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A B S T R A C T   

Disulfidptosis refers to a specific programmed cell death process characterized by the accumulation of disulfides. 
It has recently been reported in several cancers. However, the impact of disulfidptosis-related long non-coding 
RNAs (lncRNAs) on malignant tumors has remained largely unknown. In the present work, we screened prog-
nostic disulfidptosis-related lncRNAs and studied their effects on lung adenocarcinoma. Relevant clinical data of 
lung adenocarcinoma cases were retrieved from The Cancer Genome Atlas (TCGA) database. RNA sequencing 
was used to identify differentially expressed disulfidptosis-related lncRNAs within lung adenocarcinoma. In 
addition, prognostic disulfidptosis-related lncRNAs were obtained through univariate Cox regression analysis. 
LASSO-COX was used to construct new disulfidptosis-related lncRNA signatures. Different statistical approaches 
were used to validate the practicability and accuracy of the disulfidptosis-related lncRNAs signatures. Further-
more, several bioinformatic approaches were used to study relevant heterogeneities in biological processes and 
pathways of diverse risk groups. Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) was 
conducted to analyze the expression of disulfidptosis-related lncRNAs. Finally, seven disulfidptosis-related 
lncRNA signatures were identified in lung adenocarcinoma cells. The prognosis prediction model constructed 
efficiently predicted patient survival. Subgroup analysis revealed significant differences in immune cell pro-
portion, including T follicular helper cells and M0 macrophages. In addition, in vitro experimental results 
demonstrated significant differences in disulfidptosis-related lncRNAs. Altogether, the six disulfidptosis-related 
lncRNA signatures could serve as a potential prognostic biomarker for lung adenocarcinoma. Furthermore, 
these can be used as a prediction model in individualized immunotherapy for lung adenocarcinoma.   

1. Introduction 

Lung cancer has emerged as one of the most common cancers 
worldwide and is associated with a high mortality rate [1]. Numerous 
studies have been ongoing to identify the best diagnostic approach and 
treatment strategy [2]. Non-small cell lung cancer (NSCLC) accounts for 
83% of all lung cancer cases, whereas lung adenocarcinoma (LUAD) 
represents the most frequent NSCLC subtype with the highest morbidity 
[3]. Although surgical lobectomy has remained the mainstay treatment 
for LUAD cases, the associated 5-year survival postoperatively is poor 
(10%–44%) [4]. In addition, as LUAD is always diagnosed at the 

metastatic or advanced stage, at which, although conventional chemo-
therapy, radiotherapy, and immunotherapy can be applied, insensitivity 
to drugs results in dismal survival [5]. Consequently, the need of the 
hour is to identify a prognosis prediction signature to effectively and 
reliably predict LUAD. This will assist in the early diagnosis of LUAD, 
resulting in its timely treatment to obtain optimal therapeutic outcomes. 

Researchers have reported that cells can undergo accidental cell 
death (ACD) and regulatory cell death (RCD) [6]. Apoptosis is related to 
several pathophysiological events, such as in vivo stabilization and 
tumor development [7]. Recently, numerous RCD modalities, such as 
necroptosis, apoptosis, ferroptosis, cuproptosis, cytoplasmic division, 
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immunogenic cell death, autophagy-dependent cell death, 
lysosome-dependent cell death, basal prolapse, reticulocyte death, and 
endogenous cell death, have attracted wide clinical attention [8,9]. 
Cancer cell apoptosis can be an effective strategy to target cell growth 
and survival pathways in the tumor microenvironment (TME) [10]. For 
instance, cell death inhibitor receptor-interacting protein kinase 1 
(RIPK1) has been reported to inhibit colorectal cancer, whereas its 
down-regulation has been known to reduce overall survival (OS) [11]. 
Ferroptosis can activate immune cells within tumors through the de-
livery of chemotactic signals; for example, ferroptosis inducers can 
inhibit anticancer immunotherapy [12]. Liu et al. reported a novel cell 
death type recently, namely, disulfidptosis [13]. They reported that 
excess intracellular cystine accumulation-induced disulfide stress in-
duces rapid cell death. It has been demonstrated that the accumulation 
of disulfide material in glucose-deficient tumor cells with SLC7A11 
upregulation disrupts disulfide bonding across cytoskeletal proteins, 
causing histone skeleton collapse and cell death. However, the effect of 
disulfidptosis in LUAD remains unknown. 

In the present work, we constructed a risk score of disulfidptosis- 
related lncRNAs to predict patient survival and guide clinical treat-
ment. Disulfidptosis-related lncRNAs were related to immune infiltra-
tion and survival. Next, differentially expressed genes (DEGs) were 
identified to construct the risk score, which well predicted immune 
infiltration, patient survival, immunotherapeutic response, and tumor 
mutation compliance. This work illustrated that disulfidptosis-related 
lncRNA patterns can efficiently predict LUAD prognostic outcome, im-
mune infiltration, as well as immunotherapeutic response. In all, our 
results provide novel insights into the immunotherapy of patients with 
LUAD. 

2. Materials and methods 

2.1. Datasets and patients 

Clinical data and gene expression data were obtained from three 
LUAD datasets from The Cancer Genome Atlas (TCGA) database. In 
total, data from 535 LUAD cases were included. 

2.2. Disulfidptosis-related lncRNA detection 

In line with the results of the previous study, Additional Table 1 lists 
the disulfidptosis-related mRNAs [13]. First, mRNA and lncRNA 
expression pattern data were collected from TCGA. Next, 
disulfidptosis-related lncRNA expression patterns were obtained using 
co-expression analysis [14]. R was used to study the relationship of 
lncRNA expression with disulfidptosis-related mRNA levels in LUAD 
samples. Pearson’s correlation coefficients were calculated to analyze 
the relation (P < 0.05; r > 0.40). 

