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Abstract

Exposure measurement error represents one of the most important sources of uncertainty

in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead

to biased risk estimates and a distortion of the shape of the exposure-response relationship.

In occupational cohort studies, the time-dependent nature of exposure and changes in the

method of exposure assessment may create complex error structures. When a method of

group-level exposure assessment is used, individual worker practices and the imprecision

of the instrument used to measure the average exposure for a group of workers may give

rise to errors that are shared between workers, within workers or both. In contrast to

unshared measurement error, the effects of shared errors remain largely unknown. More-

over, exposure uncertainty and magnitude of exposure are typically highest for the earliest

years of exposure. We conduct a simulation study based on exposure data of the French

cohort of uranium miners to compare the effects of shared and unshared exposure uncer-

tainty on risk estimation and on the shape of the exposure-response curve in proportional

hazards models. Our results indicate that uncertainty components shared within workers

cause more bias in risk estimation and a more severe attenuation of the exposure-response

relationship than unshared exposure uncertainty or exposure uncertainty shared between

individuals. These findings underline the importance of careful characterisation and model-

ing of exposure uncertainty in observational studies.

Introduction

Exposure measurement error is arguably one of the most important sources of uncertainty in

epidemiological studies. It is widely acknowledged that when it is not or only poorly accounted

for, measurement error can lead to biased risk estimates, a distortion of the shape of the expo-

sure-response relationship and a loss in statistical power [1, 2]. Accounting for exposure
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measurement error can be daunting, however, because error characteristics tend to be complex

in epidemiological studies.

In occupational cohort studies, for instance, one is usually interested in the association

between the time until diagnosis or time until death by a certain disease and cumulative expo-

sure to a certain chemical or physical agent. The analysis of this association may require the

specification of a proportional hazards model where cumulative exposure is treated as a time-

dependent variable. Owing to the time-dependent nature of cumulative exposure, the exposure

history of a worker may be collected using different strategies according to the period of expo-

sure. Changes in the methods of exposure assessment can create rather complex patterns of

exposure uncertainty, where the type and magnitude of measurement error can vary over

time. If no exposure data is available for the earliest years, one usually has to retrospectively

reconstruct exposure values for this period. On the other hand, it is common to use a method

of prospective, and possibly individual, exposure monitoring for the more recent exposure

periods. In the periods of prospective exposure assessment, technical advances in measure-

ment devices may imply more and more precise measures of exposure, which can translate

into a decrease in measurement error over time. It has been suggested that the fact that expo-

sure uncertainty and the magnitude of exposure are both highest for the earliest exposure peri-

ods may cause an attenuation of the exposure-response curve for high exposure values, a

phenomenon frequently observed in occupational cohort studies [3–5].

As it is virtually impossible to reconstruct the exposure values for each individual worker in

a retrospective fashion, one usually has to estimate the exposure levels for different job catego-

ries and the same exposure level is affected for all workers in a given job category. In this situa-

tion, individual exposure values of workers in a job-category are assumed to vary around the

estimated exposure level and measurement error is therefore often described as unshared

Berkson error [5–8], i.e., Berkson error that independently affects workers and different expo-

sure values of the same worker. In this conception, the estimated exposure level is implicitly

considered to be a precise estimate of the true average exposure in a job category, thereby

neglecting the fact that many simplistic and potentially wrong assumptions typically have to be

made in retrospective exposure reconstruction. Considering these uncertainties and simplifi-

cations, which often arise because working conditions may be very different from those in

more recent years, the estimated exposure level can greatly differ from the true average expo-

sure level in a job category. This discrepancy can be modelled as a classical measurement error

component that is shared between workers. Indeed, it affects the exposure values of all workers

in a given job category in the same way and therefore cannot be considered as independent for

workers who belong to this job category. Several authors have described this error structure as

a mixture of unshared Berkson and unshared classical measurement error [9, 10], but this view

cannot account for the fact that the classical measurement error component affects all individ-

uals in a group in the same way. At the same time, uncertainty components that are shared

between individuals have received growing attention in the field of radiation epidemiology in

recent years [11–15]. Quite contrary to [9, 10], the authors of [14, 15] account for the shared

nature of error, but not for the fact that this shared error can be of Berkson or classical type

[15, 16]. Meanwhile, comparatively little attention has been paid to the possibility of error

components shared within workers in occupational cohort studies. When cumulative exposure

is modelled as a time-dependent variable and a method of group-level exposure estimation is

used, individual job conditions and worker practices may create a correlation between mea-

surement errors in the exposure history of a worker [17, 18]. This correlation can be described

by error shared within workers, i.e. an exposure uncertainty component shared for several

years of the same worker. Through the summing of exposure values to obtain cumulative

exposure, uncertainty components shared within workers may be magnified, as the same error
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term is repeated for every exposure value of a worker. Therefore these components may have

more impact on statistical inference than unshared uncertainty components or components

that are shared between workers. On the other hand, several authors have argued that errors

that are shared between individuals might have fundamentally different consequences on sta-

tistical inference than unshared measurement errors [13–16]. To our knowledge there are no

studies confirming this assertion for proportional hazards models, which possibly presents the

most widely applied class of models in medical research.

Stayner et al. [4] and Steenland et al. [5] examined the effects of heteroscedastic measure-

ment error on the shape of the exposure-response curve and only found a modest attenuation

of the exposure-response curve at high exposure values. However, the authors treated cumula-

tive exposure in an occupational cohort as time fixed variable known at baseline, thereby

ignoring both its time-varying nature and the possibility of exposure uncertainty components

shared within individuals. In this context, further analyses are necessary to reassess these

results when a more realistic structure of measurement error is assumed with the possibility of

shared and unshared uncertainty components for all exposure periods.

The aim of this study is to highlight and compare the effects of shared and unshared expo-

sure measurement error on risk estimation and the shape of the exposure-response relation-

ship with the aid of simulated data when statistical inference in proportional hazards models is

not corrected for exposure measurement error. In a first step, we will assume measurement

models with only one type of error for all periods of exposure to compare the impact of differ-

ent types of exposure uncertainty on risk estimation in two alternative proportional hazards

models. In particular, we will conduct a first simulation study, referred to as simulation study

1 in the following, to investigate the influence of multiplicative Berkson and classical measure-

ment error that can be shared between workers, within workers, both between workers and

within workers, or unshared. The aim of this first simulation study is thereby to assess whether

shared error components have fundamentally different consequences on risk estimation than

unshared error components. In a second simulation study, referred to as simulation study 2 in

the following, we will assume more complex measurement models with varying types of multi-

plicative measurement error for different exposure periods that reflect the conditions in an

occupational cohort more realistically to assess the effects of these error structures on the

shape of the exposure-response relationship. The aim of this second simulation study is

thereby to investigate the possibility of complex error structures to lead to an attenuation of

the exposure-response relationship in an occupational cohort study.

