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Abstract

Contextual information plays a critical role in directed forgetting (DF) of lists of items, whereas 

DF of individual items has been primarily associated with item-level processing. This study was 

designed to investigate whether context processing also contributes to the forgetting of individual 

items. Participants first viewed a series of words, with task-irrelevant scene images (used as 

“context tags”) interspersed between them. Later, these words reappeared without the scenes and 

were followed by an instruction to remember or forget that word. Multivariate pattern analyses of 

fMRI data revealed that the reactivation of context information associated with the studied words 

(i.e., scene-related activity) was greater whereas the item-related information diminished after a 

forget instruction compared to a remember instruction. Critically, we found the magnitude of the 

separation between item information and context information predicted successful forgetting. 

These results suggest that the unbinding of an item from its context may support the intention to 

forget, and more generally they establish that contextual processing indeed contributes to item-

method DF.
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1. Introduction

To most people, forgetting is a negative experience that is rarely done on purpose, and often 

considered a human frailty to be avoided. Yet forgetting is often precisely what we need to 

do in order to remove outdated or irrelevant information from memory, such as an old 

password or the hotel room number where we recently stayed. In the extreme, we sometimes 

have unpleasant or even traumatic experiences that we would prefer to forget. In these 

circumstances, forgetting can be adaptive (Bjork, 1989, 2011).

Decades of research using a directed forgetting (DF) paradigm (Bjork et al., 1968) confirm 

that people have worse memory for items followed by a cue to forget (F) that item than a cue 

to remember (R) the item, suggesting that we can control our cognition voluntarily to impair 

access to the unwanted information (for reviews, see Anderson and Hanslmayr, 2014; 

MacLeod, 1998; Sahakyan et al., 2013; Sahakyan and Foster, 2016; Sahakyan, 2021). 

Whereas directed forgetting for whole lists of items is thought to involve shifts in contextual 

processing (Sahakyan and Kelley, 2002; Sahakyan et al., 2013), the traditional interpretation 

of directed forgetting of single items has emphasized passive processes that involve 

removing the F items from rehearsal in working memory (Bjork, 1970; Basden et al., 1993; 

MacLeod, 1999). According to this view, participants maintain an item in working memory 

until they receive the memory cue. The F cue leads participants to terminate rehearsal and 

remove the item from working memory, whereas the R cue leads participants to continue 

rehearsal and encode that item in a more elaborate way.

Current views of item-method DF, however, suggest that removal of items from working 

memory does not happen through passive decay, but rather requires engagement of active, 

effortful processes aimed at terminating encoding of F items (Fawcett and Taylor, 2008, 

2010, 2012; Hauswald et al., 2010; Lee et al., 2013; Ludowig et al., 2010; Nowicka et al., 

2010; Oberauer, 2018; Oehrn et al., 2018; Paz-Caballero et al., 2004; Reber et al., 2002; 

Rizio and Dennis, 2013; Wylie et al., 2008). For example, behavioral studies have shown 

that reaction times on a secondary task that is performed along with a DF task are slower 

during the execution of the F cue (Fawcett and Taylor, 2008, 2010, 2012). There is also 

reduced processing of other information that is presented in temporal or spatial proximity to 

F items (Taylor, 2005; Taylor and Fawcett, 2011, 2012; Thompson and Taylor, 2015), 

indicating that intentional forgetting engages cognitive load and is effortful. In addition, 

evidence from imaging and event-related potentials (ERPs) studies indicates that successful 

intentional forgetting (F items that are subsequently forgotten) recruits additional processes 

beyond those that are associated with unintentional forgetting (R items that are subsequently 

forgotten) (for a review, see Anderson and Hanslmayr, 2014). For example, during an 

attempt to forget, prefrontal and parietal regions are more active than during an attempt to 

remember an item, suggesting that successful forgetting recruits additional resources and 

may be more demanding (Paz-Caballero et al., 2004; Wylie et al., 2008; Van Hooff And 
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Ford, 2011; Rizio and Dennis, 2013). Connectivity analyses demonstrate that activity in the 

right dorsolateral prefrontal cortex (DLPFC) on F trials is associated with decreased activity 

in the left hippocampus, particularly during successful intentional forgetting, suggesting that 

right PFC exerts inhibitory control over encoding activity in medial temporal lobe (Rizio and 

Dennis, 2013; Ludowig et al., 2010; Oehrn et al., 2018). In our own recent work using the 

item-method DF task, we found that the representation of an item in temporal cortex was 

enhanced on F trials compared to R trials (Wang et al., 2019). The degree of enhancement 

was related to forgetting success, and this was explained as an increased attentional focus on 

the unwanted information that temporarily renders the neural representation vulnerable to 

memory weakening processes (Ritvo et al., 2019). Overall, growing evidence indicates that 

item-method DF engages an active process that inhibits ongoing encoding.

While a wealth of research has examined the mechanisms of item-method DF, the primary 

focus has been on the impairment of individual items, and less attention has been directed to 

the context that surrounds the items (i.e., the “setting” in which the items are encoded). 

Events do not take place in a vacuum; they unfold in certain temporal-spatial, social-

emotional environments, and these background cues become associated with our memories 

for individual items. During retrieval, we rely on context cues to search and retrieve 

appropriate memories, and exclude inappropriate ones. Virtually all memory theories 

propose that a gradually changing ‘mental context’ is a critical component for understanding 

episodic memory (Bower, 1972; Dennis and Humphreys, 2001; Diana et al., 2007; Estes, 

1955; Mensink and Raaijmakers, 1988; Howard and Kahana, 2002; Lehman and Malmberg, 

2009; Sederberg et al., 2008; Polyn et al., 2009; Raaijmakers and Shiffrin, 1981). Given that 

memory for events include not only item representations, but also representations of the 

context in which the events occurred, intentional forgetting processes could be operating on 

either or both of these components.

