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As the basis of animals’ natal homing behavior, path integration can continuously provide current position information relative to
the initial position. Some neurons in freely moving animals’ brains can encode current positions and surrounding environments
by special firing patterns. Research studies show that neurons such as grid cells (GCs) in the hippocampus of animals’ brains are
related to the path integration. ,ey might encode the coordinate of the animal’s current position in the same way as the residue
number system (RNS) which is based on the Chinese remainder theorem (CRT). Hence, in order to provide vehicles a bionic
position estimationmethod, we propose amodel to decode the GCs’ encoding information based on the improved traditional self-
organizing map (SOM), and this model makes full use of GCs’ firing characteristics. ,e details of the model are discussed in this
paper. Besides, the model is realized by computer simulation, and its performance is analyzed under different conditions.
Simulation results indicate that the proposed position estimation model is effective and stable.

1. Introduction

Rapid development of unmanned vehicles has raised the
research of autonomous navigation in recent years [1].
Getting a robust position estimation is very important for
vehicles to achieve autonomous navigation tasks. Over the
past 30 years, there has been much effort in solving this
problem by building a map of the environment and navi-
gating based on estimation of position in that map, the
methodology of which has come to be known as simulta-
neous localization and mapping (SLAM) [2, 3]. Traditional
approaches of SLAM are the probabilistic methods, the
typical representative of which is extended Kalman filter
(EKF) [4]. ,e computation cost of EKF is quadratic with
respect to the number of the landmarks, which may result in
performance degradation in large-scale environment. Many
improved methods are provided to solve this problem [5],
but they can only alleviate it in some extent, rather than
fundamentally eliminate this problem.

Many animals exhibit perfect navigation capability in
complex and large-scale environments, even when the

perceived information is not exact. Taking inspiration from
animals, researchers begin to propose bioinspired navigation
architectures for unmanned vehicles to improve their au-
tonomous navigation capability. Natal homing is a re-
markable and common navigation behavior which enables
animals such as fish, rats, and pigeons to perform long
migrations to return to their natal areas or nests [6, 7]. ,e
foundation of natal homing in animals’ brains is the path
integration (PI) mechanism. It can continuously accumulate
self-motion information and update and provide current
position vector relative to the reference position (e.g., the
initial starting point) even in the absence of other external
perception information such as vision [8], and this position
vector provides the key navigation information for natal
homing. Traditionally, PI is implemented by mathematical
formulas, but the neural mechanism in animals’ brains
determines that PI must be realized through neural networks
[9, 10]. Neural recordings from laboratory and theory re-
search studies indicate that there are a variety of cells as-
sociated with navigation, which include place cells (PCs)
[11], head direction cells (HDCs) [12, 13], grid cells (GCs)
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[14], and border cells (BCs) [15]. ,eir firing patterns are
closely related to the surrounding environments and the
animals’ positions. Although there is no definite conclusion
about how navigation behaviors are achieved in brains, it is
considered that GCs are the neural basis of path integration
[16].

GCs are a kind of neurons that exist in the entorhinal
cortex (EC) of rats’ brain. A GC shows multiple spatial firing
fields during the movement of the animal, and these firing
fields distribute in a regular hexagonal array that uniformly
and periodically covers the whole environment visited by the
animal [14, 17]. ,ese spatial firing fields are independent of
environmental characteristics. Figure 1(a) shows a single
GC’s firing pattern from laboratory. ,e abstract geometry
of the firing fields is also illustrated in Figure 1(b). ,ere are
mainly four parameters to characterize the firing pattern of
GCs: grid period, grid orientation, firing field size, and grid
phase. As presented in Figure 1(b), the grid period is defined
as the median distance between the center firing field and the
six surrounding firing fields. ,e grid orientation is defined
as the angle between a fixed reference line going through the
center firing field and the closest of the three main diagonals
of the hexagon in counterclockwise direction.,e firing field
size is defined as the radius of the individual firing fields. In
contrast to the above three parameters, the grid phase is not
an absolute value. It describes the relative displacement
between the firing fields of two co-located GCs, i.e., GCs with
similar grid period, grid orientation, and firing field size.
GCs that are proximate within the medial entorhinal cortex
(mEC) are organized into a function module named as a GC
module.,e firing patterns of the cells belonging to the same
GCmodule share the same grid period and orientation but a
fixed grid phase relative to one another. ,e relative grid
phases appear to be conserved across all environments
visited by the animal. Grid periods increase discontinuously
between function modules along the dorsoventral axis of
mEC, with the smallest being around 25 cm and the largest
so far recorded exceeding 300 cm [14, 16–19].

