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The urgent need for diagnostics and therapeutics against the COVID-19 pandemic has shown the great
potential of antibodies, proteomics and metabolomics in this direction. Several clinical trials are under-
way using antibodies from COVID-19 patients that show very specific and strong binding to viral proteins
leading to neutralization. On the other hand, proteomic and metabolomic profiles of COVID-19 patients
present novel diagnostic biomarkers to predict patient outcomes and enable the development of person-
alized therapeutics to target the dysregulated pathways, as revealed by those profiles. Here, we discuss
how studies based on antibodies, proteomics and metabolomics contribute to the development of diag-
nostics and therapeutics against COVID-19. The elegant technology can extend to high-throughput, rapid
and reliable drug discovery strategies of the future.

Lay abstract: In order to prevent and treat the ongoing COVID-19 pandemic, several groups around the
world are focused on a detailed understanding of the biology of SARS-CoV-2 infection, the biological
events occurring inside the patients and the response of the patients to the infection. SARS-CoV-2 is the
coronavirus that causes COVID-19. Some of the approaches to combat the pandemic have provided im-
portant results that can help toward therapeutic developments against COVID-19. This review discusses
three such areas – antibody treatment to prevent COVID-19 infection, analysis of changes in protein pro-
files of COVID-19 patients, and analysis of metabolism or energy-related changes in COVID-19 patients.
Antibodies are molecules produced in the host’s body as a defense response to infection. Antibodies ex-
tracted from patients who recovered from COVID-19 have been used to successfully manufacture large
amounts of antibodies to treat COVID-19 patients. The analysis of protein and metabolism profiles of
COVID-19 patients has shown that several proteins and metabolism-related entities in the body are either
upregulated or downregulated in COVID-19. These abnormal levels can either be attenuated by medical
intervention or can be monitored as indicators of COVID-19 diagnosis. Overall, antibodies, protein and
metabolism profiles are three important tools, among several others, that are helpful in combating the
COVID-19 pandemic.
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Overview of SARS-CoV-2 infection & antibody-based therapies
COVID-19 is caused by SARS-CoV-2, which belongs to the family of coronaviruses and has 79.5% identity to
SARS-CoV [1]. The virus contains spike (S) proteins on its surface, whose S1 subunit contains a receptor binding
domain (RBD), that binds to the host cell receptor ACE2 for infection. Following entry into the host cell, the virus
releases its genome, which is composed of RNA, that undergoes replication and transcription to produce multiple
viruses that exit the cell to infect other cells [2–4]. The binding of S protein to ACE2 is a crucial process of the
infection, hence it is targeted by various therapies to prevent COVID-19. One of the therapeutic approaches is the

Future Drug. Discov. (Epub ahead of print) eISSN 2631-331610.4155/fdd-2020-0027 C© 2020 Rwik Sen

https://orcid.org/0000-0003-2853-2378


Review Sen

Table 1. Diverse approaches toward vaccine and therapeutic developments against COVID-19.
NCT identifier Approach Sponsors Ref.

NCT04368728 Lipid nanoparticle-formulated mRNA vaccine, candidates: BNT162b1 – encodes a secreted
trimerized SARS-CoV-2 receptor-binding domain; BNT162b2 – encodes membrane-anchored
SARS-CoV-2 full-length spike, stabilized prefusion

Pfizer, BioNTech SE [5]

NCT04380701 Anti-viral RNA vaccines BNT162a1, BNT162b1, BNT162b2 and BNT162c2 which elicit TH1T cell
responses

BioNTech RNA Pharma [6]

NCT04405076 mRNA vaccine, candidate: mRNA-1273 – encodes stabilized prefusion SARS-CoV-2 spike
protein (S-2P)

Moderna Inc. (MA, USA) [7]

NCT04582201 AgenT-797 – unmodified, allogeneic invariant natural killer T (iNKT) cells therapy AgenTus Therapeutics
(MA, USA)

NCT04453852 Recombinant S protein antigen formulated with adjuvant to drive potent T cell and
neutralizing antibody response against target virus

Vaxine (SA, Australia)

NCT04542993 Utilizing resveratrol as zinc transporter to minimize viral load and severity of COVID-19 Swedish Medical Center
(WA, USA)

NCT04546841 Multipeptide vaccination of investigational medicinal product (IMP) of SARS-CoV-2 HLA-DR
(human leukocyte antigen – DR isotype) peptides

University Hospital
Tuebingen (Germany)

[8]

NCT: National Clinical Trial.

use of antibodies that bind specifically to viral S protein and RBD, leading to neutralization so that they can no
longer interact with ACE2.

Although the next section of this review focuses mostly on neutralization of RBD and S protein, it is important
to note that neutralization of ACE2 receptors affects several downstream cellular processes involving ACE2.
Hence, alternative strategies for therapeutic developments against COVID-19 also need consideration. Some of
the alternative strategies in clinical trials are listed in Table 1 with corresponding National Clinical Trial (NCT)
identifier numbers. The mRNA vaccine from Pfizer (NY, USA) and BioNTech (Mainz, Germany) has shown 90%
efficacy and has been granted fast track designation by the US FDA (MD, USA).

