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Abstract Identifying individuals who are at high risk of cancer due to inherited germline

mutations is critical for effective implementation of personalized prevention strategies. Most

existing models focus on a few specific syndromes; however, recent evidence from multi-gene

panel testing shows that many syndromes are overlapping, motivating the development of models

that incorporate family history on several cancers and predict mutations for a comprehensive panel

of genes.

We present PanelPRO, a new, open-source R package providing a fast, flexible back-end for multi-

gene, multi-cancer risk modeling with pedigree data. It includes a customizable database with

default parameter values estimated from published studies and allows users to select any

combinations of genes and cancers for their models, including well-established single syndrome

BayesMendel models (BRCAPRO and MMRPRO). This leads to more accurate risk predictions and

ultimately has a high impact on prevention strategies for cancer and clinical decision making. The

package is available for download for research purposes at https://projects.iq.harvard.edu/

bayesmendel/panelpro.

Introduction
In the last decade, DNA sequencing has changed dramatically. Tests have become faster and more

affordable, leading to discovery of a growing number of germline pathogenic variants associated

with increased cancer risk. Multi-gene panels are routinely available and include varying combina-

tions of genes (Plichta et al., 2016). Evidence is accruing that gene mutations, which were typically

believed to be only associated with one or two types of hereditary cancers, may in fact increase the

risk for a wider range of syndromes. These advancements have changed the genetic counseling land-

scape by introducing a need to consider a wider set of individual genes and cancers to accurately

assess overall risks. In the context of genetic counseling, the importance of accurate estimates of

carrier probabilities is well-known (Nelson et al., 2014). With the number of genes of interest and

their combinations increasing, efficient calculation of these estimates becomes crucial in clinical

settings.

In genetic counseling, an individual may be suspected of inherited cancer susceptibility if their

family history exhibits certain patterns. For example, if two or more relatives have the same type of

cancer on the same side of the family, or if cancer diagnoses in the family are particularly early, they

may be referred to testing for mutations in genes associated with increased risk for those specific
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cancers. In the case of hereditary breast cancer, guidelines in the US were established to identify

patients who have higher likelihoods of benefiting from germline genetic testing. Thresholds for

testing were set high initially, since genetic testing was very expensive at the time (Manahan et al.,

2019). Although cost of testing has decreased and guidelines are constantly changing, accurate cal-

culation of carrier probabilities, given family history, is essential in supporting the decision for further

testing, preventative treatment, or family planning (Chen et al., 2004).

Existing Mendelian models consider a relatively narrow subset of cancers and genes. For exam-

ple, BRCAPRO, available in the BayesMendel R package (Chen et al., 2004), considers two cancers

(breast and ovarian) and two genes (BRCA1 and BRCA2). Boadicea v4 Beta (Centre for Cancer

Genetic Epidemiology, 2020) considers BRCA1, BRCA2, PALB2, CHEK2, and ATM mutations in the

same cancers. To comprehensively incorporate cancers, genes, and their interactions, we introduce

PanelPRO, an R package which aims to efficiently and flexibly scale to the demands of germline

panel testing. The newly developed package has the following key advantages:

. Customizable model specification, including the choice of genes and cancers included in the
model;

. Customizable model parameters, including the allele frequencies and penetrances;

. Accurate default parameter estimates, curated from an extensive literature search;

. Flexibility to incorporate cancer risk modifiers such as prophylactic surgeries;

eLife digest Genetic mutations that increase cancer risk can be passed down from parents to

their children, which can affect families across many generations. In these families, multiple members

may be affected by different types of cancer, and these cancers often develop at an early age.

Unaffected family members are often referred to genetic counselling, where they can explore their

own risk of cancer. Clinicians and genetic counselors can provide recommendations to minimize

cancer risk and inform personal choices on how to manage that risk, such as opting for preventative

surgeries or participating in regular screening.

In genetic counselling sessions, highly trained clinicians and specialists use software that takes an

individual’s family history of cancer and uses it to estimate their individual risk of carrying certain

genetic mutations. These estimates can in turn help to predict their future risk of cancer. Many

existing software packages are limited to estimating risks based on mutations in well-known cancer-

related genes, such as BRCA1 and BRCA2 in breast and ovarian cancer. However, emerging

evidence suggests that many of the genes associated with cancer risk work as part of a complex and

overlapping network. Since current risk-profiling software packages are only designed to consider

such genes in isolation, they cannot generate the most robust, accurate or comprehensive cancer

risk profiles.

To address this challenge, Lee, Liang et al. have developed a new risk-profiling software that can

integrate a large number of gene mutations and a wide range of potential cancer types to provide

more accurate estimates of individual cancer risk. This software, called PanelPRO, uses evidence

identified from extensive literature reviews to model the complex interplay between genes and

cancer risk. The software not only calculates risks based on known genes, but also allows other

developers to integrate new cancer-related genes that may be identified in the future. Importantly,

the software is compatible with genetic counselling applications, since it returns answers within

seconds when reasonable family and gene database sizes are used.

PanelPRO is a new, modern, flexible and efficient software package that provides an important

advance towards modelling the vast genetic and biological complexity that contributes to inherited

cancer risk. This software is designed to provide a more accurate and comprehensive estimate of

cancer risk for individuals with family histories of cancer.