Currently, many types of position estimation models
based on GCs have been proposed. Samsonovich and
Mcnaughton [20] presented an attractor model that consists
of two levels: a P-level, which is a two-dimensional sheet of
neurons representing the current position of the animal, and
an I-level which controls updating of the position. ,e
position of the neural activity packet on the P-level can be
continuously moved according to the input velocity. Con-
klin and Eliasmith [21] described a novel attractor network
model which incorporates representation and updating of
position into a single layer of neurons, eliminating the need
for a large external control population, and without making
use of multiplicative synapses. Samsonovich and
Mcnaughton [20] proposed improved continuous attractor
models that are capable of generating accurate regular
hexagonal grid responses to the animal’s position in 2-D
space. Mhatre et al. [22] described a simple and general
mathematical property of the trigonometry of spatial nav-
igation and developed a neural model which was named as
GRIDSmap. ,e model can learn to exploit the trigono-
metric relationship and convert path integration signals into

hexagonal grid cell patterns of multiple scales, and so on. ,e
above-mentioned models are mainly designed to simulate or
reproduce the firing patterns of cells to explore the mecha-
nism of cells’ firing from the biological point of view, not for
the sake of practical navigation application or improvement of
navigation performance. ,e encoding of spatial environ-
ments and positions by navigation-related cells’ firing pat-
terns is just the first step in the process of perceived
information processing. How to decode the relevant in-
formation that can be applied to practical navigation, i.e., how
to establish the relationship between the cells’ firing patterns
and the related navigation parameters is an important subject
in the research of bionic autonomous navigation.

,is paper puts forward a neural network model to
decode the GCs’ encoding information based on the im-
proved traditional Kohonen self-organizing map (SOM), the
details of which can be found in the section of Supple-
mentary Materials. ,e model makes full use of GCs’ firing
characteristics and can be used as an effective and stable
bionic position estimation method for unmanned vehicles.
,erefore, this study is beneficial to explore the neural
mechanism of animals’ navigation behavior as well as to
provide important reference to develop bionic autonomous
navigation architecture for unmanned vehicles.

,e rest of this paper is organized into four sections. In
Section 2, we introduce the input data model of our pro-
posed decoding model. ,en, we analyze the relationship
between index vectors and positions and set up a two-level
self-growing self-organizing map (SGSOM) neural network
model for the estimation of positions in Section 3. Section 4
is a simulation study of the proposed model and perfor-
mance analysis. Finally, we conclude the paper in Section 5.

2. Data Model

A GC module is defined as a set of GCs with the same firing
characteristics of grid period, grid orientation, and firing
field size but a fixed grid phase relative to each other. Besides,
the firing fields of all the GCs belonging to one GC module
can completely cover the entire 2-D plane. Define that a GC
module’s period is the firing grid period of the GCs con-
tained in the module. Hence, one GC module with a par-
ticular grid period can only encode the spatial positions

T r

α

Figure 1: Firing pattern of a single grid cell (GC) from laboratory.
(a) Firing locations and running trajectory (the gray line is the
running trajectory of the rat, and each spike is plotted in red) [18];
(b) ,e abstract geometry of the gird fields.
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periodically and ambiguously through the firing of the GCs,
but GC modules of different grid periods can jointly encode
the spatial positions accurately [23]. ,is corresponds to the
well-known residue number system (RNS) which is based on
the Chinese remainder theorem (CRT) [24]. ,e details of
the CRT are described as follows.