In addition to those mentioned in Table 1, several other approaches to prevent and treat SARS-CoV-2 infection
are being pursued, among which the neutralization of ACE2 receptors is one of the most prevalent approaches.
Hence, the following section focuses on antibody-based neutralization of ACE2 to combat COVID-19. Several
groups around the world have developed panels of full human antibodies with neutralizing activities against
SARS-CoV-2 [9–16].

Therapies based on antibodies are currently in clinical trials, with one of the public–private partnership trials
from National Institutes of Health (MD, USA) in Phase III (NCT04501978). This is an adaptive clinical trial
titled ’ACTIV-3: Therapeutics for Inpatients With COVID-19 (TICO)’ and sponsored by the National Institute of
Allergy and Infectious Diseases (NIAID; MD, USA). In ACTIV-3, an adaptive two-stage Phase III protocol design
is used to study an investigational monoclonal antibody LY-CoV555 identified in a blood sample from a recovered
COVID-19 patient. A large number of participants with SARS-CoV-2 infections will be intravenously infused
with LY-CoV555 or saline placebo. Additionally, the antiviral remdesivir and standard care for COVID-19 will
also be administered to the participants. Patient response and need for oxygen, ventilation or supportive care will
be monitored over time. Abcellera Biologics (BC, Canada), NIAID’s Vaccine Research Center and Eli Lilly and
Company (IN, USA) have collaborated for the venture. Regarding the use of antibodies against COVID-19, several
workflows around the world successfully generated antibody panels to neutralize SARS-CoV-2, one of which is
briefly discussed below.

Potential of anti-COVID-19 antibody panels
Isolation & identification

The following methodology (Figure 1) was adopted by Wan et al. leading to high-throughput and timely develop-
ment of human recombinant antibodies against SARS-CoV-2 components [12]. The methodology from Wan et al.
is described here only as one of the several representative successful procedures to clone, express and characterize
human recombinant antibodies from patients who recovered from COVID-19. Globally, it was one of the first
studies that prepared an antibody panel from recovered COVID-19 patients. Although, two of the 26 authors of
Wan et al. share organizational affiliation with the author of this review, the discussion on Wan et al. is solely focused
on the scientific aspect of the study and not presented as a superior or only method to generate anti-COVID-19
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patients. If low viral RNA in serum,
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Figure 1. Workflow to generate antibody panel against SARS-CoV-2 component. Methodology is described in
section titled ’Successful procedures to generate anti-COVID-19 antibody panels’.
FACS: Fluorescence-activated cell sorting; IGH: Immunoglobulin heavy chain; IGL: Immunoglobulin light chains; PBMC:
Peripheral blood mononuclear cell.

antibodies. The discussion aims to inform researchers developing antibodies against COVID-19 and other viral
diseases, and is not intended for promoting the organization of affiliation. The review also mentions other corporate
organizations involved in anti-COVID-19 therapeutics to which the author is not affiliated.

Wan et al. obtained sera from patients who recovered from COVID-19 and their neutralization activity was
tested against SARS-CoV-2 pseudoviral infection of human cells (HEK293T line) where ACE2 was expressed.
Neutralization was observed against SARS-CoV-2 RBD and S proteins. The successful binding and neutralization
capacity of the antibodies render them as potential candidates for anti-COVID-19 therapies. To identify the
antibodies, peripheral blood mononuclear cells from the patients were subjected to fluorescence-activated cell
sorting using recombinant RBD and S1 antigens to isolate memory B cells on which RBD and S1 are bound. RNA
was extracted from the isolated B cells and converted to cDNA, and sequences which encode immunoglobulin
heavy (IGH) and light chains (IGL) were amplified and cloned into mammalian expression vectors. The study
resulted in large-scale generation of naturally paired IGH and IGL clones that were catalogued [12].

Characterization

Further characterization was performed by ELISA where the antibodies were tested against viral S extracellular
domain and RBD. Antibodies with strong affinity were identified based on EC50 values. ELISA was also used
to map the different RBD epitopes. Binding affinity was cross-validated by bio-layer interferometry assay, which
analyzes the interference pattern of light reflected from protein immobilized on biosensors to measure biomolecular
interactions. Hence, multiple techniques were employed to analyze the antibody binding.

Therapeutic promise, antibody diversity, cross-reactivity & combination therapy

To translate the antibodies into therapeutic development, their expression was tested in Chinese hamster ovary
(CHO) cells. Since the antibodies were simple to express and the yield was high, they are potential candidates for
therapeutic developments.