Our motivating example concerns the potential impact of uncertainty in radon exposure

when modelling lung cancer mortality in the French cohort of uranium miners.

Measurement models

In the following, we present several measurement models to describe shared and unshared

exposure uncertainty components in an occupational cohort, which we will use in our simula-

tion study. These measurement models describe the association between the true Xij(t) and the

observed Zij(t) exposure of worker i at time t, where worker i belongs to group j. A group can

be formed by all workers belonging to a specific job-category in a retrospective exposure

reconstruction or in a prospective method of group-level estimation. For the sake of simplicity,

we will assume that each worker can only belong to one group and that the group he belongs

to does not vary over time.

A large part of the measurement error literature is based on additive error. As it has been

repeatedly suggested, however, that multiplicative measurement models may be more realistic

in many situations in occupational and environmental epidemiology in general [6] and to
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describe uncertainty in airborne exposure in particular [3, 7, 19], we will assume a multiplica-

tive log-normal model for exposure measurement error in the following. In order to describe

exposure uncertainty in an occupational cohort, we will first consider simple measurement

models in which the type (i.e., Berkson, classical, shared, unshared) and magnitude of error

remains constant over the years. In other words, even though there may be several exposure

periods, we will consider the same measurement error variance for all exposure periods. We

will refer to these models as homoscedastic measurement models. In a second step, we will

focus on more complex measurement models that may describe exposure uncertainty more

adequately in an occupational cohort. Contrary to the homoscedastic measurement models

that assume pure shared or unshared measurement error for all exposure periods, we will con-

sider in these complex models that the type of error and the measurement error variances can

vary for the different exposure periods. Additionally, we will consider that measurement error

occurring in a given exposure period can be characterised by a combination of shared and

unshared exposure uncertainty components. We will refer to these models as heteroscedastic

measurement models.

Homoscedastic measurement models

Unshared measurement error. When modelling measurement error, one commonly dis-

tinguishes Berkson and classical measurement error. Unshared Berkson error is often pre-

sumed when a group-level method of exposure estimation is used. In this case, an observed or

estimated exposure value is assigned to a group of workers and the true exposure of each

worker is supposed to randomly deviate from this observed exposure value. The variability of

true exposure is larger than the variability of observed exposure and measurement error is

independent of observed exposure. Multiplicative Berkson error can be expressed by model

M1 : XijðtÞ ¼ ZjðtÞ � UijðtÞ;

where Zij(t) = Zj(t) for all workers i of group j and E(Uij(t)|Zj(t)) = 1, which implies that

E(Xij(t)|Zj(t)) = Zj(t).
When individual measurements are obtained through a measuring device, on the other

hand, a classical measurement error model is assumed, where the observed exposure of worker

i in group j Zij(t) randomly deviates from his true exposure. In contrast to model M1, the vari-

ability of observed exposure is larger than the variability of true exposure and measurement

error is independent of true exposure. Multiplicative classical measurement error can be

expressed by model

M2 : ZijðtÞ ¼ XijðtÞ � UijðtÞ;

where E(Uij(t)|Xij(t)) = 1 implying that E(Zij(t)|Xij(t)) = Xij(t). Contrary to measurement model

M1, we do not dispose of E(Xij(t)|Zij(t)) in measurement model M2. A common way to cor-

rect for measurement error in this situation is to use regression calibration, where E(Xij(t)|
Zij(t)) is modelled as a function of Zij(t) and the parameters of this function are estimated on a

validation sample.

We will assume in both models that log transformed measurement errors log(Uij(t))
are independent and normal random variables with mean � s2

2
and variance σ2, i.e.,

logðUijðtÞÞ � N � s2

2
; s2

� �
. Note that if log(W) follows a normal distribution with mean μ and

standard deviation σ, W follows a log-normal distribution with EðWÞ ¼ exp mþ s2

2

� �
and vari-

ance Var(W) = (exp(σ2) − 1)exp(2μ + σ2). The chosen parametrisation thereby ensures that

E(Uij(t)|Zj(t)) = 1 and E(Uij(t)|Xij(t)) = 1. In particular, Uij(t) and Ui0 j(t0) are independent for
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i 6¼ i0 and t 6¼ t0 in both M1 and M2. Under this independence assumption, measurement

error is considered as unshared.

Shared measurement error. To describe exposure uncertainty components that are

shared between or within workers, one can adapt the unshared Berkson and classical measure-

ment error model described previously by modifying the assumptions on the structure of mea-

surement error Uij(t).
For instance, if we suppose that the measurement error term Uij(t) equals Uj(t) for all work-

ers i in group j, we can obtain a Berkson and a classical measurement error model in which the

errors are shared for a group of workers. Indeed, in these models, the same error component is

presumed at time t for all subjects i belonging to group j (hence the term “shared between

workers”) and Uj(t) and Uj0(t0) are independent if j 6¼ j0 or t 6¼ t0. In an occupational cohort

study, we will be faced with components of classical measurement error that are shared

between workers in a situation where a measuring device is used to measure the mean expo-

sure of a group of workers in a prospective fashion. A measurement error occurring on the

measuring device will affect the exposure values of all workers in the same way and thereby

lead to a classical measurement error component shared between workers. If, on the other

hand, this group consists for instance of workers that work in three different locations, it is

likely that the exposure levels in a given location are rather homogeneous while there can be

an important heterogeneity between these three locations. The errors arising due to this het-

erogeneity may then adequately be described by Berkson error shared between all workers in a

given working location. We will denote M3 and M4 the measurement models describing

Berkson and classical measurement error shared between workers.

To describe Berkson or classical measurement error that is shared for several years of the

same worker, we assume that the measurement error term Uij(t) neither depends on time t nor

on group j: Uij(t) = Ui 8j8t. The same error component is supposed for all years of exposure of

worker i and Ui and Ui0 are independent if i 6¼ i0 (hence the term “shared within workers”). A

component of classical measurement error shared for several exposure years of the same

worker may arise if each worker has a personal measuring device. If the measuring device of a

worker is not perfectly calibrated, there may be a systematic error that affects all exposure

values received by this worker in the same way. If a strategy of group exposure assessment is

chosen, on the other hand, individual job conditions and worker practices can lead to a com-

ponent of Berkson error that is shared for several years of exposure of the same worker. We

will denote M5 and M6 the measurement models describing Berkson and classical measure-

ment error shared within workers.

