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ABSTRACT: We present NEURALIL, a model for the potential energy
of an ionic liquid that accurately reproduces first-principles results with
orders-of-magnitude savings in computational cost. Built on the basis
of a multilayer perceptron and spherical Bessel descriptors of the
atomic environments, NEURALIL is implemented in such a way as to be
fully automatically differentiable. It can thus be trained on ab initio
forces instead of just energies, to make the most out of the available
data, and can efficiently predict arbitrary derivatives of the potential
energy. Using ethylammonium nitrate as the test system, we obtain
out-of-sample accuracies better than 2 meV atom−1 (<0.05 kcal mol−1)
in the energies and 70 meV Å−1 in the forces. We show that encoding
the element-specific density in the spherical Bessel descriptors is key to
achieving this. Harnessing the information provided by the forces drastically reduces the amount of atomic configurations required
to train a neural network force field based on atom-centered descriptors. We choose the Swish-1 activation function and discuss the
role of this choice in keeping the neural network differentiable. Furthermore, the possibility of training on small data sets allows for
an ensemble-learning approach to the detection of extrapolation. Finally, we find that a separate treatment of long-range interactions
is not required to achieve a high-quality representation of the potential energy surface of these dense ionic systems.

■ INTRODUCTION

Room-temperature ionic liquids1 (ILs) are ionized substances
that exist in the liquid state at temperatures below 100 °C.
Two broad classes can be defined: protic ILs, which are formed
by a proton transfer from an acid to a base, and aprotic ILs
based on an organic molecular cation and an anion that can
range from a single atom to another complex structure. ILs are
very interesting from a fundamental point of view because of
the many peculiar features of their dynamics, arising from the
competition of electrostatic, steric, and dispersion interactions
among ions, but their prominence in the scientific literature is
undoubtedly mostly due to their potential for applications in
industry.2 ILs as a class have some desirable properties in this
regard, the best known one being the negligible vapor pressure
of aprotic ILs, which makes it possible to use them as “green
solvents”3 free from leaks to the environment. However, their
greatest promise lies in their diversity: a million binary and a
quintillion ternary ILs are theoretically possible through the
choice of anions and cations, compared to the ∼600 organic
solvents in current use.4 Amid that vast landscape, compounds
have been found that fulfill specific requirements such as
stability (e.g., against thermal decomposition5 or in mixtures
with water6), biocompatibility,7 or wide electrochemical
windows.8 It is therefore plausible that tailored ILs could be
found for many applications, leading to the inclusion of ILs
under the label of “designer solvents” as well.

Unfortunately, that aprioristic enthusiasm has to coexist with
the fact that brute-force exploration of the possible ILs is
inconceivable. In this context, computer modeling and
simulation are invaluable complements to experiment,
providing insight into the connections between structure and
functionality at the atomic level and suggesting new substances
to explore. However, to properly reproduce the structural and
dynamical correlations in a liquid, a significant quantity of
substance must be included in a simulation, and the atomic
trajectories must be traced for times of the order of
nanoseconds or longer. Consequently, ab initio molecular
dynamics (MD) studies are usually limited to those
phenomena that can be understood in terms of the fine details
of the behavior of a few ionic pairs.9,10

Classical MD simulations are a better fit for the scales of
time and quantity of substance required and have been used
extensively to study pure ILs and their mixtures.11−14

However, abandoning ab initio methods incurs a high cost in
terms of accuracy and transferability. The centerpiece of an
MD simulation of an IL is a molecular-mechanics force field
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(FF), of which OPLS-AA is a very representative example.15,16

While OPLS-AA contains a large number of parameters, they
are easily interpretable and can be systematically fitted to
modest amounts of ab initio data, eliminating the need for a
prohibitively costly global fit. However, the predictions of
molecular-mechanics FFs have a qualitative rather than
quantitative value. An improvement over plain molecular-
mechanics FFs comes from polarizable FFs,17 which try to add
some flexibility by allowing an induced dipole moment to
appear at each atom in reaction to the local electric field. The
effect of polarizability has been compared to that of a solvent,17

making the predicted structure and dynamics less similar to
those of an ionic solid. As an example, the predicted structural
properties of 1-ethyl-3-methylimidazolium bis(trifluoromethyl-
sulfonyl)-imide doped with a lithium salt barely change when
switching to a polarizable FF, but the diffusion coefficients can
change by up to an order of magnitude.18 The pinnacle of
molecular mechanics can be considered to be ReaxFF,19 a
reactive FF with a variable topology, a difficult parametrization
process, and terms inspired by quantum chemistry. Still, even
ReaxFF has run up against the limitations of “physically
inspired” building blocks and has been forced to branch into
specialized parametrizations.
Recently, a completely different approach to the under-

standing and development of FFs has emerged in the context
of machine learning (ML) in computational chemistry. The
parametrization of an FF is regarded as a regression problem,
where a set of continuous inputs (Cartesian coordinates) must
be mapped to a set of continuous outputs (energies and forces)
in an optimal manner. The focus is hence shifted toward a
sufficiently general functional form that can be efficiently
trained on the available data. While alternatives exist, such as
Gaussian process regression20 and the more recent Euclidean
neural networks (NNs),21 one of the most fertile approaches to
constructing MLFFs is based on fully connected NNs
following a general template where the total energy is
constructed as a sum of atomic energies.22−24 To preserve
the fundamental symmetries of mechanics, the atomic energies
depend on the local chemical environment through explicitly
scalar atom-centered descriptors, rather than directly on the
Cartesian coordinates.
In this paper we present NEURALIL, an NNFF for ILs based

on atom-centered descriptors. We train it on and apply it to
the IL ethylammonium nitrate (EAN) and show that the
results offer quality comparable to first-principles calculations
at a small fraction of the cost. The NNFF uses the second-
generation spherical Bessel descriptors introduced by Kocer et
al.25 Compared to the more widely used atom-centered
symmetry functions26 and the smooth overlap of atomic
positions27 descriptors, the spherical Bessel descriptors have
been shown to minimize the amount of redundant information
in the expansion.25 We generalize the spherical Bessel
descriptors so that they do not rely on arbitrary weights for
the different elements and show that this generalization is
essential to precisely model the ab initio data. Furthermore, to
fully capture the chemical nature of the atoms, the descriptors
are augmented with an embedding vector.
NEURALIL puts a special emphasis on the forces. Through

careful implementation choices, we show how the full data
pipeline, from the Cartesian coordinates to the model, can be
made automatically differentiable.28 Thereby our model can
predict forces efficiently and can also be trained on them,
making optimal use of the data obtained from the ab initio

calculations. Compared to using only the total energy, where
just one data point is obtained per atomic structure, 3natoms
force components are routinely provided by ab initio
calculations.
Automatic differentiation is a key piece of the modern ML

landscape.28 As far as interatomic potentials are concerned,
automatic differentiation often plays a role in equivariant
convolutional NN models21,29,30 but has yet to be widely
introduced for descriptor-based NNFFs.31 Automatic differ-
entiation makes workarounds such as local Taylor approx-
imations32 or atomic decompositions33 of density functional
theory (DFT) energies unnecessary. A “hands-off” training of
NNFFs is typically based on data sets ranging from hundreds
of thousands to millions of atomic configurations.34,35 The
present design and the possibility to train on forces do away
with the idea that these large databases are required for
descriptor-based NNFFs. At the same time, descriptor-based
NNFFs still guarantee that a potential energy consistent with
the forces exists (i.e., that forces are conservative), which
cannot be taken for granted if the forces are regarded as an
arbitrary vector field during training.
The next section contains the details of the descriptors, the

