCRN_03, PhCRN_04, and PhCRN_05,
whereas PhCRN_11 was repressed at 3 dpi and was sub-
sequently expressed at the same level as the control
genes (-ΔCt close to 0, Figure 5b). In contrast, the
expression of PhCRN_07 and PhCRN_09 did not vary
significantly according to inoculation time but did show
a differential induction between 710 and 334 races (Fig-
ure 5a).
A difference in the time course of expression between

compatible and incompatible interactions was found for
PhCRN_03 and PhCRN_04, which were less expressed
at 3 dpi (see Material and Method for statistical

Figure 4 Multalin alignment of the N-termini of 13 P.halstedii (PhCRN) and 8 H.arabidopsidis (HaCRN) CRN putative effectors. PhCRN
proteins were predicted by FrameDP [46] and for the alignment, first methionine was considered as the start of the protein. PhCRN_13 and_15,
too short, were excluded. The predicted proteins for PhCRN_10 to_14 were added even their FrameDP predicted peptides were shorter than
130 amino acids. The last lane consensus indicates the highly conserved amino acids in red (> 90% identity) and in blue, amino acids conserved
in more than 50% of the aligned sequences.
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Figure 5 Time course analysis by Q-RT-PCR of 8 putative PhCRN effectors. a. Table of the p-values obtained by ANOVA analysis
corresponding to following effects: block (for biological repetition), dpi (3, 6, 10 and 14), race (710 and 334), “type” (compatible: XRQ-334/PSC8-
710 vs. incompatible: XRQ-710/PSC8-334), and the interactions between these 3 effects. Highlighted p-values are significant at Bonferonni test (a
= 0.05 for the eight genes and for each tested effect). b. Time-course expression of 6 putative P. halstedii PhCRN effector genes, by Quantitative
RT-PCR analysis, showing significant dpi effect. c. Time-course expression of 2 putative P. halstedii PhCRN effector genes, by Quantitative RT-PCR
analysis, showing significant type effect. d. Time-course expression of putative P. halstedii PhCRN11 effector gene, by Quantitative RT-PCR analysis,
showing significant race effect. (b, c and d) Mean expression values (- ΔCt) and standard errors are given from three independent biological
experiments. In each biological experiment, the samples of three replicates were pooled before Quantitative RT-PCR assay.
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significance) in incompatible than in compatible interac-
tions (Figures 5a and 5c). A statistically significant dif-
ference in the expression levels during infection
between race 334 and race 710 was found for
PhCRN_11 that was independent of the type of interac-
tion, suggesting that this effector could play a role in
the aggressiveness of the race (Figures 5a and 5d).

Search for polymorphic sites in effector sequences for the
four races of P. halstedii
Using the available sequences from the four P. halstedii
races, specific assemblies were built for each race (see
Methods) based on the highest frequency of alleles at
each nucleic acid position. These results were used to
search for polymorphisms in the PhCRN and PhRXLR
DNA and predicted protein sequences (Table 1; nucleic
acid and predicted peptide alignments are provided in
Additional file 12).
Seven of the 15 putative CRNs were found to exhibit

polymorphisms at the DNA level with a relatively high
frequency of non-synonymous changes, leading to modi-
fication of the proteins’ composition that may result in
an alteration of the proteins’ function or conformation.
This could indicate a likely change in the effector profile
of the race. As seen in Table 1, some clusters contained
several polymorphic sites.
In contrast, none of the tested RXLR proteins were

found to be polymorphic. This might be due to lower
read counts in the different races for these potential
effectors. Additionally, the search for polymorphisms
was performed using effector transcript sequences, and
it is possible that non-coding upstream sequences are
more polymorphic. Alternatively, this could mean that
the variability in CRN and RXLR does not expand in
the same manner; CRN effectors appear to be more
conserved across species but to present higher variability
within species, whereas RXLR effectors are less con-
served between species but show reduced variability
within species.

Inter-racial and Intra-racial polymorphisms
These polymorphisms were detected by comparing the
predicted peptide sequences of the different races based
on the most frequent allele detected for each race. How-
ever, this does not mean that each race has a unique pro-
file. For example, non-synonymous polymorphisms for
PhCRN_4 are observed within race 710 (Table 1). Intra-
racial polymorphisms seemed to be the general pattern:
as shown in Table 2, synonymous or non-synonymous
SNPs are both (i) frequently observed within a race and
(ii) associated with significant or non-significant differ-
ences between races, depending on the case.
There are several possible explanations for this result.

