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SUMMARY

Understanding the differences between Mycobacterium tuberculosis strains isolated from respiratory
and non-respiratory sources may inform clinical care and control strategies. We examined demo-
graphic and genomic characteristics of all culture-confirmed M. tuberculosis cultures isolated from res-
piratory and non-respiratory sources in New South Wales, Australia, from January 2017 to December
2021, using logistic regression models. M. tuberculosis strains from 1,831 patients were sequenced;
64.7% were from respiratory, 32.1% from non-respiratory, and 2.2% from both sources. Female pa-
tients had more frequent isolation from a non-respiratory source (p = 0.03), and older adults (S65
years) from a respiratory source (p < 0.0001). Lineage 2 strains were relatively over-represented
among respiratory isolates (p = 0.01). Among 39 cases with sequenced isolates from both sources,
43.6% had 1–10 single nucleotide polymorphism differences. The finding that older adults were
more likely to have M. tuberculosis isolated from respiratory sources has relevance for TB control
given the expected rise of TB among older adults.

INTRODUCTION

Tuberculosis (TB) is the leading infectious cause of death globally, with an estimated 1.3 million TB-related deaths in 2022 andmajor setbacks

in global TB control efforts resulting from health systemdisruption caused by the COVID-19 pandemic.1Mycobacterium tuberculosis spreads

via the aerosol route with pulmonary tuberculosis (PTB) responsible for most transmission events. However, disease may also affect other

anatomical sites, referred to as extrapulmonary TB (EPTB).1,2 The World Health Organization (WHO) reported an estimated 10.6 million

new TB cases globally in 2022, with approximately 20% of all cases being EPTB.1

M. tuberculosis isolation from a respiratory source, including sputum, induced sputum, nasopharyngeal aspirates (also gastric aspirates or

stool in children), and bronchoalveolar lavage or bronchial washings is indicative of PTB. M. tuberculosis isolation from a non-respiratory

source, such as lymph node biopsies, pleural fluid, cerebrospinal fluid, and various other tissues reflect EPTB,2 although PTB and EPTB

may be present at the same time, in which case, it is programmatically classified as PTB—by convention. The demographic characteristics

of patients with PTB and EPTB have been explored inmultiple studies,3–5 but few studies were able to reflect on genomic differences between

strains causing PTB and EPTB disease,6–8 and none have been able to do it in a comprehensive prospective fashion. The implementation of

routine whole genome sequencing allows comprehensive genomic characterization ofM. tuberculosis strains, including lineage/sub-lineage

assignment, mixed strain population (simultaneous co-infection with more than one strain), drug resistance, and transmission cluster identi-

fication.9,10 The incorporation of sequencing data into real-time TB case management and control efforts assists clinical decision-making and

guides better targeted public health control efforts.11

Genomic differences between respiratory and non-respiratory isolates have not been comprehensively assessed in a programmatic

setting. The implementation of routine sequencing (since 2016) of all culture-confirmed TB cases in New South Wales (NSW), Australia,

presented a unique opportunity to compare genomic characteristics of M. tuberculosis strains isolated from different anatomical disease

sites.
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Figure 1. Flowchart of M. tuberculosis cultures and sequenced isolates included in the study

NSW: New South Wales; PCR: M. tuberculosis-specific Polymerase Chain Reaction; TB: tuberculosis. *Culture and/or PCR (M. tuberculosis-specific Polymerase

Chain Reaction). **Respiratory and non-respiratory. All culture-confirmed cases were routinely sequenced in a prospective fashion. See also Table S1.

ll
OPEN ACCESS

iScience
Article
RESULTS

M. tuberculosis cultures and sequenced isolates

Nearly two-thirds (1,831/2,824; 64.8%) of notified TB cases in NSWduring the study periodwere sequenced (Figure 1), including 96.2% (1,831/

1,904) of culture-confirmed cases. Of the sequenced M. tuberculosis strains, 1,184 (64.7%) were from respiratory and 587 (32.1%) from non-

respiratory sources. In 41 instances M. tuberculosis was cultured from both respiratory and non-respiratory sources; 1% (19/1,831) had no

anatomical collection site specified (Figure 1 and Table S1).

TB patients with M. tuberculosis isolated from a respiratory or non-respiratory source

Table 1 presents the demographic characteristics, microbiological findings, and genomic information of TB patients based on their

M. tuberculosis culture source. Among the 1,812M. tuberculosis cultures, 55.6% (1,007/1,812) were frommales, with adults aged 25–44 years

accounting for 42.3% (767/1,812) of cases. The incidence of HIV within 1,812M. tuberculosis cultures was found to be less than 1%.12 All four

major M. tuberculosis lineages were represented and 10.0% (181/1,812) of strains genomically clustered using a %5 SNP difference cut-off.