The role of mental context is well established in list-method DF (e.g., Sahakyan and Kelley, 

2002). In this paradigm, participants study a list of items followed by an F or R cue that 

applies to the entire list. A to-be-remembered second list is then studied, followed by a final 

memory test of items from both lists. According to the context account of list-method DF 

(Sahakyan et al., 2013; Manning et al., 2016), participants actively shift their mental context 

in response to an F cue, thus distancing themselves from the context of the to-be-forgotten 

list of items, and allowing themselves to encode the to-be-remembered list in a ‘new’ mental 

context. At the time of final test, the retrieval context mismatches the context of the to-be-

forgotten list, which impairs retrieval of the context and items from this list. In the Manning 

et al. (2016) fMRI study, which was aimed at evaluating the context account at the neural 

level, participants performed a modified version of list-method DF. A first list of words was 

studied which had task-irrelevant images of scenes interspersed between the words. 

Following the F or R cue, participants studied a second list of words which did not contain 

any scenes. The scenes were used as ‘context tags’ (Gershman et al., 2013) to decode the 

mental context signal from the first list and track it afterwards. They observed that in 

response to the F cue, there was a reduction in the neural representation of the encoding 

context prior to study of the second list that predicted forgetting success. Given that 

downregulation of contextual information was observed in a list-method DF study, in this 
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study we sought to test the idea that modulation of contextual information may also 

contribute to the intentional forgetting of individual items.

In this experiment, participants first were exposed to a preview phase, where they saw a 

series of words with images of task-irrelevant scenes embedded between each word 

presentation. As in Manning et al. (2016), these scenes were used as context tags to identify 

and track the mental context of this study period. Note that the decoded context (i.e., scene-

related neural activity) is not necessarily specific to individual trials, but rather reflects the 

global encoding context, which changes gradually in response to each presented item. 

During the subsequent DF phase, all words were re-presented without the accompanying 

scenes, and an F or R cue was assigned to each word individually. Given that no scenes were 

presented during the DF phase, any decoded scene information during this task could be 

interpreted as reflecting reinstatement of the mental context from the initial preview phase 

(Gershman et al., 2013).

Although there is considerable behavioral evidence that the mechanisms responsible for 

item-method DF differ from those of list-method DF (Sahakyan et al., 2013), this inference 

may be limited by experimental paradigms that prevent a more direct comparison. 

Measuring context processing separately from item processing has not been possible in 

item-method DF. This experiment was designed to do just that. To this end, independent data 

was used to train fMRI pattern classifiers to identify neural signatures of two types of 

information in ventral visual cortex – item information (word-related activity) and context 
information (scene-related activity). Furthermore, because some studies found that directed 

forgetting effects depend on emotional valence (e.g., Hauswald et al., 2010; Nowicka et al., 

2010; but see Taylor et al., 2018; Yang et al., 2012), we used both negative and neutral 

words. The manipulation of item information and context information was quantified on 

each trial and related to subsequent recognition outcomes in the final memory test. It is 

possible that the to-be-forgotten information could be suppressed (as observed in Manning et 

al., 2016) or enhanced (as observed in Wang et al., 2019) during the attempted forgetting. 

Our basic hypothesis was that shifting, distancing, or inhibiting the context of to-be-

forgotten information could enable successful DF of the item that was studied in that 

context. This manipulation of contextual information would render the context cues less 

effective at the time of the test at retrieving the item information or recognizing it as 

belonging to the study context.

2. Methods

2.1. Participants

Twenty-five right-handed participants between 18 and 35 years of age (11 Male, 14 Female, 

M = 23 yrs, SD = 2.78) were recruited from Champaign-Urbana area in Illinois. Data from 

one participant was excluded from analyses due to excessive motion during fMRI scanning. 

We initially examined the data from four pilot participants in order to evaluate the efficacy 

of the MVPA training phase (i.e. trial counts and stimuli presentation durations) to yield 

good classification of the stimuli categories. We additionally designed the analytic plan 

based on these data before performing exploratory analyses. We report the findings based on 

the N = 20 participants whose data were obtained after our analysis pipeline was complete in 
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Supplementary Fig. 4. There were no differences in the pattern of data obtained between the 

full sample and the last 20 subjects, and so we report the full N = 24 here. All participants 

provided informed consent and received monetary compensation of $15/h for taking part in 

the study.

2.2. Design

The present experiment consisted of four phases (Fig. 1): (1) preview phase, (2) directed-

forgetting (DF) phase, (3) perceptual localizer (not pictured), and (4) recognition test. The 

purpose of the preview phase was to “inject” scene related information into the mind, so as 

to permit decoding of the context signal from the experiment, including the context 

reinstatement during the subsequent stages of the experiment. The DF phase then assigned 

memory cues for each previously studied word from the previous preview phase. The 

localizer phase consisted of a 1-back task performed on various perceptual categories for the 

purposes of training MVPA categorical classifiers that would be used to quantify item-

related and context-related information. Lastly, the recognition test assessed participants’ 

memory of the studied words. Functional magnetic resonance imaging (fMRI) data were 

collected during the preview, DF, and localizer phases only.