Finally, an error component may simultaneously affect all exposure values received by the

workers in a certain group during an exposure period of several years in the same way. This

error structure is likely to occur when recent exposure conditions are extrapolated in order to

reconstruct exposure values in the past. These extrapolations are typically made for a group of

workers and for a period of several years at the same time, as it is difficult to make more precise

estimates in a retrospective exposure reconstruction. In this situation, the measurement error

induced by estimating the mean exposure level for a group j affects both all workers in this

group and all exposure values received by these workers. Therefore, the measurement error

term Uij(t) neither depends on time t nor on subject i, but only on the group j a subject belongs

to: Uij(t) = Uj 8i8t. In this case, Uj and Uj0 are independent if j 6¼ j0. We will denote M7 and

M8 the measurement models describing Berkson and classical measurement error shared

both within and between workers.

For a more detailed presentation of models M3 to M8, see S1 File.
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Heteroscedastic measurement models with three exposure periods

In the following, we will extend the measurement models presented so far by considering

three exposure periods for which both the type and the magnitude of exposure uncertainty can

vary and by allowing for combinations of shared and unshared measurement error in each

exposure period. In this section, we denote Xq
ijðtÞ and Zq

ijðtÞ the true and observed exposure for

worker i belonging to group j at time t in exposure period q.

Unshared measurement error for different exposure periods. Motivated by the expo-

sure conditions in the French cohort of uranium miners (see the motivating example described

in the presentation of the simulation study for more details), we consider the following model

to allow for possible changes in the method of exposure assessment:

M9 :

X1
ijðtÞ ¼ Z1

j � U
1
ijðtÞ

X2
ijðtÞ ¼ Z2

j ðtÞ � U
2
ijðtÞ

Z3
ijðtÞ ¼ X3

ijðtÞ � U
3
ijðtÞ

8
>>><

>>>:

where logðUq
ijðtÞÞ are independent and normal random variables with mean �

s2
q

2
and variance

s2
q. We suppose three distinct exposure periods, q 2 {1, 2, 3}, with a retrospective exposure

reconstruction for the first period, a prospective method of group-level exposure estimation

for the second period and prospective and individual exposure assessment for the third period.

A similar reasoning will apply to many occupational cohort studies, as exposure values for the

earliest years of exposure are often reconstructed retrospectively by extrapolating exposure

conditions from more recent exposure periods, while methods of prospective exposure assess-

ment are available for more recent years of exposure [3, 20, 21]. The models can also be easily

extended to more than three exposure periods. By allowing s2
q 6¼ s2

q0 for q 6¼ q0, model M9 can

describe the varying type and magnitude of error in the three exposure periods by a heterosce-

dastic and unshared error structure. The error occurring in the first two exposure periods is

described as Berkson error with EðU1
ijðtÞjZ

1
j Þ ¼ 1 and EðU2

ijðtÞjZ
2
j ðtÞÞ ¼ 1, following the

assumption that a method of group-level exposure estimation will lead to unshared Berkson

error. The observed exposure Z1
j for group j in the first period does not depend on time t as

only one value is estimated for all exposure years in that group in a retrospective exposure

reconstruction. On the other hand, observed exposure Z2
j ðtÞ for group j in the second period

depends on time t, as exposure values are estimated by a prospective group-level exposure

assessment. The individual and prospective method of exposure assessment in the third expo-

sure period, on the other hand, is supposed to produce independent classical measurement

error, which implies that EðU3
ijðtÞjX

3
ijðtÞÞ ¼ 1.

Accounting for the imprecision of the measurement device in group-level exposure esti-

mation. When describing exposure uncertainty in an occupational cohort, it may be advis-

able to account for the imprecision of the measurement device which is used to estimate the

average exposure for a group of workers in a group-level exposure assessment. In this vein, we

can suppose an additional classical measurement error component, which is shared between

and within workers for the for the first exposure period, as this period was characterised by a

retrospective exposure reconstruction and the use of a single error prone exposure estimate for

a group of workers and several years of exposure. For the second period, the imprecision of the

measurement device that is used to obtain measurements for a group of workers in a prospec-

tive fashion will likely give rise to a component of classical measurement error that is shared

between workers, but not for several years of the same worker. The combination of shared and

Shared and unshared error in occupational cohort studies and their effects on statistical inference
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unshared measurement error in the first and second exposure period can be expressed by

model

M10 :

X1
ijðtÞ ¼ w1

j � U
1
ijðtÞ

Z1
j ¼ w1

j � U
1�
j

X2
ijðtÞ ¼ L2

j ðtÞ � U
2
ijðtÞ

Z2
j ðtÞ ¼ L2

j ðtÞ � U
2�
j ðtÞ

Z3
ijðtÞ ¼ X3

ijðtÞ � U
3
ijðtÞ:

8
>>>>>>>>>>><

>>>>>>>>>>>:

where w1
j and L2

j ðtÞ are latent intermediate variables. w1
j can be interpreted as the true average

exposure value of group j in the retrospective exposure reconstruction in the first period. L2

j ðtÞ
represents the true average exposure value of group j at time t in the prospective group-level

exposure assessment during the second period. In model M10, we assume EðU1
ijðtÞjw

1
j Þ,

EðU1�
j jw

1
j Þ, EðU2

ijðtÞjL
2

j ðtÞÞ, EðU2�
j ðtÞjL

2

j ðtÞÞ and EðU3
ijðtÞjX

3
ijðtÞÞ all equal to one. Moreover,

logðU1�
j Þ � N ð� s2

1�

2
; s2

1�
Þ and logðU2�

j ðtÞÞ � N ð� s2
2�

2
; s2

2�
Þ. The error term U1�

j is supposed to

be shared both between and within subjects and therefore only depends on group j. The error

term U2�
j ðtÞ, on the other hand, is shared between, but not within subjects and therefore

depends on group j and time t but not on worker i.
Accounting for individual worker practices in the periods of group-level exposure esti-

mation. Several authors have pointed out that workers can receive systematically higher

or lower exposure values than the exposure level that is measured for their job category,

although they work in the same environment and perform basically the same tasks [17, 18].

For instance, a comparison between a prospective method of group-level exposure assessment

and individual exposure assessment in the French cohort of uranium miners revealed that

individual cumulative radon exposure was substantially underestimated for some workers but

not for others when exposure was assessed at the group-level [22]. A possible explanation for

this finding is that some of the workers sought relief from the strong airstream produced by a

ventilation system in their break hours, thereby exposing themselves to very high radon con-

centrations. The ventilation system was installed in the mines as a measure of radiation protec-

tion and the access to areas where the airflow was too weak was formally forbidden. Miners

who infringed this rule received systematically higher true exposure values than their esti-

mated exposure level for all years of exposure, which were characterised by a method of

group-level exposure assessment. To account for the effect of these individual worker charac-

teristics and worker practices, it seems adequate to model exposure uncertainty as a combina-

tion of a component of unshared Berkson error and a component of Berkson error shared for

several years of a worker when a method of group-based exposure assessment is used,

expressed by model

M11 :