MixedM. tuberculosis strain populations were identified in 10.1% (183/1,812) of sequenced cultures. Among 587 non-respiratory specimens

(Figure 2A) themajority were collected from lymph nodes (50.9%), followed by pleura (15.7%), musculoskeletal (10.2%), abdomen (9.0%), geni-

tourinary (6.3%), CNS (2.2%), and other anatomical sites (5.6%); including unspecified abscess, blood, breast, chest wall, mediastinal, pericar-

dial, and other sites (Table S2).

Multivariate analysis of demographic and genomic characteristics associated with M. tuberculosis isolation from a

respiratory or non-respiratory source

Table 2 compares demographic characteristics between specimens obtained from respiratory and non-respiratory sources. A non-respiratory

source was more common among female (36.6%; 289/789) than male (30.4%; 298/980) patients (adjusted odds ratios [aOR] 0.80, 95% confi-

dence interval [CI] 0.66–0.98) (Figure 2B). A respiratory source was more common among older (S65 years) adults (aOR 2.09, 95% CI 1.58–

2.80), compared to younger adults (reference age 25–44 years) (Figure 2B). Respiratory specimens had a higher likelihood of being acid-

fast bacilli (AFB) positive (odds ratio [OR] 4.74, 95% CI 3.49–6.57) and being part of a genomic cluster (aOR 1.91, 95% CI 1.31–2.83), with a

trend to being drug resistant (DR) to first-line drugs (aOR 1.29, 95% CI 0.94–1.78) (Figure 2C; Table 3). Interestingly, a higher proportion of

non-respiratory specimens demonstrated mixed strain infection (11.9%, 70/587) compared to respiratory specimens (9.5%, 112/1,182),

although this difference was not statistically significant (aOR 0.77, 95% CI 0.56–1.07) (Table 3). Mixed strain infections were most commonly

detected in lymph node specimens (52.9%, 37/70) (Table S2). Compared to all other lineages combined, lineage 3 strains were less likely to be

isolated from respiratory specimens (aOR 0.62, 95% CI 0.47–0.81) (Figure 2C; Table 3). A detailed assessment of the relative frequency of

M. tuberculosis sub-lineages identified in specimens from respiratory and non-respiratory sources did not suggest any sub-lineage specific

tissue tropism (Figure 3).

Potential genomic transmission routes and genetic differences observed among TB cases

Figure 4 provides an overview of lineage specific genomic clusters (using a %5 SNP cut-off) identified. Interestingly, 36 clustered strains

were from non-respiratory isolates, with pleural isolates most likely to be included in a genomic cluster (aOR 2.41; 95% CI 1.08–5.08)

(Table S3) compared to all other non-respiratory isolates. Based on genomic analysis and the temporality of specimen receipt, seven pa-

tients withM. tuberculosis sequenced from a non-respiratory source were identified as potential transmitters; two each with pleural, muscu-

loskeletal, or genitourinary disease and one with lymph node disease (Figure S1). Among the 41 TB cases with isolates from both respiratory
2 iScience 27, 110327, July 19, 2024



Table 1. Demographic and genomic characteristics of TB patients with M. tuberculosis isolated from a respiratory or non-respiratory source

Characteristic

Specimen source no. (%)

Respiratory Non-respiratory Respiratory and non-respiratory Total

Gender

Female 500 (62.3) 289 (36.0) 14 (1.7) 803

Male 682 (67.7) 298 (29.6) 27 (2.7) 1,007

Unknown 2 (100) 0 0 2

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

Age group (years)