Antibody-based therapies are significantly affected by antibody diversity hence, the study further analyzed the
complementarity-determining region 3 of the antibody, which is most important for its diversity. Alignment of
complementarity-determining region 3 sequences of the heavy and light chains of viral neutralizing antibodies
revealed nine unique candidates. However, cross-reactivity of these antibodies to proteins from related virus species
will require further optimizations. Nonetheless, the antibodies generated by the above methods show promise as
therapeutic candidates, if multiple antibodies are used in combination. Anti-COVID-19 therapies involving a
combination of antibodies are under active investigation [15,17,18]. It also needs to be considered that the study
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Figure 2. Proteomics and metabolomics profiles of COVID-19 patients show promise as biomarker diagnostic
resources and potential therapeutic strategies.

by Wan et al. is just one approach among various other methods that researchers have been pursuing to develop
therapeutics against COVID-19, which have also been successful in their respective applications.

Therapeutic potential of the REGN-COV-2 monoclonal antibodies

REGN-COV-2 is a cocktail of two potent neutralizing monoclonal antibodies
(REGN10987/imdevimab+REGN10933/casirivimab) that target nonoverlapping epitopes of the SARS-
CoV-2 S protein and aimed to prevent mutational escape or evolved resistance [15,16,19]. The cocktail is
administered to COVID-19 patients grouped into various cohorts based on disease severity in multiple clinical
trials sponsored by Regeneron Pharmaceuticals (NY, USA). The disease severity ranges from not requiring
supplemental oxygen to requiring mechanical ventilation (NCT04426695), symptomatic versus asymptomatic
(NCT04425629), adolescents and asymptomatic household contacts (NCT04452318), having chronic medical
conditions and comorbidities (NCT04519437). REGN-COV-2 significantly lowers viral load in lower and upper
airways and pathological sequelae in rhesus macaques, lowers lung titers, pneumonia and limits weight loss in
hamsters, which proves its therapeutic capability [19].

Analysis of translatome & proteome for COVID-19 therapies
Proteome and metabolome of COVID-19 patients provide important insights for diagnostic and therapeutic
developments against COVID-19 (Figure 2). An optimistic approach to combat COVID-19 has been recently
published by Bojkova et al. where high-throughput analysis of translatome and proteome enabled the inhibition
of cellular pathways by small-molecules to prevent SARS-CoV-2 replication in cultured human cells [20]. Key
proteomics-based findings from the study are summarized below.

Establishment of a model system to study translatome & proteome upon SARS-CoV-2 infection
A highly permissive SARS-CoV-2 cell-culture model was established using human colon epithelial carcinoma cell
line Caco-2. SARS-CoV-2 was administered at a multiplicity of infection of one in order to infect most of the cells
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but to prevent multiple infections, which resulted in a fast progression of viral infection with cytopathogenic effects
observed after 24 h of infection. A continuous increase in SARS-CoV-2 RNA quantity and the presence of viral
protein in most cells guaranteed the establishment of a functional SARS-CoV-2 cell-culture model [20].

Analyses of translatome & proteome following SARS-CoV-2 infection
The translatome and proteome changes were quantified by a new high-resolution, high-sensitive method called
multiplexed enhanced protein dynamics (mePROD) [21]. mePROD offers unbiased analysis of cellular response
to viral infection which is free of perturbations, with negligible background noise. This is because mePROD
does not affect cellular behavior since translational changes are quantified by stable isotope labelling by amino
acids in cell culture. mePROD measures relative translation at the level of nascent chain, and its advantages as
mentioned below. mePROD includes quantification of heavy label incorporation following very brief labeling times
while maintaining depth or accuracy. mePROD has a booster channel which elevates the signal of interest in a
multiplexed and dynamic stable isotope labeling by amino acids in cell culture-labeled sample at low stoichiometry,
accurately measures global translation rates and allows for comparison of samples from different runs. mePROD
was developed to overcome challenges like lack of tools to study the correlation of transcriptome and proteome,
and lack of translatome data. Current methods to study the translatome are labor-intensive, biased, expensive and
require large amounts of starting material. mePROD overcomes the above issues because it is simple, sensitive,
lowly priced, unbiased and requires less than 100,000 cells. It offers direct results on nascent and novel-synthesized
proteins which convey another layer of translational data. Hence, limited clinical samples and primary cells can be
assayed with mePROD [21].

Following infection, global translation rates of five viral proteins were detected, which showed rising translation
rates with time. Next, host proteins whose translation kinetics correlated with viral proteins were screened to
identify pathways that could be potential regulators of SARS-CoV-2 replication. Pathway analyses of the network
of screened proteins revealed an upregulation of translation machinery, splicing and nucleobase synthesis of the
host. Hence, these protein processing pathways likely participate in SARS-CoV-2 replication. Tables 2 & 3 show
reactome analysis of proteins which increased and decreased, respectively, after infection.

To test if SARS-CoV-2 replication is affected by interfering with translation, translation inhibitors, such as
cycloheximide and emetine were administered at nontoxic concentrations to Caco-2 cells. Cycloheximide inhibits
translation elongation, while emetine inhibits 40S ribosomal protein S14; both caused significant inhibition of
SARS-CoV-2 replication [20].