It may represent polymorphisms within a race that are

due to one heterozygous genotype (where the allele fre-
quencies are close to 50%), a mixture of homozygous
genotypes or a mixture of these two situations, with the
last possibility being more likely based on the frequen-
cies that were observed. Alternatively, this result could
be related to the definition of a “race”, which is not a
clonal genotype but an isolate showing particular differ-
ential responses when inoculated into a set of selected
sunflower lines [2]. Whatever the case, intra-racial poly-
morphisms may not be linked to interactions between
these races and the nine different sunflower lines that
are usually used to differentiate P. halstedii races. How-
ever, including other genetic backgrounds on the host
side could allow for better discrimination of pathogen
intra-racial polymorphisms.
A factorial correspondence analysis (FCA) was per-

formed on a data table (Additional file 13) in which
each cell contains the number of reads obtained for
each of the four P. halstedii races and each CRN SNP
as a combination of the CRN effector, SNP positions
leading to a non-synonymous variation, and amino acid
substitutions (Figure 6). This analysis makes it possible
to visualize the genetic distances between the four races
based on their SNPs. The genetic distances between the
three races 100, 703 and 710 and the FCA diagram indi-
cate significant differences, in accordance with the
hypothesis of three genetically differentiated groups of
P. halstedii races [10]. Certain SNPs could allow for
clear differentiation between race 304 and race 100 (Fig-
ure 6), which has not been observed previously [10].
The use of these new SNP markers located in putative
effector sequences should provide an additional tool to
extend the polymorphism analyses allowed by the 12
previously published EST-derived markers [11]. They
should also lead to a better definition of what the
genetic structure of a “race” is and allow for better dis-
crimination between races, which will make it possible
to re-evaluate the genetic structure and evolution of
populations of P. halstedii. Moreover, SNP markers are
considered the most useful markers in diploid organisms
because they are co-dominant, specific and easy to use
with new genotyping techniques. It is important to
extend this work in the future by sequencing additional
races and identifying more SNPs in putative effector
sequences.

Conclusions
This study represents a substantial improvement of
existing knowledge regarding P. halstedii sequences that
are expressed during the interaction of this species with
sunflowers. This work also reveals infection mechanisms
similar to those observed in other oomycetes and the
presence of putative RXLR and CRN effectors. Using
polymorphic sites in CRN effector sequences, the
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Table 1 Polymorphism nucleic and amino acid site detection for 7 putative CRN observed on four P.halstedii races
(100, 304, 703, and 710)

Cluster Motif Motif
position

Aminoacid
polymorphism

Aminoacid
position

Nucleic acid
polymorphism

SNP position

PhCRN_01 LRLFLAK 58 V/A 131 T/C 394

Synonymous T/C 440

E/G 261 A/G 784

I/F 264 A/T 792

E/D 281 A/T 845

M/V 441 A/G 1323

PhCRN_03 LELSLAK 56 R/K 373 A/G 1122

PhCRN_04 LELSLAK 58 Synonymous C/T 1781

Synonymous A/G 1937

T/L* 508 A/C 1953

C/T 1954

L/I* 519 C/A 1986

Synonymous A/G 2060

A/D 558 C/A 2104

L/P 568 T/C 2133

T/C 2134

PhCRN_05 LQLFLAK 57 G/K 37 G/A 131

G/A 132

Synonymous G/T 823

Synonymous A/T 946

Synonymous T/A 948

PhCRN_06 IELFLSK 59 Synonymous T/C 1705

Synonymous G/A 1706

Synonymous C/T 1712

Synonymous G/A 1714

Synonymous G/A 1720

I/T 505 T/C 1722

E/K 506 G/A 1724

L/T 508 C/A 1730

T/C 1731

L/I 519 C/A 1763

Synonymous C/T 1816

Synonymous A/G 1837

G/C 555 G/T 1871

A/E 558 C/A 1881

A/T 561 G/A 1889

Synonymous A/G 1900

I/F 578 A/T 1940

A/V 579 C/T 1944

Synonymous A/G 1975

PhCRN_07 LKLSLAK 56 N/S 188 A/G 565

L/W 258 T/G 775

Synonymous T/C 1025

PhCRN_09 LELSLAK 50 Synonymous G/T 943

Synonymous A/G 1084

*: polymorphism within the race 710 only
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observed genetic distances between three races (100, 703
and 710) were shown to be in agreement with the con-
clusions of Delmotte et al. [10]. Certain SNPs might
allow for clear differentiation between races 304 and
100 (Figure 5), which has not been detected previously
[10].
To improve the knowledge regarding the genetic