2.3. Risk score verification 

The frequently adopted R package limma was used to analyze 
differentially expressed disulfidptosis-related lncRNAs and absolute 
log2 (fold change) > 1 and P < 0.05 criteria [4]. The endpoint of the 
study was OS. A disulfidptosis-related lncRNA model was established by 
univariate Cox regression analysis. A significant effect was obtained for 
hazard ratio (HR) > 1. 

Next, the relationship between differentially expressed lncRNAs 
(DElncs) and prognostic outcome was analyzed. LASSO Cox regression 
analysis was conducted to assess the suitability of DElncs in predicting 
the prognosis using the glmnet R package. The expression of key 
lncRNAs was measured, which along with LASSO regression co-
efficients, was used to determine the risk score [15]. Finally, we enrolled 
LUAD samples into the training cohort and categorized them into high- 
and low-risk groups for later analysis, with the median risk score set as 
the threshold. 

The power of our constructed prognosis prediction model was 
assessed by “survival” and SurvivalROC R packages [16]. In addition, 
the Kaplan–Meier log-rank test and “survival” package were used to 
evaluate the survival between the two risk groups. 

2.4. Prognosis analysis and nomogram establishment 

We next checked if the disulfidptosis-related lncRNA model was in-
dependent of different clinical factors, such as age, gender, clinical 
stage, and smoking, and if it could reliably predict OS. We performed 
univariate and multivariate Cox regression analyses on TCGA-derived 
LUAD datasets. Multivariate Cox regression was used to study inde-
pendent prognostic factors based on the prognosis nomogram plot 
drawn in R. 

2.5. Functional annotation 

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were conducted to determine the biological activities 
of selected lncRNAs. The abundance of these DElncs in the two groups 
from the TCGA database was studied by constructing a heatmap. Het-
erogeneities in biological activities in the two risk groups were analyzed 
by GSEA (http://software.broadinstitute.org/gsea/index.jsp). 

2.6. Somatic mutation analysis 

Somatic variant data of LUAD cases were preserved in the mutation 
annotation format (MAF) and analyzed using maftools [17]. Tumor 
mutation burden (TMB) scores of all LUAD cases were determined to 
analyze their relationship with the risk score. We calculated the TMB 
score as follows: (total mutations/total covered bases) × 106. The 
Kaplan–Meier analysis was conducted to study the application of TMB in 
predicting the prognosis of LUAD with R package [18,19]. 

2.7. Immunotherapy response and chemosensitivity prediction 

We applied the pRRophetic R package to predict the chemo-
sensitivity of both risk groups from the LUAD cohorts. Anti-tumor 

Table 1 
The lists of 10 disulfidptosis-related mRNAs.  

ID Gene Name 

OXSM 3-oxoacyl-ACP synthase, mitochondrial 
NDUFS1 NADH:ubiquinone oxidoreductase core subunit S1 
NDUFA11 NADH:ubiquinone oxidoreductase subunit A11 
NCKAP1 NCK associated protein 1 
NUBPL NUBP iron-sulfur cluster assembly factor, mitochondrial 
GYS1 glycogen synthase 1 
LRPPRC leucine rich pentatricopeptide repeat containing 
RPN1 ribophorin I 
SLC3A2 solute carrier family 3 member 2 
SLC7A11 solute carrier family 7 member 11  

Table 2 
The lists of 10 disulfidptosis-related lncRNAs.  

ID Gene Name 

ABCC6P2 ATP binding cassette subfamily C member 6 pseudogene 2 (ABCC6P2) 
EMSLR E2F1 mRNA stabilizing lncRNA (EMSLR) 
LINC00987 long intergenic non-protein coding RNA 987 (LINC00987) 
LINC01842 long intergenic non-protein coding RNA 1842 (LINC01842) 
LINC02709 long intergenic non-protein coding RNA 2709 (LINC02709) 
POLH-AS1 POLH antisense RNA 1(POLH-AS1) 
SSR4P1 signal sequence receptor subunit 4 pseudogene 1(SSR4P1) 
SVIL-AS1 SVIL antisense RNA 1(SVIL-AS1) 
ZFPM2- 

AS1 
ZFPM2 antisense RNA 1 (ZFPM2-AS1) 

LINC00847 long intergenic non-protein coding RNA 847 (LINC00847)  

S. Liu et al.                                                                                                                                                                                                                                       

http://software.broadinstitute.org/gsea/index.jsp


Non-coding RNA Research 9 (2024) 772–781

774

therapeutics such as ABT-737, axitinib, AZD1208, BMS-754807, dor-
amapimod, GSK269962A, JQ1, NU7741, PRT062607, ribociclib, 
SB216763, SB-505124, Tozasertib, and ZM447439 were frequently 
identified. Furthermore, their half-maximal inhibitory concentrations 
(IC50) were analyzed [20]. In the computational framework, TIDE 
(http://tide.dfci.harvard.edu/) stands for tumor immune dysfunction 
and exclusion which can be used to assess tumor immune escape based 
on the gene expression in tumor tissues [21]. 

2.8. Reverse transcription-quantitative PCR (RT-qPCR) 

A total of 26 LUAD samples were collected from the Affiliated Hos-
pital of Qingdao University. The study was approved by the Ethics 
Committee of the Affiliated Hospital of Qingdao University. Primer se-
quences used are listed in Additional Table 2. Glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH) was used as the endogenous reference 
in qPCR. The 2–ΔΔCq approach was used to determine the relative 
expression of seven signature lncRNAs [22,23]. 