Proteomics analyses identified two main clusters of proteins upon SARS-CoV-2 infection
Analysis of the proteome of Caco-2 cells after 24 h of infection showed two main clusters of differentially regulated
proteins by hierarchical clustering. In the first cluster, proteins were reduced upon infection, and included proteins
for cholesterol metabolism and transport like APOE, APOA, etc. In contrast, the second cluster consisted of proteins
that were increased upon infection and were enriched for RNA-modifying proteins, like spliceosome components
and carbon metabolism [20].

To test if inhibition of the spliceosome affects viral replication, the authors administered pladienolide B which
is a spliceosome inhibitor against the splicing factor SF3B1 [22]. The drug inhibited SARS-CoV-2 replication at
nontoxic concentrations for Caco-2 cells, indicating that spliceosome contributes to SARS-CoV-2 replication and,
hence, can be therapeutically targeted [20].

In the second cluster, the following proteins were annotated to carbon metabolism: ENO1, CS, GAPDH,
MDH2, GOT2, IDH3G, IDH3B, IDH2, PDHB, HK2, PKM and HKDC1. Consistently, the authors saw that
2-deoxy-d-Glucose, which inhibits hexokinase that is the rate-limiting enzyme in glycolysis, impedes SARS-CoV-2
replication. The observation indicated that glycolysis can be pharmacologically targeted to prevent SARS-CoV-2
infection.

Proteomics analysis developed a protein interaction database & identified additional clusters
To monitor individual protein levels over time across different organelles, the authors developed a STRING network
which is a biological database of established and predicted protein–protein interactions. The network was generated
by filtering of proteins based on significant changes in levels of individual proteins in the organelles using circle-heat
maps. It also serves to compare SARS-CoV-2 with other coronaviruses.
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Table 2. Reactome pathway analysis of genes increased in protein level during infection.

Eukaryotic translation elongation (R)

p38 signaling mediated by MAPKAP kinases (N)

Mitochondrial calcium ion transport (R)

Deubiquitination (R)

Antigen processing and presentation (K)

Neutrophil degranulation (R)

Translocation of SLC2A4 (GLUT4) to the plasma membrane (R)

SUMOylation (R)

TGF-beta receptor signaling (N)

MAPK6/MAPK4 signaling (R)

Proteasome (K)

Protein folding (R)

DNA-PK pathway in nonhomologous end joining (N)

Parkinson disease (P)

Regulation of actin cytoskeleton (K)

Glucose metabolism (R)

Validated targets of C-MYC transcriptional activation (N)

Biosynthesis of amino acids (K)

a6b1 and a6b4 Integrin signaling (N)

Adherens junction (K)

Protein processing in endoplasmic reticulum (K)

2-Oxocarboxylic acid metabolism (K)

Citrate cycle (TCA cycle) (K)

Signaling by ROBO receptors (R)

HIF-1 signaling pathway (K)

Pathogenic Escherichia coli infection (K)

Carbon metabolism (K)

The citric acid (TCA) cycle and respiratory electron transport (R)

IL-12 family signaling (R)

Regulation of mRNA stability by proteins that bind AU-rich elements (R)

Spliceosome (K)

Processing of capped intron-containing pre-mRNA (R)

Pathways ranked according to false discovery rate values from highest to lowest.
Data taken from [20].

Proteomics analysis of abundance trajectories and ontology network analysis identified a major cluster of
metabolic pathways consisting of diverse nucleic acid metabolism sub-pathways which serves to present more
proteomic targets for inhibiting SARS-CoV-2 replication. Drawing from the analysis, the authors prevented SARS-
CoV-2 replication using ribavirin, which inhibits guanosine nucleotide synthesis.

Proteomics analysis revealed that proteostasis is affected upon SARS-CoV-2 infection
Proteomics analysis of SARS-CoV-2 infected cells showed that proteins involved in proteostasis, or protein home-
ostais, pathways behaved similar to viral proteins. The observation was attributed to elevated translation of viral
proteins due to increased folding load caused by disruption of host cell proteosis by SARS-CoV-2 infection.

The cells were treated with NMS-873 which is a small-molecule inhibitor of a key component of proteostasis
called p97, to test its effect on SARS-CoV-2 replication. p97 is an AAA ATPase p97 that regulates protein
degradation, membrane fusion, vesicular trafficking and stress granule disassembly [23]. Replication of SARS-CoV-
2 was seen to be inhibited by NMS-873 at nanomolar amounts [20]. Hence, SARS-CoV-2 infects the host cells
leading to drastic perturbations in its proteome through interruptions of cellular functions, and the study showed
that compounds that modulate those functions can interfere with SARS-CoV-2 replication in human cells.
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Table 3. Reactome pathway analysis from second cluster of proteins that decreased following
SARS-CoV-2 infection of Caco-2 cells.