2.3. Preview phase

Preview trials consisted of the presentation of a word (3 s), followed by a triplet of scene 

images, presented back-to-back (1 s each). Inter-trial intervals (ITIs) consisted of a white 

fixation cross centered on a black screen (5 s). A total of 30 negative and 30 neutral words 

(with 180 interspersed scenes) were presented, with the constraint that no more than 3 

consecutive trials of the words from the same emotional valence were presented. Each word 

appeared slightly offset from the center of the screen (4% screen height from the screen 

center), and participants performed an incidental task, by pressing buttons to indicate 

whether each word appeared above or below the center of the screen. Participants were told 

that “words will be separated by images of scenes”, which they should “simply view 

passively”. No more than three consecutive trials of the same word location appeared during 

presentation.

2.4. DF phase

All 60 words from the preview phase were presented again in the DF phase, with an R or F 
memory cue was assigned to them, with equal number of words within each valence 

category receiving each cue. Each DF trial consisted of the presentation of a word (2 s), a 

black screen (2 s), followed by a memory cue (8.5 s). Note that no scenes were presented 

during the DF phase. The ITI (0.5 s) consisted of a black screen. Word order differed 

between the preview and DF phases. Importantly, all words were presented in the same 

screen location (either above or below the center) as during the preview phase. This was 

done to avoid any overt changes in study context for the words. No more than three 

consecutive trials with the same valence or the same memory cue were allowed. Participants 

were instructed that words followed by an R cue will be tested later and that words followed 

by an F cue will not be tested and they should do their best to forget them. The R and F cues 

were implemented by two different symbols (see Fig. 1 b) – a blue open circle signified the 

R cue, and an orange circle with a line through the center signified the F cue. Symbols, 
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rather than words, were used as memory cues to avoid confounding the neural analyses, 

which sought to track the representation of target words both before and after the cue 

appeared.

2.5. Perceptual localizer

The localizer phase consisted of blocked presentation of exemplars from four stimulus 

categories – words, scenes, faces, objects, interspersed by rest blocks. Importantly, none of 

the words and scenes used for the localizer phase appeared during the earlier phases of the 

experiment, and none of the objects referred to a word from the earlier phases. To maintain 

attention to the presented stimuli, participants performed a 1-back task. Specifically, each 

stimulus block consisted of eight unique images of a category plus one repeated image that 

acted as the target for the 1-back task. Each trial consisted of a stimulus (0.5 s) and an 

interstimulus-interval of a black screen (1.5 s). Each rest block (10 s) consisted of a black 

screen with the instruction to “rest for 10 s” in white font. Participant pressed a button on 

every trial – one button for the presentation of each new exemplar or another button if they 

detected a repetition of a stimulus. There was a total of six blocked presentations of each 

stimulus category, resulting in 24 stimulus blocks and 24 rest blocks.

2.6. Recognition phase

Participants were given a recognition test at the end of the experiment, where they were 

shown studied words and novel lure words. The recognition test list contained 60 old words 

(30 negative, 30 neutral), along with 30 new words (15 negative, 15 neutral). Participants 

made judgments that combined study status (old/new) and confidence level (sure/maybe) 

using a 4-point scale (1 = sure old, 2 = maybe old, 3 = maybe new, 4 = sure new). The trials 

were self-paced with an average response time of M = 1.70 s (SD = 0.48). Critically, test 

instructions emphasized that participants should respond “old” to any word they recognize 

from the study, regardless of the R or F memory cue (i.e., F cue was “canceled”). These 

instructions are sufficient to dispel any concerns of demands characteristics, as prior work 

demonstrated that even offering to pay participants $0.50 for each additional F item 

remembered did not increase memory for these items (Macleod, 1999). This recognition test 

was given in the scanner, while anatomical scans were acquired (see MRI acquisition, MP-

RAGE).

Counterbalancing of the experimental conditions was done by constructing six 

pseudorandomized versions of the preview and DF phases and administering each version to 

four participants, who received the same preview and DF instruction sequences. The 

assignment of words to R, F, and lures conditions (in the recognition test) were 

counterbalanced such that all words involved in the recognition study were assigned to each 

of these conditions, across the participants. Test order of the words in the recognition test 

was fully randomized for each participant.

2.7. Stimuli

For the localizer phase, a total of 192 items were shown, comprised of items selected from 

four stimulus categories (words, scenes, objects, faces), with 48 exemplars of each category. 

For words, half (24) were negative words (valence M = 2.62, SD = 0.54; arousal M = 5.36, 
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SD = 0.95) and half (24) were neutral words (valence M = 6.04, SD = 0.62; arousal M = 

4.73, SD = 0.70), selected from Affective Norms for English Words (ANEW) database 

(Bradley and Lang, 1999). All images were presented in color. There were 48 indoor and 

outdoor scenes (800 × 600 pixels; the same dimensions as was shown in the preview phase), 

48 everyday objects (300 × 300 pixels; from Google images), and 48 human faces (24 male, 

24 female, 300 × 300 pixels; from Althoff and Cohen, 1999).

Word stimuli for the preview phase, DF phase, and recognition test phase were drawn from a 

set that consisted of 45 negative words and 45 neutral words selected from the ANEW 

database (for valence, negative M = 2.56, SD = 0.57, neutral M = 5.53, SD = 0.59; for 

arousal, negative M = 5.75, SD = 0.85, neutral M = 4.48, SD = 0.67), equated on 

concreteness, familiarity, word length, and Kucera and Francis frequency. Scenes used for 

the preview phase consisted of 180 colored images (800 × 600 pixels) of indoor and outdoor 

scenes taken from the Fine-Grained Image Memorability (FIGRIM) dataset (Bylinskii et al., 

2015). None of the scene images contained words or human presence.