2.9. Statistical analysis 

Different statistical methods were applied for data analysis. Log-rank 
tests and the Kaplan–Meier survival analysis were applied to determine 
the prognostic significance and compare patient survival among diverse 
subgroups of every dataset. Student’s t-test was used to analyze normally 
distributed data, whereas the Wilcoxon test was applied to non-normally 
distributed data. The Kruskal–Wallis test was used as the non-parametric 

test for comparison among several groups. Spearman’s correlation 
analysis was conducted to explore relationships between variables. P <
0.05 represented statistical significance. 

3. Results 

3.1. Disulfidptosis-related lncRNA detection 

The literature reports 10 disulfidptosis-related lncRNAs (Table 1) 
[13]. We applied the mean expression >0.5 thresholds to obtain sig-
nificant lncRNAs, excluding samples with low expression (Fig. 1A). Next 
relationships of the expression of disulfidptosis-related mRNAs and 
lncRNAs levels within LUAD samples were evaluated by limma package 
in R, with P < 0.05 and correlation coefficient >0.4 as thresholds. 
Finally, 93 disulfidptosis-related lncRNAs were obtained. 

3.2. Prognostic disulfidptosis-related lncRNA model establishment and 
verification for TCGA cohort 

In line with the LASSO Cox regression model, Fig. 1B displays the 10 
most significant DElncs. In all, 10 OS-related disulfidptosis-related 
lncRNAs were acquired by distinctive formulas, following which risk 
scores of different samples were determined (Fig. 1C). The CIBERSORT 
analysis tool was used to study the intricate relationship between 
disulfidptosis-related genes and disulfidptosis-related lncRNAs levels. 
For instance, SLC3A2 and SLC7A11 were conversely related to ABCC6P2 
(Fig. 1D), and seven lncRNAs were screened, whereas EMSLR, 

Fig. 1. Identification of disulfidptosis-related lncRNAs in The Cancer Genome Atlas cohort. (A) Sankey diagram of disulfidptosis-related lncRNAs. (B) LASSO co-
efficient profiles of disulfidptosis-related lncRNAs. (C) Partial likelihood deviance with change in the value of log(λ). (D) Forest plot of prognosis-related lncRNAs. (E) 
Heatmap showing the correlation between the 7 prognostic-related lncRNAs and 10 mRNAs. 
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LincRNA01842, and LincRNA02709 were excluded due to insignificant 
correlation. 

The median risk score was used to categorize 513 LUAD cases into 
high- (n = 234) and low-risk (n = 279) groups. Fig. 2A depicts that LUAD 
cases with high-risk scores had markedly increased mortality. The 
mortality risk increased with an elevation in the risk score, whereas the 
survival rate decreased (Fig. 2B and C). The risk heatmap displayed the 
expression patterns of lncRNAs between the two risk groups (Fig. 2D). 
The 513 TCGA-LUAD samples with sufficient data were randomized into 
training and validation cohorts; survival status along with heat map 
distribution of the training cohort is shown in Fig. 2E–H. Similar results 
were obtained for the validation cohort (Fig. 2I-L). The levels of seven 
disulfidptosis-related lncRNAs were markedly related to certain clinical 
factors, such as risk score and clinical stage in the univariate Cox hazard 
analysis and to age, clinical stage, tobacco, and risk score in multivariate 
Cox hazard analysis (Fig. 3A and B). The prognostic prediction model 
revealed significant differences in the expression of ABCC6P2, CTC- 
205M6.5, LINC00987, POLH-AS1, SSR4P1, SVIL-AS1, and ZFPM2-AS1. 

3.3. Independent prognosis analysis of OS and predictive nomogram 
establishment in LUAD 

Fig. 3C displays the 5-year survival rate. The area under the curve 
(AUC) values were calculated to compare the diagnostic efficiency of 
additional basic factors and risk scores among LUAD cases. For the 1-, 3-, 
and 5-year survival rates, the AUC values were 0.662, 0.71, and 0.659, 
respectively. Later, we analyzed if clinical factors such as age, gender, 
risk scores, smoking, and clinical stage independently predicted prog-
nosis based on multivariate Cox regression along with the decision curve 
analysis. We found that risk score and clinical stage independently 
predicted OS (Fig. 3D). Moreover, the AUC values of the risk score and 
clinical stage models were 0.71 and 0.698, respectively. In addition, 
DCA was conducted to assess the clinical applicability of our prediction 
approach. The DCA results demonstrated that ROC achieved superior 
net benefits and a wide range of threshold probabilities in predicting 
patient survival (Fig. 3E). Moreover, our constructed nomogram resul-
ted in superior benefits to the others signatures. The increased values 
relative to additional factors verified the better diagnostic efficiency of 

Fig. 2. Risk model for outcome prediction. (A, E, I) Kaplan–Meier curves for the overall survival of patients in the high- and low-risk groups in the TCGA-LUAD 
cohort, training cohort, and test cohort. (B, F, J) The distribution of risk scores for each patient in the TCGA-LUAD cohort, training cohort, and test cohort. (C, 
G, K) The distribution of overall survival status for every patient in the TCGA-LUAD cohort, training cohort, and test cohort. (D, H, L) Heatmap showing the 
expression of seven disulfidptosis-related lncRNAs in the TCGA-LUAD cohort, training cohort, and test cohort. 
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our constructed disulfidptosis-related lncRNA signatures than the 
additional prognostic factors of LUAD cases. In addition, we built a 
nomogram to predict the OS in LUAD cases using independent factors 
obtained by a multivariate Cox risk regression model (Fig. 3F). The 1-, 3- 
, and 5-year calibration curves for our nomogram approached the 
standard curve, validating the favorable prediction performance of the 
model (Fig. 3G). 