<25 217 (69.3) 91 (29.1) 5 (1.6) 313

25–44 453 (59.1) 296 (38.6) 18 (2.3) 767

45–64 240 (65.2) 117 (31.8) 11 (3.0) 368

S65 274 (75.3) 83 (22.8) 7 (1.9) 364

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

Auramine AFB smear

Pos 362 (86.4) 50 (11.9) 7 (1.7) 419

Neg 822 (59.0) 537 (38.5) 34 (2.4) 1,393

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

Major strain lineage

Lineage 1 371 (65.5) 184 (32.5) 11 (1.9) 566

Lineage 2 374 (69.6) 152 (28.3) 11 (2.0) 537

Lineage 3 152 (53.9) 122 (43.3) 8 (2.8) 282

Lineage 4 287 (67.2) 129 (30.2) 11 (2.6) 427

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

Strain populations

Mixed 112 (61.2) 70 (38.3) 1 (0.5) 183

Single 1,072 (65.8) 517 (31.7) 40 (2.5) 1,629

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

p/gDST

RR + MDR 33 (73.3) 11 (24.4) 1 (2.2) 45

DR (not RR/MDR) 130 (71.8) 49 (27.1) 2 (1.1) 181

DS 1,021 (64.4) 527 (33.2) 38 (2.4) 1,586

Total 1,184 (65.3) 587 (32.4) 41 (2.3) 1,812

Genomic clusters

0-SNP 79 (79.8) 17 (17.2) 3 (3.0) 99

2-SNP 124 (77.5) 33 (20.6) 3 (1.9) 160

5-SNP 141 (77.9) 36 (19.9) 4 (2.2) 181

AFB, acid-fast bacilli; DR, drug resistant; DS, drug susceptible; DST, drug susceptibility testing; gDST, genotypic DST; pDST, phenotypic DST; MDR, multidrug-

resistant (resistant to both rifampicin and isoniazid); Mixed, mixed strain populations; Neg, negative; Pos, positive; RR, rifampicin resistance; Single, single strain

population; SNP, single nucleotide polymorphism.
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and non-respiratory sources during the same disease episode, 39 had both isolates successfully sequenced, with a maximum 70 days apart

between sample collection. Of these, 22 (56.4%) had 0 SNP differences, 7 (18.0%) had R2 SNP differences, and 4 (10.3%) had R5 SNP dif-

ferences—ranging from 5 to 10 SNPs (Figure 2D and Table S4). No identical mutations were found among any of the extra-pulmonary

strains.
DISCUSSION

This study presents the first comprehensive description of the demographic and genomic characteristics associated with M. tuberculosis

strains isolated from respiratory and non-respiratory sources in a low incidence setting. Although most TB patients had pulmonary disease,
iScience 27, 110327, July 19, 2024 3



Figure 2. Overview of all sequenced M. tuberculosis isolates (N = 1,812)

(A) Proportion of sequenced M. tuberculosis isolates obtained from different non-respiratory sources (n = 587).

(B) Multivariate analysis of demographic features and (C) genomic features of respiratory and non-respiratory M. tuberculosis isolates.

(D) Genomic (SNP) distance of M. tuberculosis sequenced from both respiratory and non-respiratory sources+ in the same patient during the same disease

episode. BAL, bronco-alveolar lavage; CNS, central nervous system; SNP, single nucleotide polymorphism; TB, tuberculosis; yrs, years. Odds ration below 1

favors non-respiratory isolates, and above 1 favors respiratory isolates.

(A) The ‘‘Others’’ category includes unspecified abscess, blood, breast, chest wall, mediastinal, pericardial, and other sites. See also Table S2.

(B) *Male used as reference; **25–44 year olds used as reference. Odds ratios were adjusted for gender and age group. See also Table 2.

(C) #All others combined used as reference; ##drug susceptible strains used as reference; ### ‘‘Unclustered’’ strains (>5 SNP threshold) used as reference. Odds

ratios were adjusted for lineage 2, lineage 3, presence of drug resistance, and genomic clustering. See also Table 3.

(D) +M. tuberculosis was isolated from both respiratory and non-respiratory isolates in 41 patients; 39/41 (95.1%) were successfully sequenced from both sources

(difference in collection timing in brackets). See also Table S4.
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nearly a third of cultures were recovered from non-respiratory specimens. This is broadly similar to the PTB/EPTB case ratio observed in NSW

and in global TB notification data.1,12 Although the early detection and effective treatment of PTB cases is important for disease control, ac-

curate detection of diverse EPTB presentations is important for optimal patient outcomes and patient-centerd care. The diversity of sources

from which M. tuberculosis were grown, reflects the broad range of clinical presentations and affected organs.2

The male predominance observed among TB cases is consistent with findings in other settings,3,5,12,13 although a greater proportion of

non-respiratory specimens in our study were collected from female patients. It has been postulated that EPTB is likely to be more common in

patients with HIV infection or other immunocompromising conditions, which preferentially affects women in some settings.14,15 However, the

HIV-infection rate in our cohort was very low and did not support this viable explanation. It may be that women are inherently more vulnerable
4 iScience 27, 110327, July 19, 2024



Table 2. Multivariate analysis of demographic characteristics associated with M. tuberculosis isolation from a respiratory or non-respiratory source

Characteristic

Specimen sourcea Crude OR Adjusted ORb

Respiratory Non-respiratory Total OR (95% CI) p-value OR (95% CI) p-value

Gender

Female 500 289 789 0.76 (0.62–0.92) 0.006 0.80 (0.66–0.98) 0.03

Male 682 298 980 Ref. Ref.