2.8. MRI procedure

fMRI scanning was conducted during the preview (~12 min), DF (~14.5 min), and localizer 

(~14.5 min) phases only. Each of the scanned phases was separated into two fMRI data 

collection runs, with a 20 s break separating each run. The preview and DF runs each 

contained 30 trials; each localizer run contained 12 blocks (3 blocks of each stimulus 

category). The recognition test phase consisted of one block of 90 self-paced trials, since no 

functional images and only anatomical MR images were collected.

2.9. fMRI data acquisition

All MR data was collected at the Beckman Institute’s Biological Imaging Center at the 

University of Illinois at Urbana-Champaign on a 3T Siemens Magnetom Prisma scanner 

with a 64-channel coil. High-resolution T1-weighted structural brain images were acquired 

using a 3D MP-RAGE (magnetization prepared rapid gradient echo imaging) sequence 

acquired in a sagittal orientation (echo time = 2.32 ms, repetition time = 2300 ms, spatial 

resolution of 0.9375 × 0.9375 × 0.9 mm, field of view = 240 mm, flip angle = 8°). 

Functional brain images were acquired using gradient-echo, echo planar (EPI) sequence, 

with 38 axial slices collected in ascending order (with a 10% inter-slice gap) parallel to the 

anterior and posterior commissure (echo time = 25 ms, repetition time = 2000 ms, field of 

view = 230 mm, voxel size = 2.5 × 2.5 × 3.0 mm, flip angle = 90°).

2.10. fMRI preprocessing

Functional EPI images were preprocessed and analyzed using FSL 5.0 (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/) subroutines implemented under MATLAB R2014a. 

Functional images were realigned to the middle volume of the middle run (fifth overall) to 

correct for motion, slice-time corrected, and high-pass filtered (128 s) to eliminate slow 

drift.
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2.11. fMRI analysis: multivariate

All multi-voxel pattern analysis (MVPA) procedures were done in native space for each 

participant using the Princeton MVPA toolbox (https://github.com/PrincetonUniversity/

princeton-mvpa-toolbox) and custom code in MATLAB R2014a. Here, we focused on 

category classifier activity in the ventral temporal cortex. The ventral temporal mask (in 

MNI space; Montreal Neurological Institute) was defined using boundaries delineated by 

Grill-Spector and Weiner (2014) and created by merging the temporal fusiform cortex, 

parahippocampal gyrus, occipital fusiform gyrus, temporal occipital fusiform cortex, and 

lateral occipital complex regions from the Harvard-Oxford atlas (Frazier et al., 2005; 

Desikan et al., 2006; Makris et al., 2006). To create subject-specific masks, we co-registered 

EPI volumes for each subject to their own MPRAGE structural volume using FSL FMRIB’s 

Linear Image Registration Tool (FLIRT). We then used FSL FMRIB’s Non-linear Image 

Registration Tool (FNIRT) to register structural volumes to MNI space. Individual, native-

space ventral temporal masks were created by applying a reversed transformation matrix 

from EPI to MNI stereotaxic space on the atlas-space ventral temporal mask described 

above.

Training the classifier: We used MVPA to quantify the degree of face, scene, object, 

word, and rest category-specific neural activity associated with viewing of each stimulus 

category during the localizer phase. We trained five binary L2–penalized logistic regression 

classifiers (with a penalty of 50, based on prior work (Wang et al., 2019)) on faces, scenes, 

objects, words, and resting activity from the localizer phase. Each of these “one vs. other” 

category classifiers produced an “evidence score” which is the log-odds for the default 

category on which the logistic regression classifier was trained. Because the scores for each 

category were derived from different classifiers, they need not sum to 1, and thus provided 

more independent assessments of each category than if we had trained a single multinomial 

classifier. For each stimulus block, we trained and tested the classifier on the preprocessed 

BOLD data elicited from all 9 images (for a total duration of 9 TRs or 18 s) of each stimulus 

category. Regressors were shifted forward by 4 s to account for hemodynamic delay. 

Classifier training used the “leave-one-run-out” cross-validation method on the two localizer 

runs, in which the classifier is trained on one run, and is tested on the other run, rotating 

through both runs.

Testing the classifier on DF phase: To decode the DF phase for each participant, the 

classifiers were trained on both runs from the localizer data (separately for each participant) 

and then tested on each TR of R and F trials in the DF phase (for a total of 7 TRs for each 

trial). The evidence scores for each trial were uncorrected for hemodynamic delay in all 

figures. All analyses to assess the effects of R and F cues on memory representations (i.e. 

classification evidence), including statistical tests and the selection of time windows for 

analysis were determined using only the first four subjects. Analyses were unchanged for the 

remaining 20 subjects. Because of this analysis pipeline, we also replicated all analyses with 

only the final 20 subjects for whom analyses were pre-planned. This resulted in no 

qualitative changes (relative to the full set of 24 subjects), and therefore we report all 24 

subjects in the Results. Any subsequent analyses that were not pre-planned will be labelled 

as exploratory.
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2.12. Visualization of results

GLM and GLM-related surface results are visualized using FSLeyes (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and the SPM12 canonical render. All subcortical findings are 

visualized over an MPRAGE volume that is comprised of averaging the MPRAGE volumes 

specific to this dataset.