NN, the implementation, and the training procedure. Then we
analyze the results for EAN, discuss their implications for the
model in general, and provide some comparisons with other
ways to encode the chemical information. We furthermore
show that a sufficiently flexible and accurate short-range
potential provides a perfectly satisfactory description of this IL
and that a molecular-mechanics-inspired treatment of
Coulomb interactions in terms of static atomic charges in
fact degrades the results. We also devise and demonstrate an
inexpensive method to assess the transferability of the trained
model to a new point in configuration space by using an
ensemble of NNs. Finally, we summarize our main
conclusions.

■ METHODS
Ab Initio Calculations. The database of EAN config-

urations created for this work is provided as part of the
Supporting Information. The main use case of FFs for ILs is to
obtain improved results for MD simulations under conditions
close to room temperature. Therefore, our data set is built on
the basis of configurations sampled from a classical MD
trajectory, which are then treated using DFT.
To run the classical MD simulations, we use GROMACS

36 with
the OPLS-AA FF.15,16 The details of our parametrization of
EAN are given in ref 37. Our starting point is a cubic box with
a side length of 1.29 nm, filled with 15 ionic pairs in order to
achieve a density similar to that of the pure IL. The initial
positions are generated with PACKMOL

38 to avoid placing any
pair of particles too close together. We then perform a
conjugate-gradients minimization of the original coordinates,
followed by a 10 ns stabilization run to bring the system to a
reference temperature of 298.15 K using a velocity-rescaling
thermostat with a time constant of 0.1 ns. Finally, we run a
“production” simulation of 5 ns starting from the stabilized box
and store the resulting trajectory. All integrations are
performed using a velocity Verlet algorithm with a time step
of 1 fs. A cutoff radius of 0.6 nm is adopted for the long-range
interactions. The van der Waals term is truncated at that
distance, while Coulomb interactions are evaluated using a fast
smooth particle-mesh Ewald method,39 with that same radius
acting as an upper bound for the real-space term. Dispersion
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corrections are applied to the energy to account for the
truncated van der Waals interaction in a mean-field
approximation.
The 5 ns trajectory is subsampled to extract 741

configurations. Each of those is used as an input to the
GPAW DFT package40,41 in the linear-combination-of-atomic-
orbitals (LCAO) mode,42 with a double-ζ plus polarization
basis set, the local density approximation (LDA) to exchange
and correlation (XC), a grid spacing of 0.2 Å, and Γ-only
sampling of the Brillouin zone. Since the DFT calculations are
intended to generate a ground truth for the model, alternative
XC parametrizations and semiempirical treatments of dis-
persive interactions are not explored. To improve the sampling
in areas close to the local minima of the ab initio potential
energy landscape, for 373 of those configurations we then run
the quasi-Newton minimizer implemented in ASE43 for five
steps using the same DFT parameters. Using a fixed number of
minimization steps helps avoid a situation where all initial
configurations collapse around stationary points. The 373 final
structures after each minimization along with the 368
remaining unminimized samples, each with their DFT energies
and forces, make up the training data set.
Atom-Centered Descriptors. The first step in construct-

ing the NNFF is to transform the 3natoms Cartesian coordinates
of the system into a set of atom-centered descriptors. Those
describe the atomic environments without encoding an
absolute origin of coordinates or an absolute orientation of
the axes and are thus explicitly translation- and rotation-
invariant. Specifically, the quantity to be encoded is the local
density of each chemical element J around each atom i in the
system within a sphere of a predefined cutoff radius, which in
the present study is set to an rc value of 3.5 Å.

∑ρ δ= −
∈

≠

<

r r R( ) ( )iJ
j J

j i

ij

Rij rc

(1)

The cutoff radius was chosen after convergence tests for values
up to 6.0 Å, which showed small improvements in accuracy
with a significant impact on performance. Our descriptors are
directly based on the density defined in eq 1 for each chemical
element J. In contrast, most earlier work (with some exceptions
like ref 35) employs descriptors that encode one or more
weighted densities of the form

∑ρ ρ= wr r( ) ( )i
J

J iJ
(2)

with predefined weights like atomic numbers or atomic masses.
As explained below, under our approach the number of
descriptors per atom increases quadratically with the number
of chemical species in the system, while premixed densities
make those two numbers independent. The extensive
comparisons between both possibilities reported in this article
show that premixing leads to a significant loss of information in
the descriptors and degrades the accuracy of the model.
Following the recipe for the spherical Bessel descriptors

proposed by Kocer et al.,25 each density is projected on an
orthonormal set of basis functions

= ̂−B g r Yr r( ) ( ) ( )nlm n l l l
m

, (3)

with 0 ≤ n ≤ nmax, 0 ≤ l ≤ n, and −l ≤ m ≤ l. The parameter
nmax controls the number of basis functions [nB = (nmax + 1) ×

(nmax + 2)/2] and can be adjusted according to the desired
granularity of the encoding of the local environment around
each atom. Yl

m(r)̂ is a spherical harmonic, while the radial parts,
gnl(r), are built starting from the functions
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and executing a Gram-Schmidt orthogonalization procedure
for each value of l. In eq 4, jl stands for the l-th spherical Bessel
function of the first kind, and ul,n is the (n + 1)-th positive
value at which jl(u) = 0. Finally, rotational symmetry is
enforced by contracting the angular parts of the projections
ciJnlm of ρiJ on all basis set elements Bnlm(r).
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where γijk is the angle defined by atoms i, j, and j′ (with i at the
vertex), and Pl is the l-th Legendre polynomial. We use piJJ′nl as
our descriptors. Therefore, no complex arithmetic is required
at any point of the calculation despite the fact that the basis
functions are, in general, complex.
The orthogonality of the spherical harmonics and the

explicit orthogonalization of the radial parts mean that any pair
of basis functions are orthonormal. This minimizes the amount
of redundant information in the expansion and makes this
choice of descriptors very compact and systematic. Further-
more, not only do the gn,l(r) go to zero at r = rc but so do their
first and second derivatives. All things considered, this scheme
creates a symmetry-compatible density estimate or very
smooth binning of the atomic positions around each atom.
This can be readily appreciated in Figure 1, which depicts
some example basis functions: both the radial and angular parts
can be regarded as creating a grid in their respective domains,
with their indices determining the number of divisions of that
grid.
The generalized power spectrum in eq 5 has