Age group (years)

<25 217 91 308 1.57 (1.18–2.09) 0.0021 1.55 (1.17–2.07) 0.003

25–44 451 296 747 Ref. Ref.

45–64 240 117 357 1.35 (1.03–1.76) 0.03 1.33 (1.03–1.74) 0.03

S65 274 83 357 2.17 (1.63–2.90) <0.0001 2.09 (1.58–2.80) <0.0001

CI, confidence interval; OR, odds ratio.
aExcluding those with respiratory and non-respiratory isolates.
bGender and age group were included in the multivariable logistic regression. Odds ratios were adjusted for gender and age group used in this model. Odds

ration below 1 favors non-respiratory isolates, and above 1 favors respiratory isolates. See also Figure 2B.
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to develop extra-pulmonary TB,16,17 or alternatively, men could be predisposed to pulmonary disease due to intrinsic factors or behaviors

such as cigarette smoking that is more common among men than women.18

A finding of particular interest is the fact that the PTB/EPTB ratio was highest among older adults (R65 years), suggesting a potentially

increased transmission risk within this age group. The over-representation of pulmonary cases among older adults has relevance for TB con-

trol efforts, particularly in regions with an aging population linked to global demographic shifts.19 This poses a particular challenge in areas

with high TB prevalence and a rapidly aging population. These emerging patterns highlight the need for better tailored approaches to

address the distinct challenges and risks associated with TB in older adults.20
Table 3. Genomic characteristics of M. tuberculosis isolates from a respiratory or non-respiratory M. tuberculosis source

Characteristic

Specimen sourcea Crude OR Adjusted ORb

Respiratory Non-respiratory Total OR (95% CI) p value OR (95% CI) p value

Strain lineage

Lineage 1 370 184 554 1.00 (0.81–1.24) 0.98 – –

Lineage 2 373 152 525 1.32 (1.06–1.65) 0.014 1.12 (0.88–1.41) 0.36

Lineage 3 152 122 274 0.56 (0.43–0.73) <0.0001 0.62 (0.47–0.81) 0.0005

Lineage 4 287 129 416 1.14 (0.90–1.45) 0.28 – –

All others combined Ref. Ref.

Strain populations

Mixed 112 70 182 0.77 (0.56–1.07) 0.11 – –

Single 1,070 517 1,587 Ref.

p/gDST

Any DR 163 60 223 1.41 (1.03–1.94) 0.03 1.29 (0.94–1.78) 0.12

RR/MDR 33 11 44 1.50 (00.78–3.14) 0.25 – –

DR (not RR/MDR) 130 49 179 1.36 (0.97–1.93) 0.08 – –

DS 1,019 527 1,546 Ref. Ref.

Genomic clusters (%5 SNP difference)

Clustered 141 36 177 2.07 (1.43–3.07) 0.0002 1.91 (1.31–2.83) 0.001

Unclustered 1,041 551 1,592 Ref. Ref.

CI, confidence interval; DR, drug resistant; DS, drug susceptible; MDR, multi-drug resistant (resistant to both rifampicin and isoniazid); OR, odds ratio; RR, rifam-

picin-resistant; SNP, single nucleotide polymorphism.
aExcluding those with respiratory and non-respiratory isolates.
bLineage 2, lineage 3, DR, and genomic clusters at 5-SNP level were included in the multivariable logistic regression. Odds ratios were adjusted for lineage 2,

lineage 3, DR, and genomic clusters at 5-SNP level used in this model. Odds ration below 1 favors non-respiratory isolates, and above 1 favors respiratory isolates.