2.13 . Multilevel modeling

All multilevel modeling analyses were done using R software (R Development Core Team, 

2008), fitted with the lmer function in the lme4 package (Bates et al., 2015) as well as the 

lmerTest package (Kuznetsova et al., 2017). Models were fit by maximum likelihood using 

the lme4 package in R (Bates et al., 2015), and Wald’s z-scores were computed for each 

coefficient to test for significance of fixed effects. Random slopes were tested using the 

Mixture Chi-square likelihood-ratio test (Stram and Lee, 1994; 1995).

3. Results

3.1. Behavioral results

Word recognition performance was assessed by fitting receiver-operating characteristic 

curves specific to each participant and then computing the area under the ROC curve (AUC). 

This measure allows us to take into account both the hit rates and false-alarm rates across the 

participants’ reported confidence levels (sure old, maybe old, maybe new, sure new), and is 

widely established as a measure of memory sensitivity (Egan, 1958; Macmillan and 

Creelman, 2004).

AUC for recognition performance was computed for each participant using the perfcurve 
function in MATLAB for each condition and tested with a repeated-measures ANOVA with 

the factors of memory cue (R vs. F) and word type (negative vs. neutral). The results are 

summarized in Fig. 1 c. Results show a robust main effect of memory cue, such that F-cued 

trials had lower memory sensitivity than R-cued trials (F(1,23) = 18.90, p < .001). Word type 

(negative/neutral) did not significantly impact recognition (F(1,23) = 0.59, p = .45), nor did it 

interact with memory cue (F (1,23) = 1.07, p = .31).

In sum, behavioral results from the current study replicated robust, canonical DF effects, 

with no evidence of the effect of word type. For all subsequent analyses, results will be 

collapsed across word type and focused on the impact of R vs. F cues.

3.2. Neural results

To assess item and context processing for each trial of the DF phase, we first trained fMRI 

pattern classifiers, separately for each participant, on data in ventral temporal cortex that 

were collected during the perceptual localizer phase (Rissman and Wagner 2012; Lewis-

Peacock and Norman, 2014; D’Esposito and Postle 2015). Using a cross-validation 

procedure to assess classification performance of the localizer data, we found that 

classification accuracy was above chance for all five categories (faces: 82.3 ± 2.5%; scenes: 

85.0 ± 2.5%; objects: 68.9 ± 2.6%; words: 70.1 ± 4.4%; and rest: 74.6 ± 2.1%; chance = 

20%, all Ps < 0.001, one-sample t-tests). Importantly, during the rest blocks, there was no 

Chiu et al. Page 9

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/


systematic identification of scene or face activity (classifier evidence scores of 0.38 and 

0.34, respectively, compared to 0.81 for the rest category; Supplementary Fig. 2). After 

verifying that the localizer data provided sufficient sensitivity to discriminate each category 

of interest, we then re-trained the classifiers on all localizer data and applied them to new 

data from the preview and DF phases.

For the DF phase, we simultaneously decoded both words (“item” information) and scenes 

(“context” information) to assess how memory cues impacted the neural representation of 

the item and the context that was associated with that item in the preview phase. Note, that 

finding evidence of scene activation during the DF phase would indicate the reinstatement of 
context-related activity from the preview phase because scenes were shown in the preview 

phase but not in the DF phase (see Gershman et al., 2013). The average time courses of item 

and context decoding are shown separately for F trials and R trials in Fig. 2 a (30 trials per 

participant in each cue condition). Prior to the memory cue, there were no differences 

between F and R trials for either item or context. However, after the cue, there was a striking 

divergence such that on F trials, item information dropped and context information 

increased, relative to R trials.

To assess these changes statistically, we computed a difference score between average 

classifier evidence during the pre-cue period (TR 1 to 3; 0 to 6 s) and the post-cue period 

(TR 5 to 7; 8 to 14 s) of each trial for both item and context information (Fig. 2 b). Because 

these data are unshifted for hemodynamic lag, the pre-cue period was most influenced by the 

item presentation and had minimal influence from the cue (which occurred at 4 s), whereas 

the post-cue period captured the peak response to the cue (approximately 6 s after cue 

onset). Statistical tests conducted on these difference scores confirmed qualitative patterns 

observed in Fig. 2a. Item information significantly increased for R trials (change score tested 

against zero, t(23) = 2.61, p = .015), whereas item information significantly decreased for F 
trials (t(23) = 5.87, p < .001). These changes in item information were significantly different 

between R trials and F trials (t(23) = 8.64, p < .001).

Context information showed a different pattern of results. Context information was not 

impacted on R trials (t(23) = 0.12, p = .91), but it was significantly enhanced on F trials 

(t(23) = 4.16, p < .001). This enhancement of context information was significantly greater 

for F trials compared to R trials (t(23) = 4.21, p < .001).

3.3. Control analyses

In order to address whether the observed increase in context information was a 

methodological artifact of the decrease in item information – i.e., that the difference in scene 

and word evidence reflects a negative relationship between classes in a discriminatory 

classifier, rather than independent neural evidence for each class per se – we conducted two 

control analyses. First, we removed the word category from classifier training and then 

retested the DF trials. This analysis confirmed a selective increase of context (scene) 

information on F trials, but not on R trials (see Supplementary Fig. 3). The increase in 

context information, therefore, cannot be an artifact of the reduced item (word) information, 

as this category was not available to the classifier. Second, as a baseline for comparison 

against the item (word) and context (scene) decoding results, we assessed classifier evidence 
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for a trial-irrelevant category (face) during the DF phase. The classifier evidence for the face 

category remained unchanged across both R and F trials (Fig. 2 a). This confirms that the 

pattern of changes observed in word and scene evidence were specific to these two task-

relevant categories of information rather than representing a general pattern for all categories 

on which the classifier was trained. Furthermore, the classifiers identified low levels of both 

face and scene information during resting periods in the localizer (Supplementary Fig. 2). 