= +n n n n( 1)/2p B el el (6)

components for each atom, where nel represents the number of
distinct elements to be considered. We use nmax = 4, and with
four distinct elements (C, H, O and N) in EAN, the Cartesian
coordinates of the 225 atoms in each configuration are
converted into natoms × np = 33 750 descriptors. The choice of
nmax is not directly connected to the number of chemical
elements in the problem even though they are coincidentially
the same in this instance: as mentioned above, nmax controls
the resolution of the description of the environment in terms
of both the radial and angular coordinates. Longer cutoff radii
could require higher values of nmax to offer the same absolute
spatial granularity. Since the number of descriptors increases
quadratically with nmax, a relatively low value leads to a
significantly faster force field.
The part of NEURALIL mapping sets of Cartesian coordinates

to sets of descriptors is implemented on JAX,44 a library of
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composable function transformations with two key features.
First, it uses a just-in-time compiler to translate Python code
into instructions for accelerated linear algebra (XLA), a highly
optimized framework that improves the performance of the
code by several orders of magnitude. Through the use of that
compiler, JAX aims for a different performance trade-off than
the PyTorch autograd implementation used in TORCHANI,31

which insteads focuses on optimizing dispatch times from the
Python interface. Second, JAX implements both forward- and
reverse-mode automatic (also known as algorithmic) differ-
entiation. Therefore, it is possible to obtain the explicit
representations of the Jacobian or Hessian of the descriptors
with respect to the Cartesian coordinates but also, more
importantly, a vector-Jacobian product operator, VJP in Figure
2, with a cost comparable to that of the descriptor calculation
itself, a critical ingredient for the efficient calculation of the
forces.
Embedding. The descriptors do not directly capture the

chemical nature of the atom they are centered at. After the
training, the model can infer that piece of information
indirectly because the environment of each chemical species
in the IL is very characteristic and through the descriptors
centered at the surrounding atoms. Still, to make our FF as
general as possible with a view to its application to, for

instance, alloys whose constituents are chemically similar, we
also supplement the descriptors to explicitly include that piece
of data. We employ the general concept of embedding, that is,
generating a low-dimensional, learned continuous representa-
tion of discrete data. This family of approaches is widely used
in language processing45 and time-series analysis.46 We
implement it by concatenating the descriptors with the outputs
of a layer taking the element index as the input and returning
an array of a predefined size nemb. The elements of the vector
depend only on the chemical identity of the atom and are fitted
as part of the training process. Therefore, during inference the
embedding layer simply supplements the descriptors with an
array of predefined length from a fixed lookup table indexed by
the atomic species. Increasing the dimension of the embedding
nemb does not add any more information to the input of the
neural network, since the embedding array is completely
determined by the chemical species at the center of each
environment; however, it can impact how efficiently the model
can incorporate that information. Moreover, the increase in
computational cost associated with a larger nemb is negligible.
In the case of EAN, we settle on nemb = 2 because longer
embedding arrays do not lead to any significant improvements
in accuracy, and the input thus consists in an natoms × (np +
nemb) = 225 × 152 tensor.
Embedding has been used as part of NNFFs for solid-state

calculations before,34 albeit in a different manner, namely, by
employing the embedding coefficients as weights to mix the
densities of eq 1 in proportions that depend on the chemical
nature of the central atom. In other words, the approach of ref
34 amounts to allowing the weights in eq 2 to be systematically
optimized and depend on the element at the center of the
environment. This possibility will be discussed in more detail
in the section on results.

Neural Network Architecture. In its most basic
incarnation, an NN regression model consists in the nested
application of a nonlinear activation function to a linear
combination of the results of a previous activation plus a
constant. This is most easily visualized in terms of a directed
acyclic graph depicting the flow of data from the input to
the outputs. Each yellow box in Figure 2 represents a
neuron that receives all the outputs of all N neurons from
the previous layer as inputs, {Ii}i = 1

N , and generates an output
= + ∑ =O f b a I( )i

N
i i1 . Here, f is the activation function, each ai

is a weight, and b is the bias. Each neuron has its own weights
and bias, and the collection of all of those make up the
parameters of the model, which are chosen so as to minimize a
loss function. Besides those coefficients, the flexibility of NNs
lies in the choice of the activation functions, the loss, and the
number and width of the layers.
A useful FF must be applicable to systems with different

numbers of atoms, and to be physically sound it must also be
invariant with respect to any permutation of the labels of
identical atoms. We use the well-known ansatz shown in eq 7.

∑{ } = Ωα β
=

E p e p e( , ) ( , )
i

n

i ipot
1

atoms

(7)

That is, we consider that the energy can be decomposed into
additive atomic contributions. In eq 7, Ω stands for the
function implemented by the network (the contribution of
atom i to the energy), pi is the collection of spherical Bessel
descriptors pertaining to the environment around atom i, and
ei is the array of embedding coefficients for the same atom.

Figure 1. Examples of basis functions for the spherical Bessel
descriptors. (top) Radial components of all basis functions for nmax =
5. (bottom) Angular components of two basis functions represented
in the half-plane ϕ = 0.
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Therefore, {pi, ei} is the full set of information about atom i
and its environment, as described in the previous sections. In
contrast, α is a shorthand index that subsumes all indices (i, J,
J′, n, l) from eq 5 and therefore runs over all descriptors for all
atoms in the system. Likewise, β runs over all embedding
coefficients for all atoms.
Although it was introduced heuristically, this formulation

has met with great success.22 Besides the predictive skill shown
by NNs built following this template, they are easy to integrate
into high-performance MD packages, whose parallelization
schemes expect global reduction operations to operate on
contributions to the energy and other predefined quantities
from each simulation domain.
The complete NEURALIL model is represented schematically

in Figure 2, including the calculation of the spherical Bessel
descriptors and the lookup of the embedding vectors. Our
implementation is based on FLAX,47 a high-performance ML
framework built on top of JAX that enables the model to be
run on central processing units (CPUs), graphics processing
units (GPUs), and tensor processing units (TPUs) and benefit
from quick and efficient automatic differentiation. The details
of our final architecture are as follows. There are five hidden
nonlinear layers, of widths 64:32:16:16:16. This sort of
“pyramidal” architecture, with the initial layers significantly
wider than subsequent ones, is found in other NN potential
energy models for both molecular systems35 and crystals.34 We
chose the 64:32:16:16:16 scheme after comparing other
options found in the literature, like a shallow NN with two
narrow layers of the same width48 and an architecture with
extremely wide layers of 1000 and 500 neurons.34 “Local”
modifications, such as expanding the sequence of widths to
128:64:32:16:16:16, do not significantly improve the results

for our particular data set. After the final nonlinear layer, but
before the sum over atoms, we introduce a linear layer with a
single output, to account for the characteristic range and a
possible offset of the potential energy.
For the nonlinear hidden layers in our networks we choose

the Swish-1 activation function, that is, the β = 1 member of
the Swish family.