Given N pairwise coprime periods T1, T2, . . . , TN as the
moduli, let x be a positive integer, and R1, R2, . . . , RN be the
N remainders of x, i.e.,

Ri � mod x, Ti( , (1)

where 1≤ i≤N. ,en, x can be uniquely reconstructed from
its N remainders if and only if

0≤ x< lcm T1, T2, . . . , TN  � 
N

i�1
Ti, (2)

where lcm stands for the least common multiple of the
integers. ,e conclusion is also established if any pair of the
moduli have a common greatest common divisor (gcd) T.
,en, the range of x must be limited as

0≤x< lcm T1, T2, . . . , TN  �
1

TN−1 

N

i�1
Ti. (3)

,e encoding process of spatial positions using GC
modules is presented in Figures 2 and 3. We apply the
competitive attractor network (CAN) model to simulate the
firing patterns of GCs as they have a high degree of neural
plausibility [25]. In order to generate individual GCs’ firing
patterns, the GCs of one module need to be arranged to-
pologically as a rhombus to form a CANwith opposite edges
cyclically connected as in Figure 2 [21].

Due to the dynamic of the network, an activity packet
representing the neurons’ firing rates will be formed and can
be moved freely by the vehicle’s running velocity. When
considering one axis, e.g., the x-axis in Figure 2, the currently
most active cell’s (red dot) index x1 along this axis provides
the integral residue of the division of the current coordinate of
the vehicle on this axis by the module’s period T1. ,e in-
formation from one network, e.g., (x1, y1), which can be
named as the index coordinate, allows to locate the vehicle
periodically and ambiguously. But, according to the well-
known residue number system (RNS) which is based on
the Chinese remainder theorem (CRT) [24], the vector
(x1, y1, x2, y2, . . . , xN, yN) provided by a set of NGC
modules with N different periods in Figure 3, which are
named as the multiperiod GCs’ firing index vector (FIV), can
jointly encode the spatial location accurately in a certain range
[24]. ,erefore, given N grid cell modules with N integer
periodsT1, T2, . . . , TN, which satisfy the following conditions:

0<T1 <T2 < · · · <TN,

gcd Ti, Tj  � 1, (i≠ j, 1≤ i, j≤N),

⎧⎨

⎩ (4)

and the radius r of the firing field, as illustrated in Figure 2,
the number of grid cells on each side of the N diamond
neural sheets can be calculated as

ki �
Ti

2r(1≤ i≤N)
. (5)

Obviously, if the value of r is properly settled, such as
r � 0.5 or 0.05 to guarantee that ki(1≤ i≤N) is an integer,
then we can get the following result:

0< k1 < k2 < · · · < kN,

gcd ki, kj  �
1

2r(i≠ j, 1≤ i, j≤N)
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(6)

According to the CRT and (3), the vector
FIV � [x1, y1, x2, y2, . . . , xN, yN] formed by N pairs of in-
dex numbers from N grid cell modules, which we defined as
the index vector, can uniquely encode the animal’s current
spatial position as long as the position coordinate (x, y) in
the xoy coordinate system satisfies

O x

x1

y1

y

v

T1

T1

(x1, y1)

GC module 1

Figure 2: Process of generating the index coordinate in a GC
module based on CAN (note that the angle of the two axes is 60
degrees). T1: period of the GC module; v: the vehicle’s running
velocity; red dot: the currently most active cell in the GC module.

v

GC module 1
(T1)

GC module 2
(T2)

GC module N
(TN)

(x1, y1, x2, y2, ..., xN, yN)

Figure 3: Process of generating the multiperiod GCs’ firing index
vector. Ti: period of the ith GC module; v: the vehicle’s running
velocity; N: number of GC modules.
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0≤ x,

y≤ 2r∗ lcm k1, k2, . . . , kN 

� 2r∗
N

i�1

ki

(2r)N−1.

(7)

Hence, the FIV can be used as the input data model of
our proposed decoding model.

3. Position Estimation with SGSOM

GC modules with different grid periods jointly encode the
spatial positions based on the CRT. ,eoretically, the
decoding of the information involves complexmultiplications
and modular inversion operations [24], which make it dif-
ficult to be implemented through neural network. Hence,
based on the properties of the RNS and the characteristics of
SOM, we propose a neural network model to estimate the
current position of the vehicle according to the input FIV.,e
main structure of our model is shown in Figure 4. It consists
of a two-level SGSOM neural network.,e first-level SGSOM
is an ordering process, and the topological order of input
vectors is reproduced in the two-dimensional space. ,e
second-level SGSOM is a 1-1 mapping process from one two-
dimensional space to another two-dimensional space. Each
cell of the second map represents a position. ,e details of
each level will be discussed in the following sections.