Thus, the selective increase in scene activity on F trials cannot be attributed to the classifier 

simply identifying “resting” activity on these trials. Together, these control analyses suggest 

that the rise of context information and the fall of item information on F trials reflect 

independent and task-specific processes. To further evaluate this inference, we then related 

these neural measures from each trial to subsequent memory outcomes.

3.4. Relating neural evidence to memory outcomes

In an exploratory analysis, we conducted a series of multilevel modeling analyses to assess 

the relationship between neural evidence and the memory outcome on a trial-by-trial basis. 

Multilevel approaches are more powerful than the ANOVAs or unilevel regressions, and they 

are better suited for the nested data that we have (i.e., Jaeger, 2008). Given that recognition 

accuracy of studied words is the main outcome, it is important to note that high/low 

accuracy does not mean the same thing for F and R conditions and needs to be considered 

along with the goals of the task. Namely, high accuracy in F condition implies unsuccessful 

DF (i.e., the item survived in memory despite the F cue), whereas low accuracy means 

successful DF, consistent with the cue. The reverse is true in the R condition, where low 

accuracy implies memory failure despite the intention to remember (e.g., incidental 

forgetting).

Recognition accuracy of studied words was analyzed with a multilevel logistic regression, 

which linked brain activity with whether participants made a correct or incorrect recognition 

response on a trial-by-trial basis. A total of n = 1440 trials entered into the analyses (pulled 

across n = 24 participants), with half of the trials being R trials, and the remaining trials 

being F trials. In this analysis, classifier evidence scores for items (words) from the DF 

phase and Cue were used as a fixed effects, and participants were treated as a random 

intercept for those fixed effects. We initially tested whether random slopes would contribute 

significantly to our model by adding a random slope for the fixed effects of Cue and Item 

evidence. Doing so revealed that the model was not improved by including a random slope 

for the fixed effects, Mixture χ2 2,1 = 1.43, p = .36, and therefore random slopes were not 

included in the final model. The variance associated with the random intercept of 

participants was σ2 = 0.58, SD = 0.76. There was a significant interaction of Cue × Item 

Evidence (β€= 0.41, SE = 0.169, Z = 2.41, p = .016). Namely, on R trials (n = 720 trials 

across n = 24 participants), higher item evidence was associated with higher memory 

accuracy (β€= 0.22, SE = 0.002, Z = 124.6, p < .001). On F trials (n = 720 trials across n = 

24 participants), on the other hand, item evidence was not significantly associated with 

memory accuracy, although higher item evidence was associated with numerically lower 

memory accuracy (β€= −0.18, SE = 0.100, Z = 1.82, p = .068).

Chiu et al. Page 11

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The same multilevel logistic regression was run to assess the role of context on memory 

performance. In particular, the analysis was run on recognition accuracy of individual trials 

using classifier evidence scores for context (scenes) from the DF phase. Random slopes 

were not included in the final model because the initial analyses revealed that the model was 

not improved by including a random slope for the fixed effects of Cue and Context evidence, 

Mixture χ2 2,1 = 1.61, p = .33. The variance associated with the random intercept of 

participants was σ2 = 0.60, SD = 0.77.

The results revealed that on R trials, context evidence was not associated with memory 

accuracy (β= 0.11, SE = 0.099, Z = 1.09, p = .28). In contrast, on F trials, higher context 

evidence was associated with significantly worse memory accuracy (β= −0.11, SE = 0.002, 

Z = 61.23, p < .001). Thus, higher context evidence after an F cue was associated with a 

greater likelihood of successful forgetting. However, this effect was not significantly 

different between the two cue types (β€= −0.23, SE = 0.165, Z = 1.36, p = .173).

Given that item evidence was not associated with memory accuracy on F trials, whereas 

context evidence did (and the reverse was true for R trials), in a final analysis we computed a 

measure of Neural Separation defined by the difference between the context and item 

classifier evidence scores. A multilevel logistic regression was performed on recognition 

accuracy of individual trials, using memory Cue and Neural Separation as fixed effects, and 

participants as random intercepts for those effects (Fig. 2 c). Random slopes for the fixed 

effects were not included in the final model as they did not improve the model, Mixture χ2 

2,1 = 1.71, p = .31. The variance associated with the random intercept of participants was 

σ2 = 0.59, SD = 0.77.

There was a significant Cue x Neural Separation interaction (β€= −0.34, SE = 0.166, Z = 

2.07, p = .038). Specifically, in the F condition, higher neural separation between item and 

context was associated with significantly lower accuracy (β= −0.19, SE = 0.002, Z = 112.8, 

p < .001). In contrast, in the R condition, we did not find a significant relationship between 

neural separation and recognition accuracy (β€= 0.16, SE = 0.102, Z = 1.56, p = .119). Thus, 

higher neural separation was associated with successful DF, although it was not associated 

with successful recognition in the R condition.