=
+β β−s x

x
e

( )
1 x (8)

These functions are themselves the result of an automated ML-
based search.49 Like other modern activation functions (e.g.,
the very popular rectified linear unit (ReLU)), Swish-1 avoids
the “vanishing gradient problem”50 of earlier choices like the
hyperbolic tangent, whereby the gradient of the loss function
with respect to the weights and biases becomes vanishingly
small due to the saturation of the activation functions, greatly
slowing the training. However, in contrast to many of those
other functions, Swish-1 is smooth, making it ideal for our
differentiable model.
To make the training of even moderately deep and wide

architectures possible and efficient, we find it essential to apply
a normalization scheme between each pair of intermediate
hidden layers. As indicated in Figure 2, we choose
LayerNorm,51 which centers and scales the intermediate
quantities of each individual sample using their own mean
and variance. LayerNorm does not require training during the
forward passes and is therefore a very convenient choice for an
automatically differentiable model.

Forces. Since the embedding coefficients do not depend on
the positions, the force on atom i can be computed as

Figure 2. Global schematic representation of the ML model, including the calculation of descriptors, the embedding, and the NN. natoms, np, and
nemb are the number of atoms, the number of descriptors [see eq 6], and the dimension of the embedding, respectively. The diagram at the bottom
illustrates, schematically, how reverse-mode automatic differentiation computes the forces; α is a shorthand index that runs over all descriptors for
all atoms in the system. A cross-hatch fill represents full all-to-all connectivity between adjacent layers.
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In our fully differentiable model, these forces are obtained as a
byproduct of the calculation of Epot as follows. The JAX code
that generates the descriptors uses a reverse-mode automatic
differentiation to simultaneously create the vector-Jacobian52

product operator { } □ = ∑ □ ·∂ ∂α α αr p rVJP( , ) /i i as shown in
Figure 2, which does not depend on the NN coefficients. In
our FLAX-based implementation, this operator is seamlessly
compiled together with the NN itself, which provides ∂Epot/
∂pα in Figure 2, into a function that evaluates the forces in a
cost- and memory-effective manner. In particular, the very
large Jacobian matrix of the descriptors with respect to the
atomic coordinates is never required. The total cost of the
calculation is only a small and roughly constant factor higher
than that of obtaining Epot alone.
In practical terms, this means that the ML model can be

trained on energies, forces, or both and used to predict
energies, forces, or higher-order derivatives of the energy,
based on a single set of weights and biases. Since each DFT
calculation yields a single energy and 3natoms components of the
forces, we find it most convenient to use only the latter. The
only drawback is that the trained model is unaware of the
origin of energies chosen in DFT, which is easily remedied by
fitting a single constant offset under the condition that the
average DFT and ML energies over the training set coincide.
Training. The configurations are randomly split into a

training set (90% of the total) and a validation set (the
remaining 10%). Our loss function is defined as
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where ⟨·⟩ denotes an average over configurations in the current
training batch. As stated above, the loss does not take into
account the value of the predicted energy. This log-cosh loss53

can be considered a smooth approximation to the mean
absolute error (MAE) in the forces. On the one hand, if the
prediction error f i,predicted

(C) − f i,reference
(C) is significantly larger in

absolute value than the characteristic scale parameter of 0.1 eV
Å−1, its contribution to the loss is proportional to |f i,predicted

(C) −
f i,reference
(C) |. On the other hand, for smaller values of the
argument, log[cosh(Δ)] → Δ2/2, so the log-cosh can also be
regarded as a robust version of the mean square error (MSE)
with a built-in gradient clipping: compared to the MSE, this
loss avoids an overwhelming influence on the training from
possible outliers. We found that the result of training is
relatively insensitive to changes in the scale parameter that we
take as 0.1 eV Å−1. It can, for example, be safely increased to 1
eV Å−1. Taking it below the expected random errors in the
force predictions (e.g., to 0.01 eV Å−1) leads to the same
smoothness problems posed by the MAE, while making it too
large (e.g., 10 eV Å−1) makes the gradient clipping less
effective and gives outliers an excessive weight in the calculated
gradients. In a different application where this scale could not

be guessed based on experience, a standard cross-validation
approach could be used instead.
A naive implementation of eq 10 runs into overflow issues

because of the exponentially increasing behavior of the
hyperbolic cosine. Therefore, each contribution to the loss is
actually calculated using the equivalent but more stable
expression

α
α

α
α

[ ]
=

−
−

x x
x

log cosh( ) SoftPlus(2 ) log 2
(11)

based on the JAX implementation of SoftPlusx = log(1 + ex).
The weights of the network are initialized at random,

according to a Gaussian distribution with zero mean and a
standard deviation of 1/ number of inputs , and the biases are
initialized to zero. We minimize the loss using the adaptive
moment estimation (ADAM) algorithm54 with a batch size of
eight. During the first 45% of the iterations in one epoch, we
increase the learning rate linearly from 10−3 to 10−2. We then
decrease it linearly back to 10−3 in the next 45%. For the last
10% of the iterations we reduce the learning rate to 10−5. Like
in other applications of NNs, this so-called “one cycle”
schedule55 significantly reduces the number of epochs required
to train the model, down to 500 from the more than 3000
needed with an optimized constant learning rate of 4 × 10−4.

■ RESULTS AND DISCUSSION
Training. Once trained to convergence, NEURALIL achieves

a high accuracy in the prediction of forces, as evidenced by an
MAE of 0.0656 eV Å−1 over a validation set with a mean
absolute deviation of 1.11 eV Å−1. That MAE is comparable to
the differences between forces computed using different DFT
implementations (e.g., LCAO vs real-space56) and can thus be
described as ab initio-like. Figure 3 shows a detailed
comparison of the predicted and reference values of every
component of the force on each atom in each configuration in

Figure 3. Predicted vs reference forces for the NEURALIL model over
the training (blue) and validation (green) sets.
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the training and validation sets. Neither clear outliers nor
particular regions with significantly worse predictions are
detected. Moreover, there are no signs of overfitting during the
training process or on the final result, with the validation
statistics closely tracking those computed on the training set.
As a first point of comparison, the accuracy of OPLS-AA as
measured by its MAE with respect to DFT over the validation
set for the forces is 1.97 eV Å−1, that is, 30 times higher. The
accuracy of NEURALIL for predicting energies is also excellent,
with a validation MAE of 1.86 meV atom−1 (or 0.0429 kcal
mol−1) despite the fact that energies were not included in the
loss function.
The possibility of training on forces is crucial to obtaining

these results with a relatively small number of configurations.
For comparison, we train the same architecture on the energies
of the configurations. We use the same log-cosh loss of eq 10,
but with a characteristic scale parameter of 10−2 eV atom−1,
chosen based on arguments analogous to those presented for
the forces. The learning rate schedule in this case goes from
10−5 to 10−4 and back for the first 90% of each epoch before
dropping to 10−6 for the last 10%. When used to predict forces,
the model so created, which we call ENERGYONLY in Table 1,

affords an MAE of 0.559 eV Å−1, rendering it unsuitable for
any kind of predictive calculation. This shows that capturing
the values of a function does not necessarily equate to correctly
reproducing the derivatives of that function. Interestingly, with
a validation MAE of 1.63 meV atom−1, ENERGYONLY does not
perform significantly better than NEURALIL when it comes to
predicting energies, in keeping with the general observation
that NNs trained using derivatives can achieve accuracy
unmatched by those that do not take them into account.57