Mitochondrial calcium ion transport (R)

Eukaryotic translation elongation (R)

Transferrin transport

Viral process

High-density lipoprotein particle assembly

Hepatocyte growth factor receptor signaling pathway

Cellular oxidant detoxification

Phospholipid efflux

Regulation of translation in response to stress

Pyrimidine nucleobase biosynthetic process

Negative regulation of apoptotic process

‘De novo’ CTP biosynthetic process

Response to reactive oxygen species

Membrane organization

High-density lipoprotein particle clearance

Regulation of lipid metabolic process

Regulation of stress-activated MAPK cascade

Triglyceride catabolic process

Regulation of cholesterol transport

Cholesterol efflux

Negative regulation of endopeptidase activity

Lipoprotein metabolic process

Cholesterol metabolic process

Positive regulation of hydrolase activity

Lipoprotein biosynthetic process

Low-density lipoprotein particle remodeling

Chylomicron assembly

Positive regulation of cholesterol esterification

Chylomicron remodeling

Cellular protein metabolic process

Retinoid metabolic process

Post-translational protein modification

Pathways ranked according to false discovery rate values from highest to lowest.
Data taken from [20].

Overall, the proteomics analyses revealed several novel features about SARS-CoV-2 infection that can be harnessed
for developing therapeutics against COVID-19. First, a human cell culture system was successfully established
to study SARS-CoV-2 infection. Second, an improved method for proteomics analysis called mePROD was
developed that can apply to other proteomics-based studies on limited clinical infectious samples. Third, translation,
spliceosome and nucleobase synthesis, which are crucial for in protein synthesis, were revealed as pharmacological
targets to prevent SARS-CoV-2 replication. Fourth, pharmacological targeting of glycolysis and proteostasis were
found to inhibit SARS-CoV-2 replication. Hence, proteomics analyses identify novel pharmacological targets for
therapeutic developments against COVID-19. Fifth, development of STRING network reveals changes in proteins
over infection time across various organelles and their interaction partners which is large reservoir of information
to compare with other viruses and identifying therapeutic targets.

Metabolomics profiles provide COVID-19 diagnostic benefits with potential contributions to
therapeutic developments
Another approach of developing therapeutics and predicting their efficacy against COVID-19 is through an
understanding of the effects of SARS-CoV-2 infection on the metabolome. This is because a group of drugs with
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Table 4. Differentially regulated metabolites identified from metabolomic analysis of COVID-19 patients.
Study (year) n of patients Upregulated entities Downregulated entities Ref.

Shen B et al. (2020) 28 severe, control groups of 28
healthy, 25 non-severe, 25
negative for SARS-CoV-2 but with
similar clinical characteristics as
COVID-19 patients

21-hydroxypregnenolone,
kynurenate, kynurenine,
8-methoxykynurenate,
phosphocholine

Sphingolipids, glycerophospholipids, choline and
its derivatives, glutamate, arginine, N-(l-arginino)
– succinate, citrulline, ornithine, glutamine,
2-oxoglutarate, N-acetyl-L-glutamate, urea,
fumarate, argininate, asymmetric
dimethylarginine, symmetric dimethylarginine,
homoarginine, N-acetyl-arginine

[25]

Thomas et al. (2020) 33 COVID-19 patients Kynurenine, kynurenic acid, picolinic
and nicotinic acid, arginine,
methionine sulfoxide, cystine,
creatine, creatinine, spermidine,
acetyl-spermidine, glycolysis and
pentose phosphate intermediates

Tryptophan, serotonin, indole pyruvate, alanine,
glycine, serine, glutamine, histidine, cysteine,
taurine, ornithine, citrulline

[29]

Wu D et al. (2020) 34 COVID-19 patients Diglycerides, free fatty acids,
triglycerides

Sarcosine, L-aspartic acid, malic acid [30]

antiviral activity against SARS-CoV-2 that lower the viral burden in patients require intracellular ATP-dependent
activation depending on the bioenergetic profile of the patient. Specifically, nucleoside-based drugs including
remdesivir, ribavirin and favipiravir, which are currently in under focus as potential therapies for SARS-CoV-2,
need to be converted to active triphosphate forms by host enzymes that use endogenous ATP. The conversion is
necessary for these drugs to become functionally active [24].

The relationship between COVID-19 and metabolomics have been revealed by metabolomics studies on
COVID-19 patients with acute respiratory distress who show plasma metabolomic signatures resembling sep-
sis syndrome [20,24,25]. Sepsis patients with poor outcomes have an acute crisis in their bioenergetics profile, and
hence the metabolomic signatures in COVID-19 patients suggest metabolic suppression, platelet degranulation and
dysregulated macrophage function [26,27].