structure of P. halstedii populations, it is necessary to
obtain polymorphism data for all of the recorded races
and to include different geographical isolates for each
race, particularly because intra-racial polymorphisms
appear to be significant in this study. These results
increase interest in reassessing the current classification
of P. halstedii isolates based on a description other than
their interaction with different sunflower lines. This re-
evaluation could be performed using a larger set of
molecular markers, particularly SNPs, that occur mainly
in effector sequences, which should be under higher
selective pressure.

Methods
Plant and oomycete materials
Two inbred sunflower lines, XRQ (resistant line) and
PSC8 (susceptible line), were infected with Plasmopara
halstedii (race 710) in a confined culture chamber

Table 2 Inter and Intra-racial polymorphisms for 4 putative CRN observed on four P.halstedii races (100, 304, 703, and
710)

Cluster Polymorphism site position SNP allele Race 100 Race 304 Race 703 Race 710 Khi-2

PhCRN_01 1323 A 3 6 27 8 20.88***

PhCRN_03 1989 G 6 15 6 16 98.81***

T 1 17 0 19

1989 C 6 22 150 11 98.81***

2009 A 6 25 100 25 3.49

2009 T 1 4 12 0 3.49

2012 T 7 16 100 5 24.91***

2012 C 0 12 23 11 24.91***

649 – 8 15 16 10 18.15***

PhCRN_04 1122 TA 3 6 2 21 2.21

A 10 18 20 16

1122 G 13 25 16 24 2.21

2104 A 2 7 2 12 7.82*

PhCRN_05 2123 C 8 12 13 10 9.22*

A 3 12 2 13

2123 G 4 8 12 8 9.22*

2133 TT 5 7 9 5

2133 CC 2 12 4 12 7.15

823 T 11 24 0 0 56.00***

G 0 0 11 10

Frequencies for each allele for each race are indicated. The khi-2 calculations refer to H0: similar frequencies between races at each position (df = 3, *:
significative at 5%; **: significative at 1%; ***: significative at 0.1%).

Figure 6 Factorial correspondence analysis (FCA) performed on
the 4 races based on the 22 SNPs observed within putative
effector sequences. Dudi.coa function (R software, ade4 package)
was used to construct the CA factor map. The data table used for
FCA was based on the absolute frequency observed for each CRN
SNP (in red) for each race (100, 304, 703 and 710, in blue).
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using an infection method previously described by
Mouzeyar et al. [40]. Entire plants were harvested at
14 dpi and were immediately frozen in liquid nitrogen
and stored at -80°C.
P. halstedii spores (from races 100, 304, 703 and 710)

were provided by Dr. D. Tourvieille de Labrouhe (INRA
Clermont-Ferrand, FRANCE). They were collected from
the inbred sunflower line GB (susceptible to all races) in a
confined culture chamber with the same infection method
described above [40]. Cotyledons covered with dense whit-
ish fluffy growth of zoosporangia and sporangiophores
were placed in water and shaken to separate oomycete
material from the sunflower cotyledons. The liquid con-
taining the sporangia was centrifuged at 2,000 × g, and the
supernatant was removed to concentrate the solution.
qRT-PCR analyses were performed using the Bio-

Mark™ system (Fluidigm corporation, CA, USA). The
XRQ and PSC8 plants were inoculated with P. halstedii
race 710 as previously described, leading to either an
incompatible or compatible interaction, respectively.
They were also independently infected with race 334
(XRQ susceptible, PSC8 resistant) with three replicates.
The aerial portions of the plants were sampled at 3, 6,
10 and 14 dpi and immediately frozen in liquid nitrogen.

DNA extraction
DNA was extracted using the DNeasy mini kit (Qiagen
USA, Valencia, CA). DNA quantity and quality was esti-
mated by TAE gel electrophoresis.