Taking the total potential energy as the only piece of
information describing an atomic configuration leads to a
small training data set; moreover, that single piece commingles
the influence of many atomic environments, leading to poor
discriminatory power: indeed, the energies of all configurations
visited by a system along a molecular dynamics trajectory will
be distributed in a relatively narrow band compatible with the
predictions of the canonical ensemble. To tackle this problem
atomic decompositions of the DFT energy33 and local Taylor
expansions of the NN energies32 were devised. Training on
forces, made possible by efficient automatic differentiation,
makes those approximations unnecessary while achieving
better accuracy. Nevertheless, we note that even ENERGYONLY

outperforms OPLS-AA drastically, by a factor of 3.5, in terms
of accuracy for the forces.
In addition to its much poorer accuracy, the ENERGYONLY

model is extremely prone to overfitting. We were unable to
train it below a validation energy MAE of ∼50 meV atom−1

using any fixed learning rate before that MAE started quickly
diverging. Only the “one cycle” learning schedule fixed this
problem.
To assess the effect of the other design features of our

model, we train several alternatives, all of which are listed in
Table 1 and summarized in Table 2. The NOEMBEDDING model
differs from NEURALIL only in the fact that it lacks the
embedding coefficients in the input layer. This means that the
NN is, in principle, agnostic to the chemical nature of the
atoms at the origins of each local density expressed by eq 1.
However, as discussed previously, the model can still infer the
element those atoms belong to from the distances and
elements of the remaining atoms within the sphere. As a
result, the performance NOEMBEDDING is comparable to that of
NEURALIL for both forces and only slightly worse for energies.
Since the computational cost of the embedding is negligible

Table 1. Mean Absolute Errors in the Forces and the
Energies Achieved with Several Kinds of Models over the
Validation Seta

model MAE Epot MAE f

(meV atom−1) (meV Å−1)

NEURALIL 1.86 65.6
NOEMBEDDING 2.26 65.7
χWEIGHTS 11.8 167
ZWEIGHTS 16.9 171
WEIGHTEMBEDDING 7.42 109
ENERGYONLY 1.63 559
SELUACTIVATION 3.10 71.3
ATOMICCHARGES 12.0 91.0
CHARGEEQUILIBRATION 1.93 60.8
OPLS-AA 856 1970
DEEPSETS 2.87 67.2

aSee Table 2 for a short description of each model, or see the main
text for a more extended discussion.

Table 2. Summary of the Differences with Respect to NEURALIL of All Models Discussed in This Article and Listed in Table 1,
for Quick Reference

NeuralIL: The main model proposed in this article, a short-range NN potential trained on forces that combines local spherical Bessel descriptors with an embedding
array determined by the chemical species and uses Swish-1 as its activation function.

NoEmbedding: Like NEURALIL, but without the embedding.
χWeights: Like NOEMBEDDING, but the atomic descriptors associated with the same central atom and the same two chemical species are linearly mixed using
electronegativities as weights.

ZWeights: Like χWEIGHTS, but the weights are atomic numbers instead.
WeightEmbedding: Like χWEIGHTS, but the weights are free parameters to be optimized during training along with the other coefficients of the model.
EnergyOnly: Like NEURALIL, but trained on total energies instead of on forces.
SELUActivation: Like NEURALIL, but using SELU activation functions and with no LayerNorm.
AtomicCharges: A combination of NEURALIL with a Coulomb contribution to the energy and forces computed on the basis of fixed atomic charges extracted from
OPLS-AA.

ChargeEquilibration: Like ATOMICCHARGES, but the atomic charges are flexible and determined using the CENT method: a second NN with the same inputs
(descriptors and embedding array) as NEURALIL computes environment-dependent electronegativities, and the charges are calculated by solving a global
optimization problem under the constraint that the system remains globally neutral.

OPLS-AA: A traditional molecular-mechanics force field that has been applied to ILs, used as a baseline.
DeepSets: Similar to NEURALIL, but atomic energies are not additive. Instead, the inputs for each atom are processed into a 16-element array of intermediate
variables, which are summed over atoms and fed to a second NN that computes the total energy.
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and it is likely to make a bigger difference in more complicated
settings, it is sensible to include it.
The next two models in Table 1 are based on element-

weighted descriptors ω= ∑ ≤ ′ ′ ′p pnl J J nli JJ iJJ for some symmetric

ωJJ′ and do not include any embedding vector. χWEIGHTS uses
ωJJ′ = χJχJ′, where χJ is the electronegativity of element J. The
second of these models, ZWEIGHTS, takes ωJJ′ = ZJZJ′, to study
the effect of weighting density using atomic numbers as
weights. With this change we intend to analyze how a
particular choice of weights affects the discriminatory power of
the model. The comparison between models that allow the NN
to mix the element-specific descriptors (eq 5) freely and the
versions with fixed, predecided weights reveals how critical it is
that the NN can determine and efficiently encode the type of
atoms around each atomic site. Decoupling the descriptors
instead of premixing them improves the validation accuracy of
the forces almost by a factor of 3 and has an even more marked
effect on the predicted energies. Another noteworthy point is
that the choice of weights is not neutral, since χWEIGHTS yields
more accurate energies than ZWEIGHTS. When all possible sets
of weights are considered, some are much better than others,
and there is a vanishing likelihood of finding a particularly
good set by random chance or physical intuition, so the NN
must adapt the remaining coefficients to make up for a
suboptimal choice instead. The best choice remains to keep
the descriptors for different pairs of elements as separate
inputs. The good accuracy of the ANI-1 FF,35 using a similar
approach, provides additional support for this point.
Finally, WEIGHTEMBEDDING imitates the strategy introduced

in ref 34, where the nel(nel + 1)/2 coefficients ωJJ′ form an
embedding vector that is fitted during the training process and
depends on the chemical species at the center of the sphere.
Remarkably, the WEIGHTEMBEDDING approach, which a priori
could be expected to show good performance by introducing
the information about the central atom more directly, yields a
validation MAE roughly twice as high as that of NEURALIL. A
direct cause of this drop in predictive ability may be that, even
with adjustable weights, premixing the densities prevents the
NN from taking direct linear combinations of descriptors
belonging to different element pairs and different values of
(n,l). Another possible factor is the multiplicative effect of
those weights on ω= ∑ ≤ ′ ′ ′p pnl J J nli JJ iJJ , the inputs to the first