3.1. First-Level SGSOM. ,e real-time requirement of posi-
tion estimation determines that there are no sample vectors
for the training of SOM when the vehicle begins to explore a
new environment. ,us, the weight vectors of competitive
layer neurons should be provided in advance rather than
through training. ,is is also neural plausibility as many cells’
firing patterns become stable when animals reach adult ages
[16]. In addition, a fixed number of neurons for position
estimation cannot adapt to scale changes of the environments.
,erefore, we propose a SGSOM based on the characteristics
of traditional SOM in our model. In contrast to traditional
SOM, the number of its competitive layer neurons is not fixed.
New neurons can be produced and added to the competitive
layer of the SGSOM with the exploration of the environment,
and the weight vectors of the newly added neurons are
generated by prediction of the exploring trajectory. ,e
network working steps are as follows.

Step 1. Initialize the network.
Generate the first neuron of the competitive layer and

take the first input FIV as its weight vector:

W1 � FIV1, (8)

where W1 � [u1
1, v11, u1

2, v12, . . . , u1
N, v1N] is the weight vector

of the first competitive layer neuron and FIV1 �

[x1
1, y1

1, x1
2, y1

2, . . . , x1
N, y1

N] is the first input index vector.

Step 2. Calculate the Euclidean distance between the input
vector and each competitive layer neuron’s weight vector,

and identify the winning neuron which has the minimum
distance.

Firstly, we introduce some properties of the RNS.
Consider that x and y are two arbitrary integers andm and n
are two positive integers as moduli with m< n, then

rm
x � mod(x, m),

rn
x � mod(x, n),



rm
y � mod(y, m),

rn
y � mod(y, n).

⎧⎨

⎩

(9)

According to the relative properties of the RNS, the
following relationship is established:

〈x−y〉 m,n{ } � r
m

, r
n

 

� <rm
x − r

m
y >m, <rn

x − r
n
y> n ,

(10)

where 〈x−y m,n{ }〉 � mod(x−y, m),mod(x−y, n)  and
〈x〉m � mod(x, m). Suppose d � x−y. We can get the
following conclusion:

rm � rn � d, if 0≤ d<m,

m− rm � n− rn � −d, if −m<d< 0.
 (11)

,ese conclusions are still established when there are
more than two moduli. Integers x and y can also be extended
to multidimensional vectors, each dimension of which can
be treated independently.

Assume that there are M neurons in the competitive
layer with weight vector as Wi(1≤ i≤M) and
FIV � [x1, y1, x2, y2, . . . , xN, yN] is the current input index
vector. According to the above conclusions, we can have

〈FIV−Wi〉 k1 ,k2 ,...,kN{ } � d
x
1 , d

y
1 , d

x
2 , d

y
2 , . . . , d

x
N, d

y
N 

� 〈x1 − u
i
1〉k1, 〈y1 − v

i
1〉k1〈x2 − u

i
2〉k2,

· 〈y2 − v
i
2〉k2 . . . 〈xN − u

i
N〉kN

,

· 〈yN − v
i
N〉kN

.

(12)

According to the geometric relationship and the cosine
theorem, the Euclidean distance between FIV and
Wi(1≤ i≤M) can be calculated as

dis FIV, Wi(  �

������������������������������

dx( )
2 + dy( )

2 − 2∗ dx ∗ dy ∗ cos
2π
3

 



,

(13)

dj � d
j
1, if d

j
i � d

j

i′ ,

dj � T1 − dx
1 , if Ti − d

j
i � Ti′ −d

j

i′ ,

dj � +∞, other cases,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

where i, i′ � 1, 2, . . . , N; j � x, y.
Figure 5 presents the calculation process of case 1. It is

obvious that the less the Euclidean distance is, the closer the
two vectors are, so does the two positions contained in the
two vectors. ,e neuron which has the minimum Euclidean
distance with FIV is considered as the winning neuron.
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Suppose that the current perceived velocity is v(t), the
running direction is θ(t), and they remain unchanged
during the next sampling intervalΔt.,en, the displacement
components along two axes of the xoy coordinate system
during Δt can be predicted as