The adverse effect of SARS-CoV-2 infection on the metabolome of patients not only affects their physiology but
also the efficacy of anti-COVID-19 drugs that are dependent on endogenous cellular energy for their functional
activation. For example, a low bioenergetics profile leads to reduction in energy-rich metabolites like ATP and
phosphoribosyl pyrophosphate [28], that impairs functional activation of drugs, such as remdesivir, which depend
on cellular energy for functional activation. The conversion of remdesivir to the triphosphate form renders it as
a substrate for viral replicase-transcriptase, leading to its integration into the propagating viral RNA chain. The
integration prevents complete viral replication [3]. Hence, deficiency in cellular energy-rich metabolites may explain
why some nucleoside-based ATP-dependent medications that target the viral replicase-transcriptase system do not
succeed. Table 4 lists the differentially regulated metabolites from various studies described below.

Methodology to study metabolomic profile
The metabolomic analysis of COVID-19 patients have been described in detail [25]. A cohort of 28 severe COVID-
19 patients were studied, along with control groups consisting of 28 healthy individuals, 25 patients with non-
severe COVID-19 and 25 patients who are negative for SARS-CoV-2 nucleic acid test but have similar clinical
characteristics as COVID-19 patients. Serum samples were obtained from the individuals for proteomic and
metabolomic analysis. The study resulted in the identification and quantification of 894 proteins, 941 metabolites,
36 drugs and their metabolites [25].

The metabolomic study encompassed various endogenous biochemical categories by using positive and negative
ionization to study both hydrophilic and hydrophobic molecules. A random forest machine learning model was
built using omics data resulting in the prioritization of 29 important variables including seven metabolites. It was
found that 373 metabolites in COVID-19 patients were significantly altered, and variations in 204 metabolites
correlated with severity of COVID-19 as measured by mFuzz, a software for soft clustering of bioinformatics data
where each data point may belong to multiple clusters. Proteomics analysis showed a significant change in 80
metabolites that are involved in three biological processes.
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Metabolomic analyses show abnormal levels of several metabolites, lipids & amino acids in
COVID-19 patients
COVID-19 patients show a dysregulation in metabolites related to lipid metabolism, where increased levels of
11 steroid hormones are predicted to result in macrophage modulation [25]. The study showed an enrichment in
metabolites of corticosterone synthesis and kynurenine pathway for NAD+ synthesis, which indicate the roles of
these two pathways in COVID-19 response [31]. On the other hand, a decrease was observed in: sphingolipids,
which regulate macrophage activation and migration to inflammation sites; apoptosis; glycerophospholipids, which
regulate phagocytosis and platelet degranulation; and choline and its derivatives, which regulate cytokine secre-
tion [25]. Metabolites required for amino acid metabolism and amino acid derivatives were also reduced which
indicate toward a dysfunction of the hepatic system, because previous studies have also shown that viral infection
caused interferons to interfere with the urea cycle [32] and arginine metabolism is reduced upon viral infection [33].

Overall, the metabolomics profile of the study showed over 100 lipids reduced in the sera of COVID-19
patients. Disrupted lipidome can have direct consequences on the coronavirus infection cycle because of the
following reasons: early enveloped-virus development is partially regulated by glycerophospholipid, sphingolipids
and fatty acids [34]; blocking cholesterol synthesis by methyl-β-cyclodextrin (MbCD) inhibits SARS-CoV release in
infected Vero E6 cells [35]; and lipid synthesis inhibition by drugs like statin can be administered against hepatitis
C virus [36] and COVID-19 [37]. Hence, the variations in metabolome and lipidome reported here can be used for
therapeutic developments against COVID-19.

Metabolomics analysis of COVID-19 patients using ultra-high-pressure LC–MS & mapping to Kyoto
Encyclopedia of Genes & Genomes or KEGG pathway
In another study on 33 COVID-19 patients, sera of the patients were subjected to targeted metabolomics analyses
by ultra-high-pressure LC–MS to reveal differences in metabolic phenotypes [29]. Hierarchical clustering analysis
show links between COVID-19, IL-6 levels, and amino acid metabolism, purines, acylcarnitines and fatty acids.
Analysis of volcano plots for negative and positive ion modes revealed 3034 and 2484 differential metabolites in
COVID-19-positive versus controls.

Metabolism pathways for five amino acids were found to be significantly affected by COVID-19 using metabolite
set enrichment analysis of merged targeted and untargeted metabolomics data. The highest hits were mapped to
the KEGG pathway map hsa01100, where hsa denotes Homo sapiens. The study further presents targeted absolute
quantitative measurements analyzed by stable isotope-labeled internal standards to identify subsets of metabolites
belonging to the pathways that underwent maximum perturbation.