layer of the NN. Each change in the ωJJ′ affects the
normalization of the inputs to all successive layers, which
can be an obstacle to training. The key insight from the
WEIGHTEMBEDDING is that even an optimal choice of weights
for premixing descriptors corresponding to different pairs of
elements, and even letting those weights depend on the central
element, is not as effective a strategy as not premixing the
descriptors in the first place.
The Neural-Network Force Field. In contrast with

molecular-mechanics force fields, our NNFF does not contain
separate contributions from bond lengths, angles, and
dihedrals. Its parameters come from a global fit, so to evaluate
the influence of a change in one of those degrees of freedom
the potential energy must be obtained along a particular
trajectory that samples that deformation. The question then
arises of whether this global fit leads to a loss of local detail. To
explore if such a trade-off exists, we perform the following
experiment. We select a random configuration from the
validation set, a random anion, and a random oxygen atom in
it. We then displace the oxygen atom in the direction of the

bond so as to change the N−O distance, without displacing
any other atom. We sample 151 points in the interval from
1.05 to 1.70 Å and, for each of those configurations, we
calculate the forces using OPLS-AA, GPAW (which represents
the ground truth of the NNFF) and NEURALIL. We perform a
similar experiment with a randomly selected C−N bond from
the same configuration. The results are presented in the top
and bottom panels of Figure 4, respectively. The OPLS-AA

curves are dominated by the harmonic contribution from the
stretching of each bond, with other minor bonded or
nonbonded contributions that cause them to deviate from
perfect straight segments. We note that the most obvious point
of disagreement between the DFT and OPLS-AA results, a net
average offset between the corresponding force versus distance
curves, is actually a relatively trivial feature. It merely reflects
the fact that the equilibrium bond lengths are different in each
case and, if needed, could be corrected through a
straightforward reparametrization of the OPLS-AA model.
The most frequent bond lengths found in the training data are
close to the OPLS-AA equilibrium value but with an

Figure 4. Ensemble predictions of the projections of the N−O force
(in the anion, top panel) and C−N force (in the cation, bottom
panel) on the segment joining both atoms, extracted from 18
instances of NEURALIL built based on random samples containing 50%
of the training data each. The gray area spans a single standard
deviation above and below the ensemble average. Also depicted: the
main NEURALIL, the OPLS-AA value of the same force, and the
ground truth of all the NN models, i.e., the forces extracted from a
GPAW DFT calculation. The bottom part of each panel shows a
frequency density plot of the training data for the corresponding
distance. The vertical dotted lines mark the minimum and maximum
values found in the training set.
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asymmetric smearing due to the contributions from the
samples partially relaxed toward DFT minima. Although the
LDA has a known tendency toward overbinding, compared to
OPLS-AA here it seems to underestimate the equilibrium
length of the C−N bond but to overestimate that of the N−O
bond. In contrast, OPLS-AA does not afford any flexibility to
solve its more fundamental discrepancies with the first-
principles calculations, namely, that it fails to reproduce either
the local slope or the significant convexity of the force versus
distance curves. In both respects, it is clearly outperformed by
NEURALIL, which approximates the ab initio data accurately in
a wide interval around the equilibrium bond lengths.
Activation Function. In our preliminary tests of different

architectures we experimented with the scaled exponential
linear unit (SELU) activation function.58
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The SELU was designed specifically for deep feed-forward
models. We set the parameters to α = 1.6732 and λ = 1.0507,
carefully tuned by the original authors58 and shown to lead to
so-called self-normalizing networks (SNNs) that naturally keep
the inputs to the neurons in intermediate layers in the right
range to promote fast training without additional normal-
ization. Indeed, most of the results of this paper can be
reproduced using the SELU instead of Swish-1 and removing
the LayerNorm. However, the SELU has a discontinuity in its
first derivative with some unfortunate consequences. First, the
predicted forces can also have small jump discontinuities.
Second, the discontinuity can be struck during training, leading
to a divergence of the loss function and making the process
crash. Although that problem was never observed with the
64:32:16:16:16 architecture, the probability of triggering it
increases rapidly with the number of neurons and therefore
constrains the complexity of the model.
To illustrate the advantage of the Swish-1 activation function

for an NN used to predict forces, in Figure 5 we plot the same
component of the NEURALIL-predicted force as in the second

panel of Figure 4 together with the corresponding ground truth
from DFT and with the predictions of a modified model where
the activation functions have been replaced with the SELU.
The SELU-based variation on NEURALIL, denoted as
SELUACTIVATION in Table 1, performs only slightly worse
than the main model. However, as Figure 5 shows, the
discontinuity in its derivative introduces unphysical artifacts in
the forces, especially in regions with little or no training data.
The problem becomes more apparent if the depth or the width
of the NN is increased, and it renders this alternative
architecture unsuitable for extracting higher-order derivatives
of the energy, such as the Hessian. The lack of smoothness of
most modern activation functions, including the exponential
linear unit (ELU) used in TORCHANI,31 highlights the
importance of physical considerations in the design of an
ML regression, where the most popular choices for mainstream
applications of special commercial importance like image
recognition might have disqualifying features in the context of
atomistic calculations.

Ensembles. NNFFs can, moreover, provide some
indication of whether their prediction is an interpolation
within an area of configuration space rich in training data and,
therefore, relatively safe, or an extrapolation that cannot be
expected to have quantitative value. In fact, several different
strategies have been proposed in the literature. Here we choose
a subsampling aggregation approach,59 where we train an
ensemble of 18 NNs with the same architecture but each of
whose training sets contain 50% of the total training data,
selected at random. This technique is a variation on “bagging”,
which is better known for its use in the building of random-
forest classification and regression models60 and is made
possible by the abundance of data afforded by NEURALIL’s use
of forces. We then use each of those NNs to evaluate the forces
for each of the atomic configurations described in the
preceding paragraph. Figure 4 shows both the average
prediction of the ensemble (as a black line) and its standard
deviation (as a gray area) for each bond length. For reference,
the bottom part of each panel in the figure also shows the