dx � v(t) ∗Δt∗ cos(θ(t)) − v(t)∗Δt∗
sin(θ(t))

tan(π/3)
,

dy � v(t)∗Δt∗
sin(θ(t))

sin(π/3)
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)

which are illustrated in Figure 6. In order to guarantee that
there must be a winning neuron in this step, according to
(11), the following expression must be satisfied:

abs dx( < 2r∗ k1,

abs dy < 2r∗ k1,

⎧⎨

⎩ (16)

where abs(d) means to take the absolute value of d.

Step 3. Predict a weight vector and add a new neuron to the
competition layer.

,e displacement presented in (15) can be transformed
into an index vector based on the N grid cell modules as
illustrated in Figure 6. ,us, we can get the displacement
index vector as

vd � x
d
1 , y

d
1 , x

d
2 , y

d
2 , . . . , x

d
N, y

d
N , (17)

where

xd
i � round

mod dx, ki( 

(2r)
 ,

yd
i � round

mod dy, ki 

(2r)
⎛⎝ ⎞⎠,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where i � 1, 2, . . . , N, and round(x) means to take the integer
nearest x. Suppose that there areM neurons in the competitive
layer, the jth neuron is the current winning neuron, and its
weight vector is Wj � [u

j
1, v

j
1, u

j
2, v

j
2, . . . , u

j
N, v

j
N], then the

predicted weight vector of the neuron that may be added to the
competitive layer can be written as

W � u1, v1, u2, v2, . . . , uK, vK , (19)

where

ui � mod xd
i + u

j

i , ki , (i � 1, 2, . . . , N),

vi � mod yd
i + v

j
i , ki , (i � 1, 2, . . . , N).

⎧⎪⎨

⎪⎩
(20)

Check whether or not W exists in the weight vectors of
theM competitive layer neurons. If the answer is yes, turn to
step 2. Otherwise, add a new neuron to the competitive layer
and set its weight vector as W and then turn to step 2.

Wi

FIV

d1
j

d1
x

O x

y

Figure 5: Calculation process of Euclidean distance of one case.

x
O

dx
xdi

ydi

dy

y

Figure 6: Displacement during a sampling interval and its
transformation to a index vector.

Input
vector

Index vector Index vector map Position map
O

y y

x O x

Figure 4: Architecture of the two-level SOM.
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Step 4. Repeat Steps 2 and 3 until the exploration of the
environment is completed.

3.2. Second-Level SGSOM. ,e second-level SGSOM is a 1-1
mapping from the first level. ,ey have the same number of
neurons. Each neuron in this level represents a position,
which is obtained according to the additions of the first-level
neurons. ,e network working steps are as follows.

Step 1. Initialize the Network.
Generate the first neuron of this level, set its contained

position coordinate as (0, 0) or (x0′, y0′) in the Cartesian
coordinate system, and associate it with the first neuron of
the first level.

Step 2. Output the estimated position coordinate.
For any input index vector, output the position co-

ordinate contained in the neuron which is associated with
the winning neuron of the first level. ,is position co-
ordinate can be directly used as the estimation of the ve-
hicle’s current position.

Step 3. Add a new neuron to this level.
If a new neuron is just added to the first level, then a new

neuron should also be added to this level and associated with
the newly added neuron of the first level. Suppose that a new
neuron has been just added to the first level and second level,
respectively, the jth neuron is the current winning neuron of
the first level, and its associated neuron of the second level
contains position coordinate (xj

′, yj
′). According to the

predicted index vector of the displacement shown in (17),
the position coordinate (x′, y′) contained in the second
level’s newly added neuron can be written as

x′ � xj
′ + Δx′,

y′ � yj
′ + Δy′,

⎧⎨

⎩ (21)

where Δx′ and Δy′ are calculated as

Δx′ � dx + dy ∗ cos
π
3

  ∗ r,

Δy′ � dy ∗ sin
π
3

 ∗ r,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(22)

where dx and dy are calculated as

dj � d
j
1, if d

j
i � d

j

i′ ,

dj � dx
1 −T1, if d

j
i −Ti � d

j

i′ −Ti′ ,

⎧⎪⎨

⎪⎩
(23)

where i, i′ � 1, 2, . . . , N; j � x, y.