3.4. Construction of high risk score and survival with negative correlation 
in different clinical stages 

The TCGA-LUAD cases were divided into high- and low-risk groups 
based on the risk scores. The prognosis analysis showed that high-risk 
cases had the poorest survival in clinical stages I and II (Fig. 4A). 
Thereafter, we pooled the data of additional clinical stages of LUAD 
cases and compared them between the two risk groups for prognosis (p 

Fig. 3. Prognosis value of novel disulfidptosis-related lncRNA signatures. (A) Result of univariate Cox regression analysis. (B) Result of multivariate Cox regression 
analysis. (C) Accuracy of risk signature in predicting 1-, 3-, and 5-year ROC curves. (D) ROC curves of risk score and clinical characteristics. (E) Time-dependent C- 
index of the model compared with stage, age, gender for OS of patients with LUAD. (F) Nomogram uses a combination of clinicopathological variables and risk score 
to predict 1-, 3-, and 5-year overall survival. (G) Calibration curves for 1-, 3-, and 5-year overall survival. 
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< 0.001, Fig. 4B). Therefore, high-risk LUAD cases had poor prognostic 
outcomes. 

3.5. Enrichment analysis of disulfidptosis-related lncRNA signature and 
PCA analysis 

The scatterplot three-dimensional (3D) program was used to capture 
3D images for PCA in training (Fig. 5A), validation (Fig. 5B), and total 
LUAD cohort sets (Fig. 5C). The cohort diagram-based GO annotation 
revealed significant differences in biological process (BP), molecular 
functions (MF), and cellular components (CC) in the two groups. 
Disulfidptosis-related lncRNAs were largely associated with the “ami-
noglycoside antibiotic metabolic process,” “polyketide metabolic pro-
cess,” “doxorubicin metabolic process,” “progesterone metabolic 
process,” “quinone metabolic process,” “glycoside metabolic process,” 
“tertiary alcohol metabolic process,” and “hormone metabolic process” 
(Fig. 5D and E). The bubble plot-based KEGG enrichment analysis 
revealed that disulfidptosis-related lncRNAs were primarily enriched in 
“steroid hormone biosynthesis,” “arachidonic acid metabolism,” “thy-
roid hormone synthesis,” “bile secretion,” “complement and coagulation 
cascades,” “metabolism of xenobiotics by cytochrome P450,” “folate 
biosynthesis,” and “chemical carcinogenesis” (Fig. 5F). The GSEA in 
both risk groups was analyzed based on several GSEA diagrams using the 
screening criteria below: FDR <0.25 and NOM P < 0.05 (Fig. 5G and H). 
The five most significant functions related to the high-risk group 
included “oxidative phosphorylation,” “steroid hormone biosynthesis,” 
“Parkinson’s disease,” “pentose and glucuronate interconversions,” and 
“ribosomes.” In addition, the five most significant functions related to 
the low-risk group included “hematopoietic cell lineage,” “cytokine re-
ceptor interaction,” “primary immunodeficiency,” and “intestinal im-
mune network for IgA production.” 

3.6. TMB analysis and survival analysis of TMB 

TME is previously suggested to be associated with LUAD distant 
metastases, drug sensitivity, and immunotherapeutic response [24–26]. 
Stromal and immune cell levels within TME can be represented by 
stromal score and immune score, respectively. We found that low-risk 
cases had increased proportions of stromal cells (Fig. 6A). Thereafter, 
we applied ssGSEA to investigate the infiltration levels of 16 immune 
cells and obtained scores of 13 immunological functions to assess the 

relationship of immune infiltration with risk mode. High-risk cases had 
increased T regulatory cells (Tregs), and heightened infiltration of 
macrophages M0, whereas low-risk cases showed increased infiltration 
of CD4+ T memory resting cells and enhanced immunological functions 
such as those of DCs, B cells, CD8+ T cells, T cell co-inhibitory molecules, 
and Th2 cells (Fig. 6B–D). The distribution of somatic mutation genes in 
both risk-score subgroups was analyzed. In Fig. 6E, cases showing 
high-risk scores exhibited a higher frequency of somatic mutations 
compared with low-risk scores counterparts. High-risk cases displayed 
higher TMB relative to low-risk counterparts (Fig. 6F). Subsequently, we 
pooled the data of H-TMB groups and compared them against the L-TMB 
group to analyze patient prognosis, with p-value = 0.021 (Fig. 6G). 
Later, LUAD cases were divided into four molecular subtype groups 
according to the TMB levels and risk scores, including TMB high + high 
risk, TMB high + low risk, TMB low + high risk, and TMB low + low risk. 
The prognosis analysis revealed that TMB high + high-risk cases showed 
the poorest survival than the remaining three groups (Fig. 6H). The ef-
fect of infiltration of tumor immune cells on gene levels in cancer 
samples was analyzed using the TIDE scores, which were used for pre-
dicting immune checkpoint blockade therapeutic responses. High-risk 
cases displayed an increased TIDE score (Fig. 6I). 

3.7. Prognostic gene levels and drug sensitivity of cancer cells 

We next evaluated whether lncRNA signatures could be applied to 
systemic treatments. The drug IC50 values were determined using the 
pRRophetic algorithm to predict the function of disulfidptosis-related 
lncRNAs in chemotherapeutic response in both risk groups. Thus, 
LUAD cases exhibited sensitivity to 14 conventional anti-tumor drugs 
(Fig. 7). 

3.8. Validation of lncRNA prognostic signatures 

We conducted qRT-PCR to evaluate the levels of seven prognostic 
disulfidptosis-related lncRNAs in A549 cells and compared them with 
those in healthy BEAS-2B lung cells. The qRT-PCR analysis demon-
strated that the expression of CTC-205M6.5, Linc00987, SSR4P1, SVIL- 
AS1, and ZFPM2-AS1 genes was remarkably elevated in A549 cells than 
in normal cells, whereas the expression of ABCC6P2 and POLH-AS1 
genes showed an opposite trend (Fig. 8). 