Figure 5. Comparison of the predicted projections of the C−N force on a C−N bond from NEURALIL and from a model identical in all respects
except in that it uses the SELU instead of Swish-1 as the activation function and that it does not require the use of LayerNorm. The vertical dotted
lines mark the minimum and maximum values found in the training set. (inset) First derivatives of those two activation functions.
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frequency density of bond lengths in the complete training set.
Looking at the standard deviations first, it is apparent that the
ensemble becomes more precise in the regions where training
data are abundant, which are also those where NEURALIL more
accurately reproduces the DFT forces. The bond lengths
contained in the training configurations are tightly concen-
trated around their most frequent values, but this region of
high accuracy and precision extends well into the tails of the
bond-length distributions. Interestingly, the width of the region
does not seem correlated to the characteristic spread of those
distributions, since the prediction for the C−N bond remains
relatively reasonable over the whole interval covered by the
training data, whereas for the N−O bond, whose lengths are
less concentrated, very significant deviations are observed close
to the edges of the corresponding interval. This shows the
importance of the ensemble, whose spread is indeed predictive
of the relative accuracy at each point. For both bonds,
extrapolations beyond the boundaries of the training set are
very imprecise (as measured by the standard deviation of the
ensemble of NNs) and contain clear inaccuracies in most
cases, with the serendipitous exception of the small-distance
region for the C−N bond. In that context, the ensemble
average is also a valuable model in itself: it is not necessarily
more accurate than the main model, but it is more robust with
respect to outliers. In other words, it shifts the bias/variance
balance toward the former in comparison with the full
NEURALIL.
Treatment of the Electrostatic Interactions. OPLS-AA

and other molecular-mechanics FFs contain electrostatic
interactions in their nonbonded portions, characterized by a
fixed set of atomic charges and an r−1 dependence on the
interatomic distance. Likewise, proposals to overcome the
limitations of those force fields are based on more
sophisticated electrostatic contributions to the energy, like
those from induced dipoles. To the extent that such
contributions exist, strictly short-sighted descriptors like the
ones employed by NEURALIL cannot capture them. The short-
range complexities of the interactions among atoms can be
reproduced by the NN with the required flexibility regardless
of their physical origin (electrostatic or otherwise), but long-
range effects not correlated with the local structure cannot.
The design of NEURALIL deliberately omits any provision for

long-range interactions to serve as a case study on how well a
short-sighted FF can work for ILs. Even for simple FFs like
OPLS-AA, the evaluation of the Coulomb component of the
nonbonded part is a significant source of implementation
complexities, especially in massively parallel environments.
Since NEURALIL by itself delivers ab initio-like performance,
adding a long-range part to it would only be justified if that led
to a significant improvement in the description of the dynamics
at the atomistic level (i.e., to much more accurate energies and
forces) or if it drastically reduced the error in a quantity
derived from the trajectory.
Several specific methods to include electrostatic interactions

in MLFFs have been proposed and demonstrated.61−63 To
carefully assess whether it is necessary, or even convenient, to
include such contributions for bulk ILs, the class of system
treated in this article, we analyze the results of two extremely
different approaches.
Our first strategy consists in subtracting the OPLS-AA

electrostatic forces (ref 37) from the DFT forces before
training the NN. In other words, we combine the short-range
interactions as described by the MLFF with the contribution of

a system of static atomic charges fitted to the molecular
electrostatic potential at the atomic centers of the isolated gas-
phase ions obtained by quantum-chemical calculations at the
LMP2/cc-pVTZ(-f)/HF/6-31G(d) level of theory.16 The
resulting model, identical to NEURALIL in every other respect
(architecture, training data, loss, learning rate schedule, etc.), is
denoted as ATOMICCHARGES and also included in Table 1. Its
MAEs for the energies and forces are ∼550% and ∼40% worse
than the respective statistics for NEURALIL.
Those bad results do not preclude the possibility that a more

sophisticated treatment could change the picture. To explore
that hypothesis, we supplement NEURALIL with the charge
equilibration via neural network technique (CENT). The
method (described in refs 61, 63, and 64) consists in
augmenting the NEURALIL total energy with a term describing
the electrostatic long-range interaction
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where rij = |ri − rj|, the σi correspond to widths of the assumed
Gaussian charge density distributions of each atom (taken to

be the covalent radii of the element), and γ σ σ= +ij i j
2 2 . The

charges Qi are determined by a global charge equilibration
scheme,65 minimizing
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Here, the atomic hardnesses Ji are element-specific learnable
parameters, while the electronegativities χi are predicted by a
fully connected NN similar to the one used for the short-range
part, but with a 16:16:16:1 sequence of layer widths. The
overall charge conservation is enforced by introducing a
Lagrange multiplier, and the minimization problem is then
solved with standard linear algebra routines. The short- and
long-range NNs use the same descriptors and embedding
coefficients as inputs, which avoids duplication of work. The
CENT component is also implemented on JAX and is fully
automatically differentiable. The whole model containing both
neural networks is trained simultaneously to achieve the best fit
to the forces. Thus, we remain close to the original CENT
method and deviate from the way it is used in ref 63, where the
NN predicting the electronegativities is trained so as to
reproduce atomic charges from known configurations.
The fully trained model combining NEURALIL and this long-

range component with fully flexible charges is denoted as
CHARGEEQUILIBRATION in Table 1. With respect to NEURALIL
alone, it affords an ∼8% improvement in the validation MAE
of the forces together with an insignificant degradadation in
the validation MAE of the potential energy. Given that the
global equilibration step couples all the atoms in the system
and therefore compromises the scalability of the model, an
argument can be made that the small improvement does not
justify the inclusion of the CENT component for this system.
This impression is reinforced by an analysis of the mean and
standard deviation of the predicted charges of anions and
cations: typical values of those charges are compatible with
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zero and lie orders of magnitude below the ±1 ionic charges
used by OPLS-AA or the reduced ±0.7 or ±0.8 that have been
used in some MD simulations of other univalent ILs.66 The
results show how the net effect of the electrostatic interaction
is effectively accounted for by the short-range NN. While this
at first sight might be a surprising conclusion for an IL, it
agrees with a recent analysis for polarizable liquids67 and can
be rationalized in terms of an efficient screening of electrostatic
interactions in a bulk system.
As mentioned in the Introduction, one of the most well-

known shortcomings of OPLS-AA and similar potentials is the
misprediction of diffusion coefficients. Indeed, OPLS-AA
describes room-temperature EAN as an almost solid ionic
lattice with barely any diffusion, as evidenced by room-
temperature self-diffusion coefficients of Danion = 1.30 × 10−12

m2/s and Dcation = 6.8 × 10−13 m2/s.68 In stark contrast, the
experimentally reported diffusion coefficients are 1−2 orders of
magnitude larger (Danion = 6.9 × 10−11 m2/s and Dcation = 4.6 ×
10−11 m2/s).69 To see if NEURALIL overcomes these issues, we
compute the diffusion coefficients. To further investigate
whether it is necessary to directly include the long-range effects
of polarization, we also compute those with the aforemen-
tioned CHARGEEQUILIBRATION model. To this end, we use the
JAX-MD framework70 to run MD simulations using each of the
two models under study. We equilibrate the EAN simulation
box at T = 298 K starting from the OPLS-AA trajectory and
applying a Nose−́Hoover thermostat with a coupling constant
τNH = 0.1 ps for 100 ps. For NEURALIL we use an integration
time step of 1 fs, while the CHARGEEQUILIBRATION model
requires a much shorter time step of 0.1 fs because of an
increased tendency of the hydrogen atoms to dissociate from
the rest of the cation. We then run the simulation for a further
100 ps and store the resulting trajectory to compute the
temporal velocity autocorrelation function for each ion type
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where vI denotes the velocity of the center of mass of each ion
of the corresponding type, and where the canonical ensemble
average denoted by ⟨·⟩T is approximated by an average over the
trajectory itself. We finally use the Green−Kubo relation