4. Discussion

Prior research has made progress towards understanding the neural mechanisms that produce 

intentional forgetting in the item-method DF paradigm. However, none of the previous 

studies using this item-method paradigm examined the contribution of contextual 

information. The role of context processing has received substantial behavioral and neural 

support in list-method DF (for a review, see Sahakyan et al., 2013; Sahakyan, 2021), and this 

served as our motivation to examine if similar mechanisms might contribute to item-method 

DF. In order to assess the role of context in item-method DF we trained fMRI pattern 

classifiers to discriminate between item-information (using studied words) and contextual 

information (using trial-irrelevant scenes). We did not find any differences between neutral 

and emotional items, and we will not be discussing this variable further. However, we 

observed robust differences in the modulation of item and context information by DF 
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instructions. Specifically, the instruction to remember was associated with an increase in 

item processing, with no modulation of context. However, the instruction to forget an item 

was associated with a down-regulation of the item representation, along with an up-

regulation of context information from the initial preview phase.

Furthermore, the magnitude of the neural separation between the context and item signal 

following the instruction to forget was associated with successful forgetting on a trial-by-

trial basis. This dissociation does not reflect an artifact of classification, and thus instead can 

be interpreted as reflecting a true neural separation of context and item memory. This neural 

separation was not observed following the instruction to remember, however, where 

successful remembering was associated only with stronger item processing. Taken together, 

these results demonstrate a previously unappreciated role for context processing in the 

intentional forgetting of individual items.

In particular, we propose a new mechanism, which we term the unbinding hypothesis, to 

account for successful item-method DF. The hypothesis is similar in spirit to the one 

proposed to explain list-method DF (Sahakyan and Kelley, 2002). The fact that the 

magnitude of neural separation of items from their context observed during the DF phase 

was a significant predictor of subsequent DF success at the time of final recognition suggests 

a novel interpretation that the upregulation of contextual information and the concomitant 

downregulation of item information contribute to successful item-method DF. Together these 

processes may reflect an active unbinding of an item from its context (Hommel, 2004; Sadeh 

et al., 2012; Oberauer and Lewandowsky, 2016).

How might we think of this context signal? The signal is clearly scene specific; control 

analysis that showed that classifier evidence for the task-irrelevant face category remained 

unchanged across both R and F trials (Fig. 2a). The selective increase of scene information 

on F trials cannot be explained as a mere artifact of the classification procedure or a general 

increase of all non-word signals. Moreover, the signal is clearly related to successful 

forgetting; the observation that the relative degree of item and scene activity on F trials was 

associated with memory outcomes for these items demonstrates that this is a behaviorally 

relevant neural signal. One possibility, therefore, is that the contextual information from the 

preview phase was reinstated upon seeing the same words during the DF phase and that 

reinstatement was then used to facilitate forgetting; upregulation of context was associated 

with successful forgetting.

To bolster this interpretation, however, it would be necessary to identify the reactivation of 

specific scene stimuli that initially accompanied each item. Unfortunately, the experiment 

was not designed to allow for item-specific decoding of scenes. Moreover, participants were 

not instructed to form explicit associations between the words and specific intervening 

scenes during the preview phase, so it is unclear whether specific scene reactivation should 

even be expected. Further experimentation is thus necessary to understand the nature of this 

context signal, but regardless of its specificity, it is clear from our data that it is meaningfully 

related to directed forgetting.

Chiu et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



These findings also have implications for the debate between the active and passive accounts 

of DF. Passive accounts posit that successful forgetting occurs from a failure to engage 

rehearsal processes to strengthen the unwanted memories. Our results show an increase in 

item-specific processing on R trials and a decrease in item-specific processing on F trials, 

which appears consistent with the passive account of DF. However, item processing is only 

one component of episodic memory, and the evidence of context processing on these trials 

suggests an alternative interpretation. There was no evidence of context reactivation on R 
trials, suggesting a rehearsal process focused on the most recent encoding episode. However, 

the reactivation of initial study context on F trials implicates focus on the initial memory 

trace. Active accounts posit that successful forgetting occurs from the engagement of 

processes that deliberately weaken the unwanted memories. To distinguish between them, it 

is important to compare the trials where R-cued items are subsequently forgotten 

(“incidental forgetting”) and trials where F-cued items are subsequently forgotten 

(“intentional forgetting”). Typically, high accuracy is desired on tests of memory. However, 

considering the meaning of high and low accuracy in light of the goals of the task suggests 

that high accuracy for F items indicates that these items survived in memory despite the 

intention to forget them (i.e., unsuccessful DF). Likewise, low accuracy for F items indicates 

successful DF. By focusing on items that did not survive in memory, we can distinguish the 

active and passive accounts of DF. If subsequently forgotten F items show a similar neural 

profile as subsequently forgotten R items, this would be consistent with a passive account of 

DF. However, they do not show the same pattern. Neural separation was not only smaller 

overall for R trials than F trials, but greater forgetting for R items showed no relationship 

with neural separation between items and their context. In contrast, greater forgetting for F 
items (i.e. successful DF) was associated with greater neural separation between items and 

their context, suggesting the presence of an active unbinding process for F items that is not 

present for R items.

The current findings add to the growing body of literature indicating that item-method DF 

recruits active forgetting processes (Ludowig et al., 2010; Fawcett and Taylor, 2012, 2008; 

Lee et al., 2013; Wang et al., 2019).

Although our main goal of this investigation was to examine the role of contextual 

processing in item-method DF, we also examined the role of item-level processing. We 

found that in response to an F cue, there was a decrease in the neural signal associated with 

word processing. Such findings are inconsistent with the historically popular view that 

intentional forgetting occurs when participants not only terminate rehearsal of F items but 

also initiate selective rehearsal of other R items (see also Festini and Reuter-Lorenz, 2017). 