RNA extraction
RNA was extracted with the Qiagen RNeasy Midi Kit
(Qiagen USA, Valencia, CA), and the quantity of RNA
was estimated using an ND-1000 Spectrophotometer
(NanoDrop USA, Wilmington, DE). RNA quality was
verified using an Agilent Bioanalyzer 2100 LabChip and
an Agilent RNA 6000 Nano kit (Agilent Technologies,
USA) as well as being evaluated on a 2% agarose gel
stained with ethidium bromide.

cDNA synthesis and normalization
For this step, the protocol described by Novaes et al.
[24] was followed with minor modifications. cDNA was
synthesized from 1-2 μg of RNA, and the incorporated
adaptors were removed in silico after sequencing.

454 sequencing and assembly
Two samples, infected XRQ and infected PSC8 (each
containing approximately 14 μg of normalized cDNA),
were sent to the EPGV team at Evry (France) for library
construction and sequencing at CNS Evry (France).
The sequencing runs were performed on a Roche 454

GS-FLX TITANIUM sequencer following the manufac-
turer’s recommendations. An initial filtering was performed

on base quality: reads shorter than 50 nucleotides were
removed, and of the remaining reads, those that contained
more than 50% Ns were also removed. The sequences were
cleaned up to remove adaptor sequences in silico. All of the
reads obtained are available at ENA (European Nucleotide
Archive [41]), accession #s ERP000522, ERS023538,
ERS023539, ERX010280, ERX010281 and from ERR029545
to ERR029553). Clustering was carried out with a modified
version of TGICL [42] permitting parallelization on SGE
computer clusters and performing data pre-processing to
remove redundancy (using the nrcl and tclust software pro-
vided in the TGICL package). TGICL (-p 97 -l 40) was run
on the cleaned data generated in this study merged with H.
annuus sequences available from public domains (January
2009). For polymorphism analyses, longer PhCRN and
PhRXLR sequences were obtained from a new clustering
assembly performed on HP and H. annuus sequences sup-
plemented with 800,000 new, cleaned cDNA sequences.
These supplementary sequences were obtained from inde-
pendent 454 sequencing of cDNAs from the susceptible
sunflower line GB inoculated with the 4 races and har-
vested at 10 to 14 dpi using the same clustering protocol as
before. Approximately 211,000 clusters and singletons were
generated (with an average length of 447 bp and a median
length of 378 bp) (unpublished data from Delmotte and
col.)

Heliagene database
Heliagene (http://www.heliagene.org) is a bioinformatic
portal that was developed to analyze Helianthus sp. EST
data found in public databases (January 2008). Heliagene
provides a variety of pre-computed analyses and tools
for EST clusters and for exploring gene function and
protein families in a user-friendly fashion. The HP por-
tal was created on the same principle (using Helianthus
sp. EST data found in public databases) but also
includes publically available sequences of P. halstedii
and 454 reads provided by this work.

Creation of oomycete (OOM) databases and searches for
RXLR and CRN motifs
A database containing 345,155 sequences from oomy-
cetes represented by Phytophthora (220,253), Pythium
(105,043), Hyaloperonospora (14,589), Aphanomyces
(3602), Saprognelia (1513) and Plasmopara (155) has
been built to classify the HP expressed sequences. In
addition to the mRNA sequences available from NCBI,
this database includes gene models predicted from the
genomic sequences of Hyaloperonospora arabidopsidis
that were made available to the scientific community in
December 2010 [30]. The OOM database is available for
BLAST queries at http://www.heliagene.org/HP.
The search for matches with the RXLR and CRN

effectors was performed with PSI-TBLASTN (PSSM)
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using the annotated sequences that were available in
NCBI in March 2010 as models for each type of effector
[35].

Primer design and PCR amplification
Primer pairs were designed using Primer3 (Tm = 60°C ±
1, 20 nucleotide primer length, 100-400 amplicon
length) [43]. PCR amplifications were performed with 20
ng of DNA, 75 μM each dNTP, 0.75 U of Taq DNA
polymerase (GoTaq, Promega), 1X* Taq Polymerase buf-
fer and 0.6 μM each primer. Amplification was carried
out in a Mastercycler pro S Eppendorf thermocycler
using 46 cycles of 94°C for 30 s, 60°C for 30 s and 72°C
for 50 s. The obtained PCR products were separated by
TAE agarose gel electrophoresis.