X1
ijðtÞ ¼ Z1

j ðtÞ � U
1�
ij ðtÞ � U

1�
i

X2
ijðtÞ ¼ Z2

j ðtÞ � U
2�
ij ðtÞ � U

2�
i

Z3
ijðtÞ ¼ X3

ijðtÞ � U
3
ijðtÞ:

8
>>><

>>>:

In this model, we assume logðU1�
i Þ � N ð� s2

1�

2
; s2

1�
Þ and logðU2�

i Þ � N ð� s2
2�

2
; s2

2�
Þ with

EðU1�
i jZ

1
j Þ ¼ 1 and EðU2�

i jZ
2
j ðtÞÞ ¼ 1.
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Simulation studies

Motivating example

To mimic the exposure conditions of a “true” occupational cohort, we used information on

annual radon exposure of the French cohort of uranium miners [23, 24] as basis for all simula-

tions. The study design was approved of by the French Commission Nationale de l’Informa-

tion et des Libertés (CNIL) and the data underlying the findings of this study is restricted by

this commission. Radon is a noble and radioactive gas, resulting from the decay of uranium

238. As radon is considered to be the second most important cause of lung cancer after smok-

ing, the main outcome of interest when it comes to radon exposure is lung cancer mortality.

Estimated excess relative risk coefficients per 100 working level months (WLM) vary between

0.8 and 4.2 in occupational cohorts of miners [25] when risk estimation is not corrected for

measurement error. Note that Excess relative risk (ERR) is related to relative risk (RR) by

the relation RR = 1 + ERR. Radon exposure in cohorts of underground miners is classically

expressed in working level months with one working level month approximately equal to

6.3 × 105Bq h m−3.

The French cohort of uranium miners consists of 5086 uranium miners, who present an

average follow-up of 35 years between 1945 and 2007 and an average duration of employment

of 17 years between 1945 and 1999. The radon exposure data of this cohort reflect conditions

which can be seen as typical for an occupational cohort with varying methods of exposure

assessment, depending on the period of exposure. For the earliest period of mining (1945-

1955), there was no systematic radon exposure monitoring in the mines and exposure values

had to be reconstructed retrospectively by a group of experts. The second exposure period

(1956-1982) was characterised by a method of group-based exposure monitoring, where

information gathered through ambient measurements at work sites was used to estimate the

individual exposure of each miner in a prospective fashion. Finally, for the latest period of

exposure (1983-1999), radon exposure was assessed individually and prospectively via personal

dosimetry. At the same time, starting in 1955, improvements in radiation protection of the

workers led to a sharp exposure reduction between 1955 and 1956, which was subsequently

followed by a continual decrease in annual radon exposure until the last mine closed in France

in 1999. The average annual radon exposure value for exposed miners was 28.28 WLM in 1955

and 0.14 WLM in 1999.

Despite evidence of multiple sources of shared uncertainty in radon exposure in cohorts of

underground miners, attempts to model measurement error in these cohorts so far mainly

relied on the hypothesis that all exposure uncertainty can be described by unshared multiplica-

tive measurement error [7, 8, 26–28]. In the French cohort of uranium miners, an attenuation

of the exposure response curve for cumulative exposure values exceeding 100 WLM has been

observed [26]. This shape of the exposure response curve, which has been observed in many

other occupational cohorts [3, 4], persists after unshared measurement error is accounted for.

Stram et al. (1999) [1] observe a similar phenomenon when analysing lung cancer mortality in

the Colorado Plateau Uranium Miners cohort, where the risk for radon exposures received

at a high-dose rate is estimated to be smaller than the risk estimated for radon exposures

received at a low dose-rate. The authors refer to this phenomenon, which is commonly

observed in cohorts of uranium miners, as the inverse dose-rate effect. When reanalysing lung

cancer mortality in the cohort with revised exposure estimates based on a model-based impu-

tation scheme, the authors find that the inverse dose-rate effect is greatly diminished. In this

context, it is important to ascertain whether the attenuation of the exposure-response relation-

ship observed in the French cohort of uranium miners could be due to components of shared

exposure uncertainty that are not accounted for.
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Simulation study 1: The impact of shared and unshared measurement error

on risk estimation

Based on our motivating example, we performed a series of simulations to assess the impact of

shared and unshared exposure uncertainty components on risk estimation in proportional

hazard models when statistical inference is not corrected for measurement error.

Models used for data generation. To generate failure times, we considered two alterna-

tive proportional hazards models D1 and D2 to describe the association between instanta-

neous hazard rate of death by lung cancer of miner i at age t, hi(t) and his cumulative radon

exposure. Both disease models specify hi(t) as a function of cumulative radon exposure in 100

WLM, Xcum
i ðtÞ of worker i until time t and the baseline hazard h0(t) of lung cancer mortality at

age t. They are given by

D1 : hiðtÞ ¼ h0ðtÞð1þ bXcum
i ðtÞÞ

and

D2 : hiðtÞ ¼ h0ðtÞ exp ðbXcum
i ðtÞÞ:

D1 represents an excess hazard ratio (EHR) model, which is commonly used to describe

the association between cancer mortality and exposure to radon and to other sources of ionis-

ing radiation. D2, on the other hand, is the more classical form of the Cox proportional

hazards model. Cumulative radon exposure Xcum
i ðtÞ is a time-varying variable as it represents

the sum over all annual exposure values that worker i in group j received before time t:
Xcum

i ðtÞ ¼
X

u�t

XijðuÞ.

We considered different measurement models to describe the association between true

Xij(t) and observed exposure Zij(t) of worker i at time t belonging to group j. We used models

M1 to M8 presented earlier, which assume the same type of error for all exposure periods

and specify Berkson and classical measurement error that is either unshared, shared between

subjects, shared within subjects or shared both within and between subjects.

Data generation. To create unshared exposure uncertainty, measurement errors Uij(t)
were sampled independently from a log-normal distribution for each miner i at every time t.
For components of exposure uncertainty shared within workers, we generated only one log-

normally distributed error Ui for each worker i, which was then used for all times t at which

this worker was exposed to radon. Conversely, for exposure uncertainty shared between work-

ers, we generated one log-normally distributed error term, Uj(t) at each time t, which was

affected to all workers i in group j. Finally, for an error component, that was both shared

between and within workers, i.e., at the same time among a group of workers and for several

years of the same worker, we generated one log-normally distributed error Uj for each group

of workers, which was applied for all times at which a worker belonging to group j was

exposed. When generating exposure data with Berkson error, we made the assumption that

observed exposure Zij(t) was equal to the observed exposure values in the French cohort of ura-

nium miners and multiplied Zij(t) by an error term to obtain true exposure Xij(t). Conversely,

when generating exposure data with classical measurement error, we made the assumption

that true exposure Xij(t) was equal to the observed exposure values in the cohort and multiplied

Xij(t) by an error term to obtain observed exposure Zij(t). Since the French cohort of uranium

miners did not present a natural partition into groups of workers, we created homogeneous

groups of workers via a hierarchical ascendant clustering algorithm after a multiple factor anal-

ysis based on some covariates concerning job characteristics: principal type of mine, principal

location and principal type of job.
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We adapted a method proposed by Henry (2014) [29] to generate failure times for a propor-

tional hazards model with time-dependent covariates. To generate survival times, we used a

piecewise constant model to specify baseline hazard h0(t) in both the EHR and the Cox propor-

tional hazards model. All data generation was done in R (version 3.3.1).