See also Figure 2C.

iScience 27, 110327, July 19, 2024 5



Figure 3. Relative frequency of M. tuberculosis lineages and sub-lineages identified in specimens from respiratory and non-respiratory sources

Others encompass sub-lineages with less than 5 representatives each (3 from lineage 2 and 17 from lineage 4).
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Variations in the prevalence ofM. tuberculosis strain lineages and sub-lineages across different anatomical sites may suggest strain-spe-

cific tropism or preferences for specific anatomical environments.6,21,22 For instance, there is a relative overrepresentation of lineage 2 strains

and underrepresentation of lineage 3 strains in respiratory specimens, which is consistent with previous reports.22–25 Recognition of these

lineage-specific trends may have clinical relevance if it provides insight into different pathogenesis or transmission patterns. The increased

detection of mixed strain infections in non-respiratory isolates aligns with previous findings,26,27 which demonstrated that lymph nodes

remain infected for prolonged periods of time, and that reinfecting strains often co-locate in the same lymph nodes or other extrapulmonary

tissues that were previously infected.28

Respiratory specimens weremore frequently associated with genomic transmission clusters, which is not unexpected given the respiratory

route ofM. tuberculosis transmission. Patients with non-respiratory isolates were mostly identified as ‘‘dead end’’ hosts, with no indication of

onwards transmission, but in some instances patients with EPTBmay have contributed to transmission. While EPTB cases are not regarded as

major sources of infection,29,30 their occasional contribution to transmission warrants careful consideration. Pleural isolates were more

commonly associated with transmission clusters, which suggest that pleural disease may be a proxy of lung involvement and potential trans-

mission risk.31 More detailed assessment of the clinical phenotype and detailed epidemiological analysis is required to assess potential trans-

mission risk from other non-respiratory specimens.

Our study documented within-host genetic variability ofM. tuberculosis, with a maximum 10-SNPs difference between strains observed in

TB cases where cultures were collected from both respiratory and non-respiratory sources during the same disease episode. These variations

likely represent within-host microevolution, which is supported by previous findings that %10 SNPs differences between isolates from the

same patient are indicative of within host clonal diversification.26,27 These findings highlight the within-host genetic diversity, which compli-

cates absolute SNP cut-off definitions for TB cluster identification, and emphasize the importance epidemiological data to help elucidate TB

transmission dynamics, especially in clusters with R2–5 SNP differences.

In conclusion, the comparative analysis of M. tuberculosis isolates from respiratory and non-respiratory specimens in a low incidence

setting revealed anatomical site-specific differences in demographic, microbiological, and genomic characteristics. These differences may
6 iScience 27, 110327, July 19, 2024



Figure 4. Overview of genomically clustered isolates with indication of respiratory or non-respiratory source

RRT: rate of recent transmission;9 SNP, single nucleotide polymorphism. Genomically clustered isolates were identified sing a %5-SNP cut-off and including 41

patients in whom M. tuberculosis was cultured from both respiratory and non-respiratory sources, categorized as a respiratory source or pulmonary disease.

Coloured dots indicate the following specimen sources: green respiratory, orange non-respiratory. A black halo identifies the specimen with the earliest

collection date within a cluster, indicating likely temporality. The estimated RRT was calculated using the formula (N-C)/T*100, where N is the number of

clustered isolates (using a 5-SNP cut off), C the number of clusters and T the total number of isolates analyzed.9 See also Table S1 and Figure S1.
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influence disease presentation, timeliness of diagnosis and treatment initiation, the risk of drug resistance, and transmission dynamics. This

emphasizes the importance of individualizing diagnostic and treatment approaches, with careful consideration of the most appropriate pub-

lic health responses.
Limitations of the study

Important limitations of our study need to be acknowledged. We relied on data captured by our laboratory information management system

that lacked individual-level clinical and patient outcome data. Importantly, we were unable to cross-correlate genomic findings with detailed

contactmapping and relevant epidemiological information from the field.We acknowledge this as amajor limitation and hope to incorporate

such data in future investigations to explore the association between genomic characteristics and clinical outcomes, as well as the impact of

TB interventions on transmission dynamics. However, the relatively large longitudinal and representative dataset of culture-confirmed TB

cases with the vast majority of cases being sequenced, strengthen the representativeness of our findings.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Mycobacterium tuberculosis Institute of Clinical Pathology and

Medical Research, Westmead hospital,

NSW, Australia

Critical commercial assays

DNA extraction protocol Votintseva et al. (2015)32 N/A

RNase A QIAGEN Cat#19101

DNeasy UltraClean Microbial Kits QIAGEN Cat#10196-4

Nextera XT library Prep Kit Illumina Cat#FC-131-1024

Deposited data

The whole genome sequencing data used in

this study are available on the NCBI Sequence

Read Archive

This paper NCBI SRA PRJNA899911

Software and algorithms

Burrows-Wheeler Aligner Li et al. (2013)33 https://github.com/lh3/bwa

Mykrobe predict/master Hunt et al. (2019)34 https://github.com/Mykrobe-tools/

mykrobe

Snippy v3.1 Torsten Seemann https://github.com/tseemann/snippy

QuantTB v1.0 Anyansi et al. (2020)35 https://github.com/AbeelLab/quanttb

Transcluster Stimson et al. (2019)36 https://github.com/JamesStimson/

transcluster

RedDog v1beta.8 D. J. Edwards, B. J. Pope and K. E. Holt https://github.com/katholt/RedDog

Prism v9.4.1 GraphPad N/A
RESOURCE AVAILABILITY

Lead contact

� Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Xiaomei

Zhang (Xiaomei.zhang@sydney.edu.au).