4. Results and Analysis

In our model, the relationship between the firing of GCs and
the vehicle’s position is discussed, and we mainly focus on
the position estimation performance that the proposed

model can decode from GCs’ firing patterns. Hence, the
analysis of this model is based on the comparison between
the position information encoded by GCs’ firing patterns
and the position information decoded by the proposed
model. Simulations are divided into two parts. First, position
estimations are carried in linear motion and curvilinear
motion. Second, the influence of model parameters is
analyzed.

4.1. Realization of theModel. In this section, simulations are
carried out to verify the effectiveness and stability of the
proposed scheme. ,e simulation parameters are listed in
Table 1. ,e performance of the model is evaluated by the
position estimation error (PEE) which is defined as follows:

PEE �

������������������

x′ − x′( 
2

+ y′ − y′( 
2



, (24)

where (x′, y′) and (x′, y′) are the real and estimated po-
sition coordinates of the vehicle in the rectangular Cartesian
coordinate system. According to (15) and (16), in order to
guarantee that the proposed model can work properly, the
velocity should be limited by the following formula:

v∗Δt< 2r∗ k1 � 67(m). (25)

In other words, the value of velocity v should be less than
134m/s.

Firstly, assume that the perceived velocity and running
direction are exact and remain unchanged during a sam-
pling interval and the running direction also remains
unchanged during the total running time. Figure 7 presents
an actual running trajectory and a trajectory formed by the
estimated positions in linear motion.,e running direction
is taken as 45° relative to the x-axis. As illustrated, the two
trajectories almost overlap each other, which indicates that
the proposed model can decode the position information
contained in the index vectors very well. Figure 8 presents
the PEE of one trajectory and average PEE of 50 trajectories
in a fixed running direction. Figure 9 presents the results
when the vehicle runs in different directions. In this
simulation, the vehicle runs along 50 trajectories with
random velocity v which is less than 74m/s in each di-
rection. ,e results presented in Figure 9 are obtained by
first averaging the PEEs of all the sampled positions for
each trajectory and then averaging all the obtained average
PEEs of 50 trajectories in each direction. ,e maximum of
average PEEs is less than 0.045m. ,e difference of average
PEEs between different running directions is smaller than
0.02m. ,e standard deviations of PEEs in different running
directions are also offered based on these average PEEs, which
is less than 0.005m. ,us, these simulation results indicate
that the proposed model is effective and stable in the case of
linear motion. Simulations are also carried out when the
vehicle runs randomly in a 2-D environment. Figure 10
presents a real running trajectory and its corresponding es-
timated running trajectory. ,e two trajectories also almost
overlap each other, which indicates the proposed model can
also decode the position information contained in the cur-
vilinear motion. Figure 11 presents the PEE of one trajectory

6 Computational Intelligence and Neuroscience



and average PEE of 50 random trajectories. ,e average PEEs
and standard deviation of PEEs are also calculated for each
trajectory in Figure 12. ,e difference of PEEs among dif-
ferent trajectories is still very small, which suggests that the

performance of the proposed position estimation model is
stable.

To sum up, the proposed position estimation model
based on the two-level SGSOM is effective and stable.
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Average PEE of 50 trajectories
PEE of one trajectory

Figure 8: Average PEEs of 50 trajectories and PEEs of one trajectory in linear motion.

Table 1: Simulation parameters.

Parameter Value
Number of GC modules 3
Periods of GC modules 67m, 68m, 69m
Radius of GCs’ firing fields 0.05m
Sizes of GC modules 670∗ 670, 680∗ 680, 690∗ 690
Sampling interval 0.5 s
Total running time 500 s

1200

1000
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400

200

0
0 200 400 600 800 1000 1200

x (m)

y (
m

)