Metabolomic analysis show dysregulation of tryptophan metabolism, among other amino acids,
metabolites & pathways
In the above study, receiver operating characteristic curves depicting absolute quantitation of tryptophan and
kynurenine show that tryptophan is reduced, which is inversely proportional to IL-6 concentration, and kynurenine
is elevated during COVID-19 [29]. By-products of collagen metabolism and proteolysis were also observed. From a
renal perspective, COVID-19 patients show a decrease in ornithine and citrulline which are urea cycle metabolic
intermediates. In contrast, COVID-19 patients with moderate-to-high levels of IL-6 show an elevation in creatine,
creatinine, polyamines spermidine and acetyl-spermidine. Collectively, the observations indicate renal dysfunction
which was supported by clinical quantitation of creatinine and blood urea nitrogen. The study further showed
that in COVID-19 patients, there is hyperglycemia, elevation in glycolysis metabolic intermediates and pentose
phosphate pathways. The observations indicate toward potential hemolysis or rupturing of red blood cells. Changes
in levels of lactate and α-ketoglutarate were also observed. Overall, the observations indicated toward variations
in transamination homeostasis, which corresponds to perturbed nitrogen balance. The metabolomic analysis
corresponds to markers of inflammation and renal function that are clinically assessed in the laboratory.

Metabolomics analysis of COVID-19 patients using a LC-ESI–MS/MS system
Analysis of hydrophilic and hydrophobic metabolites from blood plasma of 34 COVID-19 patients led to the
identification and quantification of 431 metabolites and 698 lipids, revealing significant changes in the plasma
metabolome and lipidome [30]. The analysis was done using a LC-ESI–MS/MS system, followed by developing a
database that helps with identification of metabolites, their retention time and ion pairs. Metabolomic profiles of
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COVID-19 patients versus controls were distinguished using orthogonal partial least-squares discriminant analysis.
Functional relevance of the differentially abundant metabolites was annotated using KEGG.

Metabolomic analyses of COVID-19 patients reveal perturbations in pathways linked to metabolism
of sugars, thyroid hormone & lipids
The study further revealed an enrichment of metabolites involved in pathways associated with thyroid hormone
synthesis and signaling, as well as metabolism of purine, autoimmune thyroid, pyrimidine, carbon, fructose and
mannose. The observation indicates that perturbations in the above pathways are connected to advancement and
detrimental effects of COVID-19. Differential presence of lipids were observed that are linked to retrograde en-
docannabinoid signaling, pathogenic Escherichia coli infection, Kaposi sarcoma-associated herpesvirus infection,
glycosyl phosphatidyl inositol-anchor biosynthesis, glycerophospholipid metabolism and autophagy. Area under
the curve values for some of the metabolites including malic acid, D-xylulose 5-phosphate and glycerol 3-phosphate
belonged to the ideal range for diagnosis of disease in patients, indicative of their potential as COVID-19 biomark-
ers [30].

Discussion & conclusion
The studies discussed above establish that therapies and diagnosis based on antibodies, proteomics and metabolomics
have the potential for therapeutic developments against COVID-19. Although promising, the cost, time and effort
in producing efficient antibody-based therapies continue to be a challenge [38]. Despite the challenges, the results
are convincing enough to encourage the pursual of this line of therapy because it has culminated into numerous
clinical trials at various phases across the world. In this direction, administrative support at the local, national
and international level is crucial to ensure that as soon as an antibody-based therapy is launched, it can be made
accessible to all populations across various geographical and economic strata.

Similar approaches need to be implemented for proteomics- and metabolomics-based assays and diagnostic tests.
The altered metabolomic and lipidomic profiles can be used to identify diagnostic metabolic markers of SARS-
CoV-2 infection. COVID-19 patients show perturbations in energy metabolism processes with abnormalities
in ATP and de novo NAD production, endogenous precursors to NAD, mitochondrial function, purine and
pyrimidine nucleobases and nucleosides. Patients also exhibit accumulated levels of unprocessed tricarboxylic acid
cycle metabolites and carnitine esters. These markers of drastic deterioration of metabolism, mitochondrial function
and bioenergetic crisis were observed during a long period before death, hence they could predict mortality in
COVID-19 patients [26,27,39].

Due to the additional complications associated with a bioenergetic crisis in cellular metabolism that affects
patient mortality, antiviral drugs may behave unpredictably in severe metabolically dysfunctional patients [24].
During those situations, targeted metabolic approaches can attenuate the perturbations in energy metabolism by
replenishing NAD and ATP to improve immune and repair mechanisms for preventing multiorgan damage [24].
Nutritional supplements can be administered to attenuate the lipidome and metabolome perturbations as well.
Attenuation of the bioenergetic crisis is also essential for optimization of pharmaceutical interventions. One of
the challenges for proteomics- and metabolomics-based assays can be shortage of starting sample quantity. This
issue can be addressed by recent advances in methodology where proteomics and metabolomics analyses can be
performed on the same sample [40].

Overall, metabolomic phenotyping is important for developing personalized medicine for COVID-19 pa-
tients [24]. Metabolic phenotyping will improve the effectiveness of ATP-dependent replicase-trancriptase inhibitors
which are undergoing under clinical testing against COVID-19. In this direction, therapeutics which heavily rely
on ATP for activation may not benefit patients with severe metabolic dysfunction [24]. Metabolomic phenotyping
will enable the co-administration of required metabolic and nutritional approaches in the overall treatment plan.
Hence, outcomes of COVID-19 patients can be improved by addressing the perturbations in their metabolome
through a risk-stratified and personalized method. Proteomics and metabolomics profiles are useful in clinical and
epidemiological studies on pandemics where risk factors from various underlying conditions are addressed, like the
implications of renal cancer on COVID-19 [41].