Materials availability

� This study did not generate new unique reagents.

Data and code availability

� Raw de-identified pathogenWGS data was deposited in the National Center for Biotechnology Information (NCBI) Short Read Archive

(SRA). They are publicly available as of the date of publication. BioProject number is listed in the key resources table and accession

numbers are listed the Table S1.
� This paper does not report original code.

� Any additional information required to reanalyse the data reported in this paper is available from the lead contact Dr. Xiaomei Zhang

(Xiaomei.zhang@sydney.edu.au).

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We analysed demographic, specimen location and genomic data of all culture-confirmed and routinely sequenced TB cases in NSW,

Australia, with a specimen collection date between 1st January 2017 and 31st December 2021. Routine sequencing was performed at the
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New South Wales (NSW) Mycobacterium Reference Laboratory (MRL) at the Institute of Clinical Pathology and Medical Research (ICPMR)

NSW Health Pathology. In general, only one culture-positive isolate per patient was sequenced unless there were positive cultures from res-

piratory and non-respiratory sources. Isolates were classified as respiratory or non-respiratory depending on the specimen type recorded on

the laboratory request form. Any specimen collected from the respiratory tract were classified as respiratory. Non-respiratory specimens were

classified as lymph node, pleura, musculoskeletal, abdomen, genitourinary, central nervous system (CNS) and other.2 Anatomical sites that

were not specified were designated as ‘uncertain’ and excluded from comparative analyses.
METHOD DETAILS

Characteristics assessed

We reviewed all characteristics recorded in the NSW MRL database, including collection date, patient gender, patient age, auramine Acid-

Fact Bacillus (AFB) smear and phenotypic drug susceptibility testing (DST) results. Genomic characteristics evaluated included strain lineage

and sub-lineage, the presence of mixed strain infection or drug resistance conferring mutations, and genomic clusters.
Laboratory testing and genome sequencing

Phenotypic DST was performed using the modifiedmicrodilution method in the BACTECMGIT 960 system withWHO recommended critical

concentrations. All cultures identified asM. tuberculosiswere routinely sequenced using IIluminaNextSeq500 (Illumina, SanDiego, California)

instrument using 2 x 150bppaired-end chemistry and genomic characteristics determined as previously described.9,10 In brief,M. tuberculosis

species, major strain lineage and sub-lineage were predicted using Mykrobe predict/master. Instances of mixedM. tuberculosis strain infec-

tions, defined as simultaneous co-infection with more than one strain during the same disease episode, were detected by QuantTB v1.0, em-

ploying a genetic distinctness threshold ofR100 single nucleotide polymorphisms (SNP) differences between strains. Mutations associated

with first-line TB drug resistance were identified from the 2021 WHO Catalogue of mutations in Mycobacterium tuberculosis complex and

their association with drug resistance. Genomic clusters were identified utilizing the hierarchical single-linkage agglomerative clustering al-

gorithm in python package with genomic distance of%5 SNPs. Visualization of the identified genomic clusters were conducted using Trans-

cluster package (https://github.com/JamesStimson/transcluster) by incorporating a 5-SNP cut-off together with the case collection date and

an assumed molecular clock of 0.5 SNP per year per genome. The genomic distance between isolates in whomM. tuberculosis was cultured

from both respiratory and non-respiratory sources were determined using RedDog v1beta.8 (https://github.com/katholt/RedDog) with

default settings.
QUANTIFICATION AND STATISTICAL ANALYSIS

We performed descriptive statistical analyses using Prism GraphPad v9.4.1. Comparative analyses employed uni- and multivariable logistic

regression models to assess differences between respiratory specimens and non-respiratory specimens. Univariable logistic regression

models were used to determine crude odds ratios (OR) with 95% confidence intervals (CIs). Multivariable logistic regression models provided

adjusted odds ratios (aOR) with 95%CIs with inclusion if p< 0.05 from the univariable logistic regressionmodels. A two-sidedp-value of < 0.05

was considered as statistically significant.
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