We chose a true risk coefficient of β = 5 for the EHR model, which is in the same order of

magnitude as the risk coefficient estimated in the French cohort of uranium miners when

restricting analyses to exposure periods characterised by a prospective method of exposure

assessment [24, 26]. In order to achieve a comparable strength of the association between

radon exposure and lung cancer mortality for the Cox model and the EHR model, we chose a

risk coefficient of β = 2 for the Cox model. For the sake of completeness, we included results

for the EHR model with β = 2 and for the Cox model with β = 5 in Table 4 and Table 5 in

S2 File.

We compared the impact of large and moderate measurement error, corresponding to val-

ues for the variance of measurement error of s2
�
¼ 0:8 and s2

�
¼ 0:1, respectively. These values

were chosen in accordance with the characterisation of exposure uncertainty in the French

cohort of uranium miners [27, 30]. While a measurement error variance of s2
�
¼ 0:1 is likely

to occur in the more recent exposure periods of an occupational cohort, a measurement error

variance of s2
�
¼ 0:8 may be assumed for the earliest exposure years for which exposure values

are commonly reconstructed in a retrospective fashion.

The combination of all possibilities for the disease model, the measurement model, for the

value of the true risk coefficient and for the measurement error variance resulted in 2 × 8 ×
2 × 2 = 64 distinct simulation scenarios. Additionally, we compared the results with risk esti-

mates when radon exposure was observed without measurement error, i.e. under measure-

ment model M0, resulting in 68 simulation scenarios in total.

Assessment of risk estimates. For each scenario, inference was based on 100 simulated

data sets. We conducted inference for disease model D1 for data sets that were generated

according to the EHR model. Likewise, we conducted inference for the disease model D2 for

data sets that were generated according to the Cox model. Observed exposure Zij(t) was treated

as an error-free surrogate of true exposure Xij(t) in the analysis of the association between

exposure and disease outcome, i.e. measurement error was not accounted for in risk estima-

tion. We used a Metropolis-Hastings algorithm developed and tested in Python version 2.7 for

Bayesian inference. We chose a centred normal prior distribution with a large variance (1000)

for the risk coefficient β, which was truncated to guarantee the positivity of hi(t) in the EHR

model. After checking convergence, inference was based on 20.000 iterations after an initial

burn-in phase of 10.000 iterations (thin = 1).

For each scenario, we estimated:

1. An overall 95% credible interval (CI95%), which was obtained by combining the chains of

the 100 replicates for each scenario and by determining the 2.5 and 97.5 quantiles of the

corresponding pooled chain.

2. The relative bias of a Bayesian point estimator b̂, given by
ðb̂ � bÞ

b
, where β is the risk coeffi-

cient which served to generate the data. We used the posterior median as Bayesian point

estimate for the risk coefficient b̂.

3. The coverage rate of 95% credible intervals, which was calculated by counting the propor-

tion of the 100 replicates for which the 95% credible interval included the true value of the

coefficient β
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4. The statistical power, which was estimated by counting the proportion of replicates for

which the 95% credible interval for β excluded 0.

Simulation study 2: The effects of measurement error characteristics on the

shape of the exposure-response curve

We performed a second series of simulations to assess the effects of different error structures

on the observed shape of the exposure-response curve when risk estimation is not corrected

for measurement error.

Models used for data generation. We used models D1 (EHR model) and D2 (Cox

model), described earlier to generate mortality data as a function of true cumulative radon

exposure Xcum
i ðtÞ.

We considered model M0 with no measurement error, model M1 describing unshared

Berkson error for all exposure periods and the more complex and more plausible models

M9;M10 and M11. M9 only describes unshared error, thereby accounting for differences in

type and magnitude of error occurring in the three exposure periods, while M10 and M11

also allow for shared components of exposure uncertainty due to the imprecision of the mea-

surement device and individual worker practices, respectively.

Data generation. For model M10, the latent intermediate variables w1
j and L2

j ðtÞ were set

to the exposure values observed in the French cohort of uranium miners and both observed

exposure Zij(t) and true exposure Xij(t) were obtained by multiplying these intermediate vari-

ables with shared and unshared measurement error, respectively. For all other models, Berk-

son and classical measurement error were generated according to the strategy described

earlier.

We chose β = 2 for the Cox model and β = 5 for the EHR model. Results for the EHR model

with β = 2 and for the Cox model with β = 5 can be found in S1 and S2 Figs and Table 6 of

S2 File.

In order to be able to assess the impact of the structure of measurement error, rather than

the magnitude of error, we tried to keep the total magnitude of error constant for all models.

Therefore, we generated data according to model M9 with s2
1
¼ 0:8, s2

2
¼ 0:15 and

s2
3
¼ 0:01, following Allodji et al. [27, 30]. To obtain a global variance of log-transformed

errors comparable to this scenario, we set σ2 equal to 0.2 in the homoscedastic Berkson error

model M1. In accordance with the characterisation of exposure uncertainty made by Allodji

et al. [30], the variance parameters in model M10 accounting for the imprecision on the mea-

surement device as shared source of uncertainty, were chosen as s2
1
¼ 0:09;s2

2
¼ 0:03 and

s2
3
¼ 0:01;s2

1�
¼ 0:81 and s2

2�
¼ 0:12. For the variance parameters in model M11, accounting

for individual worker practices as shared source of uncertainty, we chose the same values for

the variance parameters as for model M10. In doing so, we are able to compare the effects of

shared exposure uncertainty due to the imprecision on the measurement device in a group-

level exposure estimation and due to individual worker practices for a given error variance.

Assessing the shape of the exposure-response curve. We conducted statistical inference

for both models D1 and D2 for all data sets, regardless of the disease model that was used for

data generation, to study the effects of different error structures on disease model choice when

inference is not accounted for measurement error. The Deviance Information Criterion (DIC)

was used to compare the competing disease models. The DIC is a Bayesian model selection cri-

terion, which can be seen as a penalised likelihood criterion evaluating the trade-off between

goodness of fit and model complexity with smaller DIC values indicating a better fit to the

data.
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To investigate the possibility of measurement error to induce a non-linear exposure-

response relationship, we estimated parameter values in an EHR (D3) and a Cox model (D4)

based on natural cubic splines. In these models, we chose interior knots at the 20th, 40th, 60th

and 80th percentile of the exposure distribution of cases, i.e. miners who died of lung cancer in

our simulation study.