∫=
∞

D t tVACF ( ) danion
0

anion
cation cation (16)

to estimate the diffusion coefficients, and we characterize its
uncertainty by the oscillations of the numerical approximation
to this integral in the last 10 ps. The results are Danion =
8.65(72) × 10−11 m2/s and Dcation = 8.24(73) × 10−11 m2/s
with CHARGEEQUILIBRATION, and Danion = 1.00(11) × 10−10 m2/
s and Dcation = 7.2(13) × 10−11 m2/s with NEURALIL. Both
models represent dramatic improvements over OPLS-AA and
bring the coefficients in line with experimental measurements.
The slight overestimation can be attributed to the lower
density of the simulation box with respect to the actual IL at
room temperature. However, the NEURALIL results have the
advantage of capturing the Danion/Dcation ratio found in
experiment far better, which seems to be distorted by the
long-range contribution. All things considered, the fully flexible
CENT term fails to add any advantageous feature to the
strictly short-term NEURALIL. On the contrary, it hinders

scalability, it requires smaller MD time steps, and it degrades
the estimates of key dynamical quantities.
The conclusion is that an accurate parametrization of the

potential energy of a dense ionic system does not require a
specific treatment of long-range interactions. However, systems
with less dense regions and correspondingly longer Debye
lengths will definitely require such a treatment, and so will
systems with surfaces.67 It is also conceivable that very specific
aspects of the dynamics of a system (e.g., the frequency gap
between longitudinal optical/transverse optical phonon
branches in ionic solids) could hinge on particular features
of the long-range interactions, but even those may be reflected
in the local environment to some extent.
The nonbonded part of OPLS-AA also comprises van der

Waals interactions parametrized as a 12−6 Lennard-Jones pair
potential. As outlined in our description of the classical
simulations, those are truncated at a distance of 6.0 Å.
Therefore, thanks to the higher exponents of the power laws
involved, those terms can still be captured by short-sighted
descriptors.

The Additive Ansatz. The ansatz of additive atomic
energies [eq 7] used by all the models discussed so far offers
several important practical advantages. However, strictly
speaking it can only express a subset of the permutation-
invariant potential energy functions whose general form
following the theory of “deep sets”71 is
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There are two functions involved in the expression on the
right-hand side. The first, Ω, maps the variables associated with
each atom to a latent space where the information about the
order of the inputs is destroyed (and thus permutation
symmetry enforced) by a sum over atoms. The second, μ,
transforms the result of that sum into the potential energy. In
addition to the parallelization issues, building an NN-based
model for a potential energy in the form of eq 17 poses several
practical challenges. First, it has recently been reported72 that
only a high-dimensional latent space can guarantee an
adequate representation of any permutation-invariant function
in practice. Second, μ must accept inputs in a broad range and
still produce outputs suitable for any relevant value of natoms,
which is a bad match for the normalization techniques
commonly used when training NNs. All of these problems
can be avoided by restricting the output of Ω to a single scalar
and taking μ as the identity function or, in other words, by
transferring the property of additivity from a latent space,
where it is theoretically guaranteed, to the potential energy,
where it becomes an approximation. Therefore, the decom-
position expressed by eq 7 is a convenient trade-off between
generality and practicality.
We now check whether switching to a more general

architecture, beyond the bounds of eq 7, leads to a significant
improvement upon the results of NEURALIL. We train a new
model, designated as DEEPSETS in Table 1 and consisting of
two NNs. The first one follows the scheme of NEURALIL, as
represented in Figure 2, starting from the left and up to the last
16-neuron Swish-1 layer. That tensor, with 16 components per
atom, acts as the intermediate quantity denoted by Ω in eq 17.
Following that same equation, it is then summed over atoms
and fed into the second NN that implements μ and outputs the
total potential energy. That second NN is also a multilayer
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perceptron with Swish-1 as its activation function and
LayerNorm between each pair of hidden layers, and with
layer widths 32:32:32:1. We use a “one cycle” training schedule
that switches the learning rate from 10−4 to 10−3 and back to
10−4 before dropping it to 10−5 and run the process for 500
iterations just like for the rest of the models. As shown in Table
1, the model is slightly worse than NEURALIL in terms of
performance. On the one hand, this shows that the widely used
additive ansatz expressed in eq 7 is not the only viable
architecture for a fully connected feed-forward NN force field
based on descriptors. On the other hand, it also dispels the
suspicion that the ansatz could be very constraining or that
dramatic boosts in accuracy are easy to obtain by generalizing
it.

■ SUMMARY AND CONCLUSIONS

We develop a neural-network-based force field for the ionic
liquid ethylammonium nitrate, using forces from density
functional theory as training data and modified spherical
Bessel descriptors as the inputs. The validation statistics show a
level of accuracy in the energies and the forces comparable to
the difference between DFT implementations and an improve-
ment of orders of magnitude over traditional molecular-
mechanics FFs like OPLS-AA, while keeping the time to
evaluate the forces on a few hundreds of atoms on a single core
in the range of milliseconds. This kind of FF can therefore be
employed to calculate quantities requiring long trajectories or
large samples of configurations (like thermodynamic poten-
tials) with ab initio accuracy. Key to its performance and
flexibility is the fact that the model is automatically
differentiable from end to end.
Another critical choice lies in how to include the chemical

information about the system in the descriptors. We opt to
describe each pair of chemical elements separately and let the
neural network combine these pieces of information freely. We
compare this strategy with more conventional alternatives
where a set of weights, either fixed or fitted during the
optimization process, is used to mix the descriptors
corresponding to different elements, and we show that it
delivers superior results.
By training an ensemble of neural networks on random

subsets of the training data, we also show how an extrapolation
to unexplored areas of the configuration space can be detected
from the ensemble standard deviation and how the ensemble
average can provide a more robust prediction where training
data are thin. This strategy can serve as a starting point to use
this model as a surrogate potential energy in a first-principles
calculation where the generation of training data takes place on
the fly and where it is important to be able to assess how
reliable the prediction of the neural network is for each new
configuration.
Our model represents a radical departure from the template

of molecular-mechanics FFs by way of its top-bottom training
process but also in two defining features: it does not include
either a topology or a separate treatment of Coulomb
interactions. However, we show that these are not obstacles
to achieving both a high global accuracy and a detailed
description of individual degrees of freedom like bonds. This
opens the door to the use of high-performance short-range
potentials for this class of system where long-range electro-
static forces are traditionally considered to be critical. That
should, however, be considered as valid only in the context of

dense bulk systems and not as a completely general conclusion
for ionic matter.
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