Polymorphism detection
First, a sequence assembly was obtained independently
for each P. halstedii race using CAP3 [44] with overlap
percent identity cutoff parameter set to 90% and other
parameters let to default values. Then, the predicted
peptide from the cluster was used as a query in
TBLASTN searches with these assemblies as targets.
The predicted peptide sequences for the races were then
aligned together with the predicted peptide sequence of
the cluster to detect non-synonymous variations. Only
the polymorphisms that were found within the region
that exhibited the highest level of similarity between the
races were selected, to account for the fact that other
variations could be due to errors in 454 sequencing.
Finally, the nucleotide sequence of each race was used
as a query in BLASTX against the peptide prediction of
the cluster as a target to identify SNP positions.

Time course analysis of putative PhCRN effectors by qRT-
PCR
Total RNA from aerial portions of inoculated XRQ and
PSC8 plants were extracted, and first strand cDNAs
were synthesized from 1 μg of total RNA using Tran-
scriptor Reverse Transcriptase (Roche Applied Science,
Indianapolis, IN, USA) and oligonucleotide d17T-V pri-
mers following the manufacturer’s recommendations.
qRT-PCR was performed using Fluidigm™ technology
following Spurgeon et al., [45] in a 96*96-well plate. Pri-
mers were designed using Primer3 (Tm = 60°C ± 1, 20
nucleotide primer length, 120-200 amplicon length).
The results were subjected to quality assessment, and
the obtained fluorescence data were converted to Cycle
threshold (Ct) values using Fluidigm Real-Time PCR
Analysis Software version 3. Using two reference P. hal-
stedii genes (AY773346.1, an internal transcribed spacer,
and a gene encoding a ribosomal protein, L13e), a ΔCt
value for each sample was calculated by subtracting the
mean Ct value of the reference genes from the Ct value

of each gene. ANOVA was then performed to test for
significance (see Methods - statistical analysis below).

Statistical analysis
FCA was performed using R (version 2.9.2, function dudi.
coa from the ade4 package). For the quantitative RT-PCR
time course experiments, ANOVA was performed
employing the SAS GLM procedure for each gene with a
test for each potential effect (race of P. halstedii, type of
interaction, days post inoculation) and their interactions.
Statistical significance was checked based on a Family-
Wise Error Rate of 5% for each effect, leading to a p-value
cut-off of 0.00625 for each gene*effect combination.

Additional material

Additional file 1: List of 405 specific oomycete clusters. Contains
cluster length, numbers of reads in XRQ and PSC8 samples, tested by
PCR amplification and best hit on different databases (InterPro, Go, TAIR
and OOM).

Additional file 2: 405 specific oomycete clusters sequences. In fasta
format.

Additional file 3: List of 172 non specific oomycete clusters.
Contains cluster length, numbers of reads in XRQ and PSC8 samples,
tested by PCR amplification and best hit on different databases (InterPro,
Go, TAIR and OOM).

Additional file 4: 172 non specific oomycete clusters sequences. In
fasta format.

Additional file 5: List of 52 putative oomycete verified by PCR
amplification. Contains PCR amplification results on H. annuus and P.
halstedii DNA, PCR product size, primer sequences used and origin of the
selected HP (Oomycete specific or oomycete non specific).

Additional file 6: List of 130 specific plant clusters (with “defense”,
“disease” and “pathogenesis” keyword search). Contains cluster
length, PCR amplification results on H. annuus and P. halstedii DNA, PCR
product size, primer sequences used and best hit results on InterPro, Go
and TAIR database.

Additional file 7: 22 specific Helianthus annuus clusters sequences
identified by PCR. In fasta format.

Additional file 8: List of 20 putative RXLR and CRN effectors found
by PSI-BLAST (E-value 1e-04). Contains cluster length, number of reads,
motif found, signal peptide presence probability, its sequence and
InterPro Scan results.

Additional file 9: 20 putative RXLR and CRN effector sequences
found by PSI-BLAST. In fasta format.

Additional file 10: 20 putative RXLR and CRN effectors predicted
peptide sequences. In fasta format.

Additional file 11: 15 putative CRN effectors best hits against OOM
(with E-value and % Identity).

Additional file 12: Alignments of nucleic acid and predicted
peptides of PhCRN putative effectors showing polymorphisms.

Additional file 13: FCA analysis dataset for the polymorphic P.
halstedii putative effectors. Contains the original dataset (number of
reads presenting each SNP for each race) and FCA analysis results (row
coordinates, weight coordinates and column coordinates).
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