While these disease models allow for a graphical evaluation of the impact of different mea-

surement error characteristics, the parameter estimates in these models are not easily inter-

pretable. Consequently, we also fitted continuous piecewise-linear models with a breakpoint at

100 WLM to be able to complement the results of model D3 and D4 with slope estimates for

high and low exposure values under the different error structures. D3 and D5 were estimated

for data sets that were generated according to the linear EHR model D1 to assess the effect of

the different measurement error characteristics when the EHR model was the true disease

model. Similarly, D4 and D6 were fitted for data sets that were generated according to the lin-

ear Cox model D2. All statistical inference was based on the assumption that observed expo-

sure Zq
ijðtÞ was a perfect surrogate of true exposure Xq

ijðtÞ. The natural cubic spline basis was

constructed in R and Bayesian inference via a Metropolis-Hastings algorithm was conducted

in Python. Inference was based on 20.000 iterations after an initial burn-in of 10.000 iterations

(thin = 1).

Results

The impact of shared and unshared measurement error on risk estimation

Table 1 shows risk estimates and overall 95% credible intervals in the Cox proportional haz-

ards model. Exposure uncertainty shared within workers created more relative bias in risk esti-

mates and smaller coverage rates than exposure uncertainty shared between workers. The

relative bias of small measurement error of both Berkson and classical nature, for instance,

Table 1. Average posterior median (β̂), overall 95% credible intervals (CI95%), relative bias and coverage rate for 100 data sets generated according to the Cox model

D2, a measurement model among M0 to M8 and a true risk coefficient of β = 2 per 100 WLM.

Model Type of sharing Type of error Error variance β̂ CI95% Relative bias Coverage rate

M1 unshared Berkson 0.1 1.81 [1.64; 1.99] -0.10 0.10

0.8 1.25 [0.97; 1.49] -0.38 0.00

M2 classical 0.1 1.75 [1.55; 1.93] -0.13 0.02

0.8 0.83 [0.45;1.21] -0.59 0.00

M3 between Berkson 0.1 1.82 [1.62; 2.01] -0.09 0.22

0.8 1.25 [1.03; 1.47] -0.38 0.00

M4 classical 0.1 1.75 [1.53; 1.94] -0.13 0.05

0.8 0.80 [0.44; 1.16] -0.60 0.00

M5 within Berkson 0.1 1.45 [1.12, 1.69] -0.28 0.00

0.8 0.76 [0.54; 0.97] -0.62 0.00

M6 classical 0.1 1.33 [1.04; 1.58] -0.34 0.00

0.8 0.39 [0.17; 0.62] -0.81 0.00

M7 both Berkson 0.1 1.46 [1.11; 1.78] -0.27 0.00

0.8 0.77 [0.54; 1.00] -0.62 0.00

M8 classical 0.1 1.42 [1.04; 1.72] -0.29 0.00

0.8 0.49 [0.13; 0.86] -0.76 0.00

M0 none none 0 1.96 [1.80; 2.13] -0.02 0.95

https://doi.org/10.1371/journal.pone.0190792.t001
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was more than twice as large when this error was shared within workers rather than between

workers. In general, the impact of unshared uncertainty and uncertainty shared between

workers was comparable. Error components, which were both shared between and within

individuals produced about as much bias as error components that were only shared within

individuals.

Table 2 presents the same summary statistics concerning risk estimates as Table 1 but for

failure times generated according to the EHR model. The relative bias introduced by measure-

ment error in the EHR model was smaller than the bias introduced in the Cox model. For

large measurement error in the EHR model, we observed the same pattern as for the Cox

model where measurement errors shared within workers caused more relative bias and lower

coverage rates than unshared measurement error or measurement error that was only shared

between workers. For small measurement error, this tendency was less evident. In general,

classical measurement caused more relative bias and smaller coverage rates than Berkson error

and large measurement error caused more relative bias and smaller coverage rates than small

measurement error, regardless of the disease model and regardless of whether exposure uncer-

tainty was shared or unshared. When data were generated without exposure measurement

error, the coverage rates of 95% credible intervals were very close to 95%.

The statistical power was estimated to be 100% for all scenarios, both for data generated

according to the Cox model and according to the EHR model.

The effects of measurement error characteristics on the shape of the

exposure-response curve

As can be seen in Fig 1, exposure-response curves for data generated according to the Cox

model with no measurement error (M0) or unshared and homoscedastic Berkson error

(M1) were close to linear on the log-scale. Heteroscedastic unshared error (M9) appeared to

create a slightly non-linear association. Indeed, Table 3 confirms that the slope for exposure

Table 2. Average posterior median (β̂), overall 95% credible intervals (CI95%), relative bias and coverage rate for 100 data sets generated according to the EHR

model D1, a measurement model among M0 to M8 and a true risk coefficient of β = 5 per 100 WLM.

Model Type of sharing Type of error Error variance β̂ CI95% Relative bias Coverage rate

M1 unshared Berkson 0.1 4.87 [3.07; 7.68] -0.03 0.93

0.8 4.65 [2.89; 7.18] -0.07 0.91

M2 classical 0.1 4.88 [3.13;7.47] -0.02 0.94

0.8 4.34 [2.71; 6.70] -0.13 0.78

M3 between Berkson 0.1 4.77 [3.14; 7.11] -0.05 0.99

0.8 4.69 [2.91; 7.31] -0.06 0.93

M4 classical 0.1 4.79 [3.04; 7.35] -0.04 0.93

0.8 4.44 [2.82; 6.72] -0.11 0.85

M5 within Berkson 0.1 4.88 [3.13; 7.47] -0.02 0.94

0.8 3.98 [2.43; 6.23] -0.20 0.73

M6 classical 0.1 4.75 [3.01; 7.31] -0.05 0.91

0.8 3.03 [1.86; 4.71] -0.39 0.13

M7 both Berkson 0.1 4.88 [3.11; 7.69] -0.02 0.94

0.8 3.86 [2.19; 6.59] -0.23 0.55

M8 classical 0.1 4.76 [2.94; 7.29] -0.05 0.92

0.8 3.15 [1.62; 5.25] -0.37 0.25

M0 none none 0 4.90 [3.14; 7.45] -0.02 0.96

https://doi.org/10.1371/journal.pone.0190792.t002
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Fig 1. Estimated exposure-response curve when fitting the Cox model D4 based on natural cubic splines when

data are generated according to the Cox model D2 with a risk coefficient of β = 2. (a) M0, i.e., no measurement

error (b) M1, i.e., unshared and homoscedastic Berkson error, (c) M9, i.e., unshared error of Berkson and classical

type (d) M10, i.e., heteroscedastic error with a shared classical component describing the imprecision of the

measurement device and (e) M11, i.e., heteroscedastic error with a shared Berkson component describing individual

worker practices.

https://doi.org/10.1371/journal.pone.0190792.g001
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under 100 WLM in this scenario is estimated to be more than twice as large as for exposure

values over 100 WLM. Moreover, according to the DIC, the EHR model fitted the data better

than the Cox model in 34% of cases when exposure data were generated following this

unshared and heteroscedastic measurement model, even though the true disease model was

the Cox model. For data generated according to the measurement models which incorporated

shared sources of uncertainty (M10 and M11) the attenuation of the exposure-response curve

at high exposure values was even more noteworthy. The slope estimates for low exposures in

these scenarios were about six to eight times larger than the slope estimates for high exposures.