Fig. 4. Survival rates during different periods. (A, B) Mortality rate is higher in both early- and late-stage high-risk patients with LUAD.  
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4. Discussion 

Among the different NSCLC subtypes, LUAD displays the highest 
prevalence. Although the clinical and scientific world has witnessed 
tremendous achievements in the screening, diagnosis, and treatment of 
LUAD, little is known about its pathogenic mechanism due to the asso-
ciated complex molecular dynamics and genetics [27]. LncRNAs are 

non-coding gene biomarkers that have been implicated in tumorigenesis 
and cancer development, such as in LUAD [28,29]. However, informa-
tion on disulfidptosis-related lncRNAs that can predict LUAD prognostic 
outcomes remains unclear. Therefore, we constructed a prognosis model 
by detecting disulfidptosis-related lncRNAs for predicting the OS of 
LUAD cases. 

In total, 93 disulfidptosis-related lncRNAs were obtained through 

Fig. 5. Gene enrichment analysis. (A) PCA of disulfidptosis-related lncRNA expression in the training cohort. (B) PCA of disulfidptosis-related lncRNA expression in 
the test cohort. (C) PCA of disulfidptosis-related lncRNA gene expression in the TCGA-LUAD cohort. (D, E) GO enrichment analysis of disulfidptosis-related lncRNAs. 
(F) KEGG enrichment analysis of disulfidptosis-related lncRNAs. (G, H) KEGG pathway analysis for high- and low-risk LUAD patients. 
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correlation analysis. Univariate Cox regression analysis revealed 10 
prognostic disulfidptosis-related lncRNAs for LUAD. Dimensionality 
reduction was completed with Lasso regression analysis to avoid over-
fitting. In addition, seven disulfidptosis-related lncRNA (showing the 
lowest Akaike Information Criterion [AIC] values)-based signatures 
were constructed using the multivariate Cox regression analysis. The 
LUAD cases were categorized into low- and high-risk groups according 
to their median risk scores. Using a combination of univariate and 
multivariate Cox regression analyses, the risk score was applied to 
independently predict LUAD prognosis. Later, AUCs were determined to 
verify the discrimination and accuracy of lncRNA signatures. Further-
more, the multivariate regression model was constructed to directly 
reflect the function of risk scores in OS prognosis. 

ABCC6P2 has been previously suggested to affect the pseudox-
anthoma elasticum phenotype [30]. Moreover, CTC-205M6 indepen-
dently predicted the prognosis of clear cell renal cell carcinoma patients 
[31]. The reduced levels of lncRNA LINC00987 in LUAD predict poor 
prognosis and decreased immunotherapy response [32]. Emerging evi-
dence has suggested that POLH-AS1 can be used as a prognostic and 
survival marker in patients with hepatocellular carcinoma [33,34]. 
SVIL-AS1 suppressed chemoresistance by sponging miR-103a while 

increasing the levels of ICE1, and it could be the possible anti-LUAD 
chemotherapeutic target [35]. Han et al. demonstrated that 
ZFPM2-AS1 promoted cell growth, migration, and 
epithelial-to-mesenchymal transition of LUAD cells [36]. However, the 
effects of lncRNA SSR4P1 are unclear. Consequently, more research on 
these lncRNAs is warranted to develop new strategies to diagnose and 
treat LUAD. 

Tumor-associated immune response exerts a critical effect on cell 
migration and infiltration within TME. Disulfidptosis and lncRNAs are 
important regulatory factors and components of tumor-associated im-
mune responses [37,38]. Our immune-related GSEA results revealed 
that metabolic pathways and immune system processes were mostly 
related to low-risk groups relative to the high-risk counterparts, thereby 
indicating that the low-risk groups displayed disulfidptosis-related 
anticancer immunity, finally promoting LUAD survival. 

The functions of lncRNAs have been increasingly discovered in 
recent years, with their functions being studied in disulfidptosis in 
anticancer treatment. However, the relationships of lncRNAs with 
disulfidptosis should be further analyzed, in particular in LUAD. In the 
present work, we obtained 10 ferroptosis-related lncRNAs from TCGA. 
We next analyzed the functions of these lncRNAs within metabolic 

Fig. 6. Tumor immune microenvironment analysis and immunotherapy response. (A) The ESTIMATE, immune, and stromal scores for the tumor microenvironment 
of patients with LUAD in high- and low-risk groups. (B, C) The ssGSEA scores of immune cells and immune functions in the two risk groups. (D) Proportions of 22 
tumor infiltrating immune cells in individual LUAD patients. (E) Waterfall plot of somatic mutation landscape of low- and high-risk groups. (F) TMB for different risk 
subgroups. (G) The Kaplan–Meier survival curve reveals the OS rate of patients in H-TMB and L-TMB groups. (H) The Kaplan–Meier survival curve shows the OS rate 
of patients in the H-TMB + high-risk, H-TMB + low-risk, L-TMB + high risk, and L-TMB + low risk groups. (I) Differences in TIDE score in high and low-risk groups. 
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pathways and immune responses. 
Our study had certain limitations. First, we only obtained TCGA- 

derived data to construct the disulfidptosis-related lncRNA prognosis 
model and verify it. In addition, only a few experiments were conducted 
to detect the expression of detected disulfidptosis-related lncRNAs 
within clinical cells and tissues. Consequently, more in vitro experiments 
are warranted to elucidate the mechanisms underlying the functions of 
disulfidptosis-related lncRNAs in LUAD. 

5. Conclusion 

Six prognostic disulfidptosis-related lncRNAs related to immune re-
sponses in LUAD were detected and verified. The findings demonstrated 
lncRNAs as possible prognostic biomarkers and novel treatment 

strategies targeting ferroptosis, which can improve the prognosis of 
patients with LUAD. 
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S. Liu et al.                                                                                                                                                                                                                                       

http://www.cancer.gov/tcga


Non-coding RNA Research 9 (2024) 772–781

781

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

Not applicable. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ncrna.2024.03.006. 