Actual running trajectory
Estimated running trajectory

Figure 7: Actual running trajectory and estimated running trajectory in linear motion.
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4.2. Influence of Model Parameters on Position Estimation.
,e parameters related to position estimation results mainly
include the number of grid cell modules, the grid periods of
the grid cell modules, and the radius of the firing field. ,e
sizes of grid cell modules depend on the above three pa-
rameters. GivenN grid cell modules, there areN grid periods
T1, T2, . . . , TN. According to the CRT and (2), these three
parameters determine the range of the explored environ-
ment within which our proposed model can work well. ,e
greater these three parameters are, the larger the range of the
explored environment is. In addition, according to (13) and
(14), the minimum period T1 as well as k1 determines the
max. velocity of the vehicle. ,e radius of grid cells’ firing
field can not only affect the range of the environment but
also affect the PEE of the model. Figure 13 presents the

simulation results according to three different radii of GCs’
firing fields. ,e results show that the smaller the radius of
grid cells’ firing field, the smaller the average PEE and
standard deviation of PEE are. But, it is obvious that the
computation complexity of the model become larger with
the decrease of the radius.

5. Conclusions and Discussion

In this paper, a scheme based on the firing patterns of GCs
and SGSOM is set up for the estimation of positions. By
using the topology preserving of SOM, we set up a map from
firing index vectors to positions through SOM, which maps
similar index vectors into adjacent positions. To illustrate
the performance of the scheme, simulation experiments
are done to test the model and the results indicate its
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Figure 11: Average PEEs of 50 trajectories and PEEs of one tra-
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different trajectories in curvilinear motion.
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effectiveness and stability. Furthermore, the influence of
model parameters on position estimation is also analyzed.

In this model, there is no need to carry out the complex
multiplications and modular inversion operations like the
solution of the CRT. When the vehicle arrives at a new place,
just put the index vector generated by the grid cell models
into the network, then the estimation of position coordinate
can be obtained. Moreover, the size of SGSOM is changeable
with the scales of the environments, which is very useful for
conserving computation resource. In conclusion, the use of
SGSOM network on position estimation is worthy of being
applied in practice. Decades of research on the neurobiology
of navigation focused on two-dimensional (2-D) navigation
on flat surfaces, which laid the foundations for un-
derstanding the neural basis of 2-D spatial navigation. ,us,
our research is also carried out in a 2-D environment. It is
obvious that the results of our research can be directly
extended to three-dimensional (3-D) environment.

In this paper, we mainly focus on the position estimation
performance of the proposed model from the viewpoint of
bionic navigation. As a decoder, our model can accurately
restore the position information contained in the index
vectors, and the estimation error can be neglected as for
navigation. ,erefore, we do not compare its performance
with that of other different models of position estimation.
Besides, considering that the perceived speed is not always
exact due to kinds of factors such as noise in practical
application, the position information contained in the index
vectors and the decoded position coordinates will not be
accurate compared with vehicles’ real positions, and
moreover, the errors will be accumulated in the future. ,is
is a common and remarkable problem in the field of position
estimation based on self-motion information. ,e main
solutions for this problem are multisource information
fusion methods such as loop detection based on vision
information [26]. We will make further study on this topic in
the next research work.
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Supplementary Materials

,e self-organizingmap introduced in this paper is a Kohonen
self-organizing map, which is also named as Kohonen feature
map [27]. It is an unsupervised, competitive feed-forward
neural network. SOM can map high-dimensional data into
one- or two-dimensional data keeping the same topological
order as the original data, and then features of the input data
will be visualized.,us, SOM is an effectivemethod for feature
extraction and dimensionality reduction and usually used for
classification or prediction of different problems. Traditional
SOM network consists of two layers: input layer and com-
petitive layer which is also called output layer. ,e number of
input layer nodes is equal to the input vector’s dimension.,e
number of competitive layer neurons is fixed, and the neurons
are usually arranged in a two-dimensional rectangle or
hexagon grid. Each neuron of the competitive layer contains a
weight vector that has the same dimension as the input vector.
,e whole network works as follows. When an input sample
vector is put into the network, the Euclidean distance between
this vector and weight vectors of the competitive layer neurons
is calculated to obtain the winning neuron which has the
minimum distance. ,en, the weight vectors of the winning
neuron and its neighboring neurons are adjusted to make
them more similar to the input sample vector. Eventually, the
weight vectors of competitive layer neurons have a certain
distribution as input sample vectors by such training. (Sup-
plementary Materials)
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