Under these scenarios, DIC values indicated for all replicates that the EHR model fit the data

better than the Cox model, although data were generated according to the Cox model. In the

three scenarios using heteroscedastic measurement models (M9;M10 and M11), risk coeffi-

cients estimated in the piecewise-linear disease model D6 were overestimated for low expo-

sures and underestimated for high exposure values when data was generated according to the

Cox model. Overall, we only observed a substantial attenuation of the exposure-response

curve in the Cox model when the first exposure period was characterised by a mixture of

unshared and shared measurement error, which was either shared within workers or both

within and between workers.

Fig 2 suggests that the different patterns of shared or unshared measurement error did not

produce any notable attenuation in exposure-response curves when mortality data were gener-

ated according to the EHR model. The risk estimates in the piecewise linear EHR model in

Table 3 reveal that the risk for exposures under 100 WLM is estimated to be more than twice

as large as the risk estimated for exposures exceeding 100 WLM when exposure data is con-

taminated with components of Berkson error which are shared for several years of the same

worker (M10). This measurement model is the only model for which the risk estimate for low

exposures is estimated to be higher than the risk coefficient that was chosen to generate the

data. For shared error components reflecting the imprecision of the measurement device

(M11), we also observe a higher risk estimate for exposures under 100 WLM than for

Table 3. Comparison of risk estimates when data are generated according to different disease and measurement models. DICEHR<DICCox gives the percentage of

realisations for which the Deviance Information Criterion (DIC) was smaller for the Excess Hazard Ratio (EHR) model when the true model was the Cox model and vice

versa for DICCox < DICEHR. The difference in DIC is calculated as difference between the EHR model and the Cox model.

Disease model Model M0 Model M1 Model M9 Model M10 Model M11

No error Unshared

Berkson error

Unshared heteroscedastic

Berkson and classical error

Heteroscedastic

shared device

Heteroscedastic

worker practices

Data generated according to the Cox model (D2) with β = 2

Risk estimate b̂ in the linear Cox model (D2) 1.97 [1.78; 2.16] 1.67 [1.50; 1.87] 1.23 [1.00; 1.42] 0.57 [0.21; 1.06] 0.77 [0.59; 0.98]

Risk estimates in the piecewise-linear Cox model (D6)

b̂1 (under 100 WLM) 1.98 [1.57; 2.40] 2.08 [1.65; 2.49] 2.21 [1.78; 2.61] 2.50 [2.06; 2.91] 2.33 [1.93; 2.70]

b̂2 (over 100 WLM) 1.96 [1.68; 2.26] 1.49 [1.22; 1.80] 0.92 [0.64; 1.18] 0.31 [0.06; 0.68] 0.40 [0.20; 0.63]

DICEHR < DICCox 0% 0% 34% 99% 100%

Difference in DIC -216.08 -142.13 -15.17 169.16 107.24

Data generated according to the EHR model (D1) with β = 5

Risk estimate b̂ in the in the linear EHR model (D1) 4.90 [3.24; 7.62] 4.71 [3.08; 7.19] 4.44 [2.93; 6.81] 4.11 [2.26; 7.21] 4.07 [2.49; 6.28]

Risk estimates in the piecewise-linear EHR model (D5)

b̂1 (under 100 WLM) 4.95 [2.83; 8.33] 4.81 [2.91; 7.67] 4.75 [2.79; 7.59] 5.58 [3.38; 9.16] 4.73 [2.77; 7.64]

b̂2 (over 100 WLM) 5.14 [2.06; 9.17] 4.72 [2.05; 9.21] 4.16 [1.48; 7.71] 2.18 [0.27; 6.43] 3.09 [0.69; 6.40]

DICCox < DICEHR 0% 0% 0% 0% 0%

Difference in DIC 93.76 87.98 85.62 132.64 83.10

https://doi.org/10.1371/journal.pone.0190792.t003
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Fig 2. Estimated exposure-response curve when fitting the Excess Hazard Ratio (EHR) model D3 based on natural

cubic splines when data are generated according to the EHR model D1 with a risk coefficient of β = 5. (a) M0, i.e.,

no measurement error (b) M1, i.e., unshared and homoscedastic Berkson error, (c) M9, i.e., unshared error of

Berkson and classical type (d) M10, i.e., heteroscedastic error with a shared classical component describing the

imprecision of the measurement device and (e) M11, i.e., heteroscedastic error with a shared Berkson component

describing individual worker practices.

https://doi.org/10.1371/journal.pone.0190792.g002
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exposures exceeding 100 WLM in the piecewise linear EHR model. However, in both cases,

the credible intervals for the parameters in the piecewise linear model are very large and over-

lap. In contrast to the Cox model, DIC values always indicated the EHR to be the better fitting

disease model when failure times were generated according to the EHR model, regardless of

the measurement model.

Discussion

In the present simulation study, we compared the effects of shared and unshared uncertainty

in cumulative exposure in an occupational cohort study on risk estimation and on the shape of

the exposure-response relationship in proportional hazards models. In general, exposure

uncertainty shared within individuals (i.e., shared for several years of exposure for an individ-

ual) caused more bias in risk estimates and smaller coverage rates than unshared exposure

uncertainty. In contrast to claims that uncertainty shared between individuals should have

fundamentally different effects on parameter estimation than unshared exposure uncertainty

[15, 16], we found that both error components resulted in comparable relative bias and cover-

age rates in risk estimation in proportional hazard models. In line with previous findings on

the impact of measurement error, we found that classical measurement error had more impact

on inference than Berkson error [2], regardless of the extent and type of sharing. While we

chose a Bayesian approach to conduct statistical inference on risk estimates, frequentist likeli-

hood-based inference yields the same results when it comes to the bias introduced by different

components of measurement error (results not shown) as we assumed flat prior distributions.