References 

[1] R.L. Siegel, K.D. Miller, N.S. Wagle, A. Jemal, Cancer statistics, 2023, CA A Cancer 
J. Clin. 73 (1) (2023) 17–48, https://doi.org/10.3322/caac.21763. PMID: 
36633525. 

[2] S.J. Adams, E. Stone, D.R. Baldwin, R. Vliegenthart, P. Lee, F.J. Fintelmann, Lung 
cancer screening, Lancet 401 (10374) (2023) 390–408, https://doi.org/10.1016/ 
S0140-6736(22)01694-4. PMID: 36563698. 

[3] Y. Wang, Z. Wang, C. Shao, G. Lu, M. Xie, J. Wang, et al., Melatonin may suppress 
lung adenocarcinoma progression via regulation of the circular noncoding RNA 
hsa_circ_0017109/miR-135b-3p/TOX3 axis, Published Online First: 2022/06/07, 
J. Pineal Res. (2022) e12813, https://doi.org/10.1111/jpi.12813. PMID: 
35661247. 

[4] Y. Wang, G. Lu, X. Xue, M. Xie, Z. Wang, Z. Ma, et al., Characterization and 
validation of a ferroptosis-related LncRNA signature as a novel prognostic model 
for lung adenocarcinoma in tumor microenvironment, Front. Immunol. 13 (2022) 
903758, https://doi.org/10.3389/fimmu.2022.903758. PMID: 36016939. 

[5] T.V. Denisenko, I.N. Budkevich, B. Zhivotovsky, Cell death-based treatment of lung 
adenocarcinoma, Cell Death Dis. 9 (2) (2018) 117, https://doi.org/10.1038/ 
s41419-017-0063-y. PMID: 29371589. 

[6] C. Nossing, K.M. Ryan, 50 years on and still very much alive: ’Apoptosis: a basic 
biological phenomenon with wide-ranging implications in tissue kinetics’, Br. J. 
Cancer 128 (3) (2023) 426–431, https://doi.org/10.1038/s41416-022-02020-0. 
PMID: 36369364. 

[7] E. Koren, Y. Fuchs, Modes of regulated cell death in cancer, Cancer Discov. 11 (2) 
(2021) 245–265, https://doi.org/10.1158/2159-8290.CD-20-0789. PMID: 
33462123. 

[8] L. Galluzzi, I. Vitale, S.A. Aaronson, J.M. Abrams, D. Adam, P. Agostinis, et al., 
Molecular mechanisms of cell death: recommendations of the nomenclature 
committee on cell death 2018, Cell Death Differ. 25 (3) (2018) 486–541, https:// 
doi.org/10.1038/s41418-017-0012-4. PMID: 29362479. 

[9] D. Tang, R. Kang, T.V. Berghe, P. Vandenabeele, G. Kroemer, The molecular 
machinery of regulated cell death, Cell Res. 29 (5) (2019) 347–364, https://doi. 
org/10.1038/s41422-019-0164-5. PMID: 30948788. 

[10] B.A. Carneiro, W.S. El-Deiry, Targeting apoptosis in cancer therapy, Nat. Rev. Clin. 
Oncol. 17 (7) (2020) 395–417, https://doi.org/10.1038/s41571-020-0341-y. 
PMID: 32203277. 

[11] X. Feng, Q. Song, A. Yu, H. Tang, Z. Peng, X. Wang, Receptor-interacting protein 
kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal 
cancer, Neoplasma 62 (4) (2015) 592–601, https://doi.org/10.4149/neo_2015_ 
071. PMID: 25997957. 

[12] A.D. Garg, P. Agostinis, Cell death and immunity in cancer: from danger signals to 
mimicry of pathogen defense responses, Immunol. Rev. 280 (1) (2017) 126–148, 
https://doi.org/10.1111/imr.12574. PMID: 29027218. 

[13] X. Liu, L. Nie, Y. Zhang, Y. Yan, C. Wang, M. Colic, et al., Actin cytoskeleton 
vulnerability to disulfide stress mediates disulfidptosis, Nat. Cell Biol. 25 (3) 
(2023) 404–414, https://doi.org/10.1038/s41556-023-01091-2. PMID: 36747082. 

[14] M. Yuan, Y. Wang, Q. Sun, S. Liu, S. Xian, F. Dai, et al., Identification of a nine 
immune-related lncRNA signature as a novel diagnostic biomarker for 
hepatocellular carcinoma, BioMed Res. Int. 2021 (2021) 9798231, https://doi.org/ 
10.1155/2021/9798231. PMID: 33506049. 

[15] D. Zhou, X. Liu, X. Wang, F. Yan, P. Wang, H. Yan, et al., A prognostic nomogram 
based on LASSO Cox regression in patients with alpha-fetoprotein-negative 
hepatocellular carcinoma following non-surgical therapy, BMC Cancer 21 (1) 
(2021) 246, https://doi.org/10.1186/s12885-021-07916-3. PMID: 33685417. 

[16] Y. Lai, Y. Wang, Y. Wu, M. Wu, S. Xing, Y. Xie, et al., Identification and validation 
of serum CST1 as a diagnostic marker for differentiating early-stage non-small cell 
lung cancer from pulmonary benign nodules, Cancer Control 29 (2022) 
10732748221104661, https://doi.org/10.1177/10732748221104661. PMID: 
35653624. 

[17] A. Mayakonda, D.C. Lin, Y. Assenov, C. Plass, H.P. Koeffler, Maftools: efficient and 
comprehensive analysis of somatic variants in cancer, Genome Res. 28 (11) (2018) 
1747–1756, https://doi.org/10.1101/gr.239244.118. PMID: 30341162. 