As an open-source software, it is freely available for research purposes, and can be licensed by

software companies and healthcare organizations to integrate electronic patient records and rapidly

identify at-risk individuals across larger patient groups. Ultimately, this software has the potential to

improve cancer prevention strategies and optimize the personalized decision-making processes

around cancer risk.
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Figure 1. PanelPRO package workflow.
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. Comprehensive user input checks for pedigrees;

. Speed of computation, through an optimized C++ implementation of an efficient algorithm.
(Madsen et al., 2018)

In general, PanelPRO can handle models with K genes and R cancers, where K and R are arbitrary

(subject to reasonable run-times and memory constraints). It is intended that K and R become larger

as more research on gene cancer associations becomes available. The package contains a compre-

hensive collection of functions designed to efficiently calculate carrier probabilities and future cancer

risk for individuals, given detailed information about their family history.

PanelPRO is designed to be back-compatible with the existing BayesMendel package; individual

models within that package (for example, BRCAPRO, MMRPRO, BRCAPRO5, or BRCAPRO6) can be

called directly from PanelPRO by passing this model specification to the main function call. We

expect that users of BayesMendel will migrate to this generalized and customizable enhancement,

and that PanelPRO will lead to new users interested in broader cross syndrome modeling in the cur-

rent landscape for cancer clinical risk assessment. In the current release, there are minor differences

in how BayesMendel and PanelPRO deal with peer-reviewed data, in particular, for cancer pene-

trance calculations.

The PanelPRO R package is freely available for research purposes. The BayesMendel R package is

likewise freely available for research purposes, and is currently licensed for clinical commercial use to

CRA Health, CancerGene Connect, Progeny, FamHis, MagView, Igentify, CancerIQ, and Finch genet-

ics. Family history has long been understood to be a key component for identifying risk and prevent-

ing heritable diseases, and clinical tools such as the ones which license BayesMendel are becoming

more readily available (Welch et al., 2018). For BayesMendel, we leave clinical integration to the

software licensees, including the integration of electronic medical records such as EPIC. We envision

a similar dissemination plan for PanelPRO.

Table 1. Pedigree structure in PanelPRO.

Column Definition Value

ID Unique numeric identifier of each individual Non-repeated strictly positive integer

MotherID ID of one’s mother Strictly positive integer or NA (missing)

FatherID ID of one’s father Strictly positive integer or NA (missing)

Sex Sex of the individual: 1 for male, 0 for female One of {0, 1}

isProband Indicates the proband or counselee by 1 and 0 otherwise –
multiple probands can be specified

One of {0, 1)

CurAge Age of censoring: either the current age or death age,
depending on isDead status

Positive integer or NA (missing)

isAff* Affection status of cancer * One of {0, 1}

Age* Affection age of cancer * Positive integer or NA (missing)

isDead Whether someone has died One of {0, 1, NA}

race Race of individual (used to modify penetrance) One of All_Races, AIAN, Asian, Black, White,
Hispanic, WH, WNH, NA

Ancestry Ancestry of individual (used to modify allele frequencies) One of AJ, nonAJ, Italian, NA

Twins Identifies siblings who are identical twins or multiple births Each set is identified by a unique integer, and 0
otherwise

riskmod Preventative interventions which modify penetrance List, combination of "mastectomy",
"hysterectomy", and "oophorectomy"

InterAge Age of each preventative interventions List, combination of integers

Gene name from GENE_TYPES Germline testing result One of {0, 1, NA}

Marker name from CK14, CK5.6,
ER, PR, HER2, MSI

Marker testing result One of {0, 1, NA}
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Methods: package workflow
The workflow of the package includes four main parts: the input, including user and model input;

pre-processing of the inputs, including user input checks and a database build; running the peeling-

paring algorithm; and outputting the results. Figure 1 shows the workflow. Additionally, Appen-

dix 1—figure 1 shows detailed sub-routines within the package.

Input
User input
The main input from the user is their pedigree. This is in the form of an R data.frame which con-

tains detailed information about known family members, such as their ages and previous cancer

diagnoses. The pedigree structure is defined by the ID,XMotherIDXandXFatherID columns. Pre-

vious cancer diagnoses and their ages of diagnosis are stored in the isAff* and Age* columns,

respectively, where * represents a cancer type, designated according to a standard nomenclature of

two- to four-letter tags which are also used in visualizations. Cancers currently considered in Panel-

PRO are listed in Appendix 1—table 1. Note, this list will be expanded for future versions of the

package as more information on risk for various genes and cancers becomes available in the litera-

ture. Risk modifiers, such as prophylactic surgeries, can be incorporated to adjust the likelihood cal-

culation. Previous genetic testing history can also be incorporated. The current version of the

Table 2. List of model options that the user can pass to PanelPRO, along with their defaults.

Option
Default
value Possible values Description

max.mut NULL Integers up to the
number of genes

Number of maximum simultaneous mutations, also known as the paring parameter. If no integer has
been input, it re-defaults to 2.

iterations 20 Integers from 1 upwards In case of missing current or cancer ages in the pedigree, this is the number of times those ages will be
imputed.

parallel TRUE TRUE or FALSE If age imputations are needed, this parameter can be set to utilize multiple cores on one’s machine.

net FALSE TRUE or FALSE Determines whether net or crude penetrances are used to compute future risk of cancer. Net
penetrances exclude all other causes of death, apart from the affected cancer.

age.by 5 Integers from one
upwards

The intervals of age used to report the future risk of cancer.

Figure 2. test_fam_1 sample pedigree as included in the PanelPRO package, plotted using the external visPed

package. The colors refer to cancer diagnoses in the legend. The age of diagnosis is shown below the individual

if it is known.
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package, v0.2.0, contains thirteen sample pedigrees, called test_fam_X, where X goes from 1 to

12, and err_fam_1. The test_fam_X pedigrees provide realistic and extreme examples of the

data that can be included in the user input, whereas err_fam_1 is an example of a family that does

not pass PanelPRO’s preprocessing pedigree check and therefore cannot be evaluated by the

model. A clipped version (with