In line with this argument, concerning the relative bias in risk estimates in the presence of

large and moderate unshared Berkson error, we observed values that were consistent with the

results of Bender et al. (2005) and Küchenhoff et al. (2007), who studied the effect of unshared

additive and multiplicative Berkson error on frequentist inference conducted for the Cox

model. When studying the association between a disease outcome and cumulative exposure,

we found that measurement error shared within individuals had more impact on risk estima-

tion than measurement error shared between individuals. This finding is in accordance with

the general principle that the impact of measurement error strongly depends on the variance

of exposure and the variance of measurement error [2, 31]. In order to obtain cumulative

exposure values in an occupational cohort study, the annual exposure values for a worker have

to be summed and an error term shared within workers will be repeated for several exposure

values in that sum. As the variance of the sum of positively correlated variables is greater than

the sum of their variances, this summing will increase the measurement error variance in

cumulative exposure. Uncertainty components shared between workers are unlikely to have a

similar effect, because exposure values are summed within workers and not between workers.

While it is therefore not surprising that error components shared within workers have more

impact on statistical inference than components shared between workers when the main risk

factor of interest is cumulative exposure, this result has important implications for the analysis

of occupational cohort studies. In particular, this finding casts doubt on the common practice

to model measurement error occurring in the exposure history of a worker on the sum of

these values [4, 5, 32], instead of modelling on their natural level of occurrence, namely on the

monthly or annual exposure values. In making this simplifying assumption, one may mistak-

enly model an error component that is shared for several years of a worker as an unshared

error component. Our results suggest that may yield highly misleading results. We found that

the impact of error components that were shared both within and between workers was com-

parable to the impact of error components that were shared between workers. However, it is

likely that an error component that is shared for all members of a cohort could have even
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larger effects on statistical inference than an error component that is only shared for a sub-

group of workers. Moreover, it is important to note that our findings are sensitive to the num-

ber of exposure values that are summed for a worker. In this study, we calculated cumulative

exposure for a worker by summing his annual exposure values. In an occupational cohort

study in which monthly exposure values are available for each worker, an error component

that is shared within workers is likely to have even more impact on inference than in our

study.

In accordance with the results obtained by Steenland et al. [5], we only observed a mild

attenuation of the exposure-response curve in the Cox model when assuming a structure of

unshared error in which the magnitude of error and the magnitude of exposure was greatest

for the earliest years of exposure, which are often characterised by retrospective exposure

reconstruction. However, in an occupational cohort, it seems more plausible to assume shared

error components due to the imprecision of the measurement device and individual worker

practices when exposure values are retrospectively reconstructed. Under these assumptions,

we found a considerable attenuation in the exposure-response relationship for high exposure

values when data were generated according to the Cox model. Attenuations of the exposure-

response curve at high exposure values may pose serious challenges in risk modelling in occu-

pational cohort studies. Indeed, if this attenuation reflects the association between true expo-

sure and the outcome and a linear model is chosen, it may cause a severe underestimation of

risk for workers with low exposures. On the other hand, if the association between true expo-

sure and the outcome is linear and the observed distortion of the exposure-response relation-

ship is caused by measurement error, fitting a non-linear or a piecewise-linear model can lead

to an overestimation of the risk coefficient for workers with low exposures. To support radia-

tion protection, researchers are particularly interested in the low exposure range, because

exposure levels of workers are currently much lower than in the past. Moreover, these expo-

sure values are comparable to exposures received by the general population. Ignoring the

cause of an observed distortion of the exposure-response curve may therefore seriously limit

the extrapolability of risk estimates obtained in occupational studies to the general population.

In accordance with previous findings concerning the relative importance of measurement

error in linear and log-linear models [32], we found that distortions in the exposure-response

relationship were more severe when data were generated according to the Cox model, rather

than according to the EHR model. Moreover, when failure times were generated according to

the Cox model and observed exposure values were contaminated with shared and unshared

error, DIC values identified the EHR model as the model that best fitted the data. On the one

hand, the robustness to measurement error makes the EHR model, which is often considered

the best model to describe the effects of ionising radiation on mortality, attractive for risk

modelling in epidemiological studies. On the other hand, this finding casts doubt on the possi-

bility to identify a “true model” to describe the exposure-risk relationship when risk estimates

are not corrected for all sources of exposure uncertainty.

Concerning the impact of measurement error in radon exposure in the French cohort of

uranium miners, our findings strengthen the hypothesis that the observed attenuation of the

exposure response relationship might be caused by components of shared measurement error,

as these components are likely to have occurred in the first exposure period of the cohort.

Moreover, they call into question the results of previous studies accounting for exposure

uncertainty, as these studies relied on the hypothesis that all exposure uncertainty occurring in

this cohort could be described by unshared measurement error [26–28].

More generally, the results of the present study underline the importance of making a care-

ful characterisation of shared and unshared exposure uncertainty in observational studies if

the aim is to account for its potential impacts on statistical inference. In particular, one should
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be aware of the distortions of the exposure response relationship that may be induced by

different degrees of precision and varying amounts of sharing. To obtain corrected risk esti-

mates, it is important to use statistical methods that allow for complex patterns of shared and

unshared measurement error. As measurement error shared within individuals appears to

have more impact on risk estimation than unshared error components or error components

shared between individuals, it is important to correctly specify these error components as such

and to account for the fact that the type of exposure uncertainty may vary over time. As far as

we know, there is currently no possibility to use classical methods, such as regression calibra-

tion or simulation extrapolation to handle these complex patterns of measurement error.

Recently, a number of methods have been proposed to account for shared error components

through the integration of multiple realizations of exposure estimates in risk estimation [13–

15]. In our view, the Bayesian hierarchical approach is another promising framework in this

context [26, 33]. It is arguably the most flexible approach to account for exposure uncertainty

and corrected parameter estimates can be obtained by Markov Chain Monte Carlo sampling.

Additionally, the integration of prior knowledge on unknown parameters available from previ-

ous studies or in the form of expert knowledge can lead to more precise risk estimates and

help to avoid overfitting, thereby increasing the replicability of findings.

The results of the present study may not only provide new insights in the interpretation

and the discussion of analyses conducted on current occupational cohorts, but also for the

design of future epidemiological studies. Methods of individual exposure assessment are

becoming more accessible than ever with technical advances that facilitate the collection of

exposure data. It is often argued that exposure uncertainty in group-level exposure estimation

will not bias risk estimates, by combining the two simplifying assumptions that a group-level

exposure estimation leads to Berkson error and that Berkson error does not bias risk estimates

[5, 6, 34]. The results of the present study suggest that both of these simplifying assumptions

do not hold in general and that shared components of Berkson error can even lead to a sub-

stantial distortion of the exposure-response relationship in the Cox model. In our view, a

method of individual exposure assessment should be preferred over a method of group-level

exposure estimation to avoid uncertainty components shared within workers and between

workers, which may arise in a method of group-level exposure estimation because of the

imprecision of the measurement device and individual worker practices.
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Berkson error, (c) M9, i.e., unshared error of Berkson and classical type (d) M10, i.e., hetero-
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