[18] D.R. Robinson, Y.M. Wu, R.J. Lonigro, P. Vats, E. Cobain, J. Everett, et al., 
Integrative clinical genomics of metastatic cancer, Nature 548 (7667) (2017) 
297–303, https://doi.org/10.1038/nature23306. PMID: 28783718. 

[19] S. Zhao, W. Ji, Y. Shen, Y. Fan, H. Huang, J. Huang, et al., Expression of hub genes 
of endothelial cells in glioblastoma-A prognostic model for GBM patients 
integrating single-cell RNA sequencing and bulk RNA sequencing, BMC Cancer 22 
(1) (2022) 1274, https://doi.org/10.1186/s12885-022-10305-z. PMID: 36474171. 

[20] P. Geeleher, N.J. Cox, R.S. Huang, Clinical drug response can be predicted using 
baseline gene expression levels and in vitro drug sensitivity in cell lines, Genome 
Biol. 15 (3) (2014) R47, https://doi.org/10.1186/gb-2014-15-3-r47. PMID: 
24580837. 

[21] H. Chi, G. Peng, J. Yang, J. Zhang, G. Song, X. Xie, et al., Machine learning to 
construct sphingolipid metabolism genes signature to characterize the immune 
landscape and prognosis of patients with uveal melanoma, Front. Endocrinol. 13 
(2022) 1056310, https://doi.org/10.3389/fendo.2022.1056310. PMID: 
36568076. 

[22] Y. Wang, R. Xu, D. Zhang, T. Lu, W. Yu, Y. Wo, et al., Circ-ZKSCAN1 regulates 
FAM83A expression and inactivates MAPK signaling by targeting miR-330-5p to 
promote non-small cell lung cancer progression, Transl. Lung Cancer Res. 8 (6) 
(2019) 862–875, https://doi.org/10.21037/tlcr.2019.11.04. PMID: 32010565. 

[23] Y. Shi, Y. Zhao, Y. Wang, An inflammatory response-related gene signature can 
predict the prognosis and impact the immune status of lung adenocarcinoma, 
Cancers 14 (23) (2022), https://doi.org/10.3390/cancers14235744. PMID: 
36497225. 

[24] E.S.D. Dias, G.B. Borba, J.R. Beal, G. Botrus, A. Osawa, S.E.A. Araujo, et al., 
Response to abemaciclib and immunotherapy rechallenge with nivolumab and 
ipilimumab in a heavily pretreated TMB-H metastatic squamous cell lung cancer 
with CDKN2A mutation, PIK3CA amplification and TPS 80%: a case report, Int. J. 
Mol. Sci. 24 (4) (2023), https://doi.org/10.3390/ijms24044209. PMID: 36835617. 

[25] B. Ricciuti, M.M. Awad, Atezolizumab plus bevacizumab in TMB-high non-small 
cell lung cancers-the hunt for predictive biomarkers to optimize treatment 
selection, JAMA Oncol. 9 (3) (2023) 353–354, https://doi.org/10.1001/ 
jamaoncol.2022.5801. PMID: 36520420. 

[26] Q. Han, S. Liu, Z. Cui, Q. Wang, T. Ma, L. Jiang, et al., Case report and literature 
review: diagnosis, tailored genetic counseling and cancer prevention for a locally 
advanced dMMR/MSI-H/TMB-H lung cancer patient with concurrent lynch 
syndrome mediated by a rare PMS2 splicing variant (c.1144+1G>A), Front. Genet. 
12 (2021) 799807, https://doi.org/10.3389/fgene.2021.799807. PMID: 
35116055. 

[27] Y. Wang, T. Lu, Y. Wo, X. Sun, S. Li, S. Miao, et al., Identification of a putative 
competitive endogenous RNA network for lung adenocarcinoma using TCGA 
datasets, PeerJ 7 (2019) e6809, https://doi.org/10.7717/peerj.6809. PMID: 
31065463. 

[28] W. Ren, Y. Yuan, X. Chen, H. Zhai, Y. An, L. Tang, et al., Identification and 
validation of long non-coding RNA LCIIAR as a biomarker in LUAD, Front. Oncol. 
12 (2022) 933071, https://doi.org/10.3389/fonc.2022.933071. PMID: 35860557. 

[29] Y. Liu, L. Liang, L. Ji, F. Zhang, D. Chen, S. Duan, et al., Potentiated lung 
adenocarcinoma (LUAD) cell growth, migration and invasion by lncRNA DARS- 
AS1 via miR-188-5p/KLF12 axis, Aging (Albany NY) 13 (19) (2021) 23376–23392, 
https://doi.org/10.18632/aging.203632. PMID: 34644678. 

[30] M.K. Kringen, C. Stormo, J.P. Berg, S.F. Terry, C.M. Vocke, S. Rizvi, et al., Copy 
number variation in the ATP-binding cassette transporter ABCC6 gene and ABCC6 
pseudogenes in patients with pseudoxanthoma elasticum, Mol Genet Genomic Med 
3 (3) (2015) 233–237, https://doi.org/10.1002/mgg3.137. PMID: 26029710. 

[31] D. Shi, Q. Qu, Q. Chang, Y. Wang, Y. Gui, D. Dong, A five-long non-coding RNA 
signature to improve prognosis prediction of clear cell renal cell carcinoma, 
Oncotarget 8 (35) (2017) 58699–58708, https://doi.org/10.18632/ 
oncotarget.17506. PMID: 28938589. 

[32] J. Ma, X. Lin, X. Wang, Q. Min, T. Wang, C. Tang, Reconstruction and analysis of 
the immune-related LINC00987/A2M Axis in lung adenocarcinoma, Front. Mol. 
Biosci. 8 (2021) 644557, https://doi.org/10.3389/fmolb.2021.644557. PMID: 
33987201. 