If in response to an F cue, participants use the post-cue period to rehearse previous R items, 

then the classifier evidence for the word information in our study should not have differed 

between the F and R trials. That is, participants would be selectively rehearsing previously 

presented words in either the F or R case, and this process would be signaled by an increase 

in word-related brain activity. The results are inconsistent with this account for F trials, as 

the word information decreased following the F cue. Thus, to account for the observed DF 

memory impairment, it is more parsimonious to assume some unbinding mechanism that 

separates the item from its (reinstated) context in order to forget the item.
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Conceptually, the unbinding hypothesis proposed in this investigation is similar to the 

mechanism proposed to account for list-method DF (Sahakyan and Kelley, 2002). However, 

we do not claim that it is the sole mechanism responsible for item-method DF as plenty of 

previous research has confirmed the role of encoding differences between the R and F items. 

We merely suggest that item-method DF not only reflects a failure to encode information, 

but it is also driven by impaired retrieval at test arising from the unbinding of items from 

their context during DF. Similar ideas have been entertained also in recent behavioral and 

eye-tracking studies, demonstrating that item-method DF may impair contextual information 

(Whitlock et al., 2020a; 2020b). Using object-scene pairings, Whitlock et al. demonstrated 

that the association between the scenes and the object was impaired by DF instructions, and 

that it was independent of item impairment, such that participants could recognize the object 

(i.e., failure of DF despite the F cue), and yet forget which background scene the object was 

previously paired with. Finally, multinomial modeling analyses that disentangle encoding 

and retrieval components of memory effects indicate that worse memory of F items is driven 

not only by impaired encoding of F items, but also by impaired retrieval, which presumably 

could be voluntarily controlled (Rummel et al., 2016; Marevic and Rummel, 2018; Marevic 

et al., 2018).

Our results may seem to be inconsistent with our recent findings in an item-method DF 

paradigm reported in Wang et al. (2019). In that study, fMRI pattern classifiers identified an 

increase in item information (faces and scenes in ventral temporal cortex) in response to F 
cues relative to R cues, whereas we observed a decrease in item information (words). We 

entertain two possibilities to address the seeming disparity in these results. First, unlike in 

the current study, context information was not manipulated or measured in Wang et al. 

(2019). Thus, it is unclear whether the upregulation of F items observed in their study 

reflects an increased neural representation of the item information per se (specific to face 

and scene memory items), or whether it might also reflect an upregulation of context 

information, or some combination of both. Both face and scene stimuli are visually complex 

and rich in pre-experimental associations and could conceivably become incorporated into 

the global mental context of the memory episode. In other words, perhaps the upregulation 

observed by Wang et al. (2019) is more akin to the upregulation of context found in the 

present study. Alternatively, the different findings for the item processing between these two 

studies may be due to a critical methodological difference. In the current study, the DF cue 

was acting on the second presentation of the item (the first exposure to the word happened 

during the preview phase). The second exposure to the item likely reactivated its initial 

memory trace (which would include both item and context information; Howard and 

Kahana, 2002; Diana et al., 2007; Hannula et al., 2013), making it the target of the DF cue. 

In the Wang et al. (2019) study, however, the DF cue was acting on the first presentation of 

the item, with no prior context to be reactivated, thus perhaps making the item representation 

itself the target of the DF cue. This interpretation is speculative but an intriguing target for 

future research.

5. Conclusions

Using fMRI pattern classification of item and context information in an item-method DF 

paradigm, we established that the instruction to forget is associated with an upregulation of 
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an item’s prior encoding context along with concomitant downregulation of that item’s 

representation, implicating a separation/unbinding of item from its context in response to 

intentional forgetting. Furthermore, a larger magnitude of that neural separation was 

associated with successful intentional forgetting. These results contribute an important 

advance on our understanding of the cognitive processes and neural mechanisms involved in 

controlled forgetting of individual items, which until now have largely focused on the item 

and neglected the role of context.
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Fig. 1. 
Study overview. (a) Participants underwent an initial preview phase in which they studied 

each word followed by a new set of three task-irrelevant scenes. Participants were asked to 

indicate whether the word was presented on the top or bottom half of the screen, and no 

response was required for the scenes. (b) Words were presented again, but without the 

scenes, followed by a memory cue (R: remember, F: forget). (c) At the end of the experiment 

a recognition confidence test was presented for all studied items plus novel foils. Memory 

recognition scores (AUC: area under the ROC) are shown for R and F items. Error bars 

indicate 95% CI of the difference score between remember and forget conditions. (For 

interpretation of the references to colour in this figure, the reader is referred to the web 

version of this article.)
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Fig. 2. 
Decoding of fMRI data from DF task (n = 24). (a) Trial-averaged classifier evidence time 

courses are shown for item (word), context (scene), and irrelevant (face) categories. Values 

are not shifted to account for hemodynamic lag but are baselined relative to the first scan of 

each trial. Ribbon thickness indicates SEM of the difference between R and F conditions. R: 

Remember; F: Forget. Item and DF cue presentations are diagrammed along the horizontal 

axis. (b) Cue-related changes in classifier evidence were computed by subtracting the pre-

cue scores (0 to 6 s) from the post-cue scores (8 to 14 s) on each trial. Small circles represent 

individual participants, and point estimates indicate group mean with 95% confidence 

intervals. ∗ P < .05. (c) Relationship between behavioral accuracy and post-cue neural 

separation (context minus item). Data are visualized by averaging across participants, with 

error bars representing 95% confidence intervals, although multilevel modeling was done on 

individual trials.
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