Harnessing high-throughput datasets to obtain metabolomic, transcriptomic and proteomic signatures for in-
corporation into adaptive trial designs will have a great potential in developing therapeutics against COVID-19.
This is because collective observations indicate that vascular dysfunction could influence the pathogenesis of ARDS
induced by COVID-19, implying that COVID-ARDS is likely a distinct vascular endotype or distinctly defined
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subtype, of ARDS [42,43]. Risk factors for severe sickness and demise have been identified in COVID-19 patients
in Europe and Asia, among which some risk factors are overrepresented in COVID-ARDS patients, that indicate
toward a distinct ARDS endotype. While diabetes is a COVID-ARDS risk factor, it is a negative predictor of Lung
Injury Prediction Score during non-COVID ARDS [43,44]. The importance of underlying vascular dysfunction
in critically ill patients of COVID-19 ARDS is indicated by the prevalence of cardiovascular diseases including
hyperlipidemia, hypertension, etc., in these individuals [43]. However, it should also be noted that further research
is necessary to establish COVID-19-induced ARDS as an endotype of ARDS [45].

The integration of proteomics-, metabolomics- and antibody-based approaches are needed for optimal drug
development because several clinical trials are ongoing successfully but the final success against COVID-19 is
still awaited. In this direction, repurposing of antiviral drugs which inhibit RNA polymerase have shown promise
in treating COVID-19 patients [46]. Combination therapy has proven to be promising and needs to be further
developed. For example, the combination of ribavirin, a nucleoside analog, with two non-nucleosidic antivirals
used against HIV has shown promise in treating COVID-19 patients with mild-to-moderate sickness [47]. The
nucleoside-based antiviral favipiravir [48] has also shown therapeutic potential against COVID-19. Remdesivir
(GS-441524) has established itself as the drug with the most potential so far, with the FDA granting its emergency
use access for COVID-19 treatment [49]. With the expansion of anti-COVID-19 drugs that will be administered
by oral ingestion or transdermal methods, new drug delivery methodology will need to be optimized, including
various considerations like heat exposure [50]. Additionally, cell-based therapies offer another method of combating
COVID-19 [51].

It will be a collective responsibility for pharmaceutical industries, health insurance providers and all the gov-
ernments to ensure efficient distribution of medication to combat the COVID-19 pandemic. Overall, diagnosis
and therapies using antibodies, proteomics and metabolomics are significant steps toward future drug discovery to
combat infectious diseases.

Future perspective
Three important topics in the context of therapeutic developments against COVID-19 are discussed here –
antibodies, proteomics profiles and metabolomics profiles of COVID-19 patients. While antibodies extracted from
patients who recovered from COVID-19 show strong and specific binding to SARS-CoV-2 S and other proteins to
prevent viral infection, the proteomics and metabolomics profiles reveal new targets that can be pharmacologically
targeted to inhibit viral infection. These three areas need to be further developed because currently there is still no
cure for COVID-19, although recent developments in mRNA-based vaccines show >90% efficacy against COVID-
19. To develop effective therapies, further research is needed to extract COVID-19 antibodies and manufacture
them quicker and with less expense on a large scale. The antibodies need to overcome the disadvantages of the
current ones. Regarding proteomics and metabolomics profiles, data from more patients with varying disease severity
and underlying conditions need to be obtained. Advanced methodologies need to be developed to interpret and
analyze the data in a quick and accurate manner. In addition, the methodologies need to be applied to treat other
infectious diseases as well so that there is no threat from other pandemics in the future. Further, the methodologies
need to be adapted to prepare for mutant strains of SARS-CoV-2. Finally, the methodologies need to be assessed
for administration as combination therapies against COVID-19.

Executive summary

• The COVID-19 pandemic has killed more than 247,220 people and infected more than 11 million people in the
USA alone, causing more than 1,333,230 deaths worldwide.

• Some vaccines developed by different organizations are proposed to be highly effective, but a cure is still being
investigated.

• In this direction, generation of panels of recombinant antibodies from recovered patients of COVID-19 show
excellent neutralizing and strong binding activity to SARS-CoV-2 spike and other proteins, thus preventing viral
replication.

• Several proteins and metabolite levels become abnormally high or low after SARS-CoV-2 infection. While some of
them can be therapeutically targeted to resume normal levels to mitigate the effects of COVID-19, abnormal
levels of others can designate their use as biomarkers against COVID-19.

• Development of superior methodology and bioinformatics analysis procedures have helped to harness data from
the above processes to understand the pathophysiology of COVID-19 for therapeutic developments.
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