[33] Z. Zhang, W. Gao, X. Tan, T. Deng, W. Zhou, H. Jian, et al., Construction and 
verification of a novel circadian clock related long non-coding RNA model and 
prediction of treatment for survival prognosis in patients with hepatocellular 
carcinoma, BMC Cancer 23 (1) (2023) 57, https://doi.org/10.1186/s12885-023- 
10508-y. PMID: 36647032. 

[34] X. Lin, S. Yang, A prognostic signature based on the expression profile of the 
ferroptosis-related long non-coding RNAs in hepatocellular carcinoma, Adv. Clin. 
Exp. Med. 31 (10) (2022) 1099–1109, https://doi.org/10.17219/acem/149566. 
PMID: 35581934. 

[35] L. Guo, L. Ding, J. Tang, Identification of a competing endogenous RNA axis "SVIL- 
AS1/miR-103a/ICE1" associated with chemoresistance in lung adenocarcinoma by 
comprehensive bioinformatics analysis, Cancer Med. 10 (17) (2021) 6022–6034, 
https://doi.org/10.1002/cam4.4132. PMID: 34264003. 

[36] S. Han, D. Cao, J. Sha, X. Zhu, D. Chen, LncRNA ZFPM2-AS1 promotes lung 
adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2, Mol. 
Oncol. 14 (5) (2020) 1074–1088, https://doi.org/10.1002/1878-0261.12631. 
PMID: 31919993. 

[37] P. Zheng, C. Zhou, Y. Ding, S. Duan, Disulfidptosis: a new target for metabolic 
cancer therapy, J. Exp. Clin. Cancer Res. 42 (1) (2023) 103, https://doi.org/ 
10.1186/s13046-023-02675-4. PMID: 37101248. 

[38] C. Qi, J. Ma, J. Sun, X. Wu, J. Ding, The role of molecular subtypes and immune 
infiltration characteristics based on disulfidptosis-associated genes in lung 
adenocarcinoma, Aging (Albany NY) 15 (11) (2023) 5075–5095, https://doi.org/ 
10.18632/aging.204782. PMID: 37315289. 

S. Liu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.ncrna.2024.03.006
https://doi.org/10.1016/j.ncrna.2024.03.006
https://doi.org/10.3322/caac.21763
https://doi.org/10.1016/S0140-6736(22)01694-4
https://doi.org/10.1016/S0140-6736(22)01694-4
https://doi.org/10.1111/jpi.12813
https://doi.org/10.3389/fimmu.2022.903758
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.1038/s41419-017-0063-y
https://doi.org/10.1038/s41416-022-02020-0
https://doi.org/10.1158/2159-8290.CD-20-0789
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1038/s41418-017-0012-4
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41571-020-0341-y
https://doi.org/10.4149/neo_2015_071
https://doi.org/10.4149/neo_2015_071
https://doi.org/10.1111/imr.12574
https://doi.org/10.1038/s41556-023-01091-2
https://doi.org/10.1155/2021/9798231
https://doi.org/10.1155/2021/9798231
https://doi.org/10.1186/s12885-021-07916-3
https://doi.org/10.1177/10732748221104661
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1038/nature23306
https://doi.org/10.1186/s12885-022-10305-z
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.3389/fendo.2022.1056310
https://doi.org/10.21037/tlcr.2019.11.04
https://doi.org/10.3390/cancers14235744
https://doi.org/10.3390/ijms24044209
https://doi.org/10.1001/jamaoncol.2022.5801
https://doi.org/10.1001/jamaoncol.2022.5801
https://doi.org/10.3389/fgene.2021.799807
https://doi.org/10.7717/peerj.6809
https://doi.org/10.3389/fonc.2022.933071
https://doi.org/10.18632/aging.203632
https://doi.org/10.1002/mgg3.137
https://doi.org/10.18632/oncotarget.17506
https://doi.org/10.18632/oncotarget.17506
https://doi.org/10.3389/fmolb.2021.644557
https://doi.org/10.1186/s12885-023-10508-y
https://doi.org/10.1186/s12885-023-10508-y
https://doi.org/10.17219/acem/149566
https://doi.org/10.1002/cam4.4132
https://doi.org/10.1002/1878-0261.12631
https://doi.org/10.1186/s13046-023-02675-4
https://doi.org/10.1186/s13046-023-02675-4
https://doi.org/10.18632/aging.204782
https://doi.org/10.18632/aging.204782

	Crosstalk among disulfidptosis-related lncRNAs in lung adenocarcinoma reveals a correlation with immune profile and clinica ...
	1 Introduction
	2 Materials and methods
	2.1 Datasets and patients
	2.2 Disulfidptosis-related lncRNA detection
	2.3 Risk score verification
	2.4 Prognosis analysis and nomogram establishment
	2.5 Functional annotation
	2.6 Somatic mutation analysis
	2.7 Immunotherapy response and chemosensitivity prediction
	2.8 Reverse transcription-quantitative PCR (RT-qPCR)
	2.9 Statistical analysis

	3 Results
	3.1 Disulfidptosis-related lncRNA detection
	3.2 Prognostic disulfidptosis-related lncRNA model establishment and verification for TCGA cohort
	3.3 Independent prognosis analysis of OS and predictive nomogram establishment in LUAD
	3.4 Construction of high risk score and survival with negative correlation in different clinical stages
	3.5 Enrichment analysis of disulfidptosis-related lncRNA signature and PCA analysis
	3.6 TMB analysis and survival analysis of TMB
	3.7 Prognostic gene levels and drug sensitivity of cancer cells
	3.8 Validation of lncRNA prognostic signatures

	4 Discussion
	5 Conclusion
	Ethics approval and consent to participate
	Consent for publication
	Availability of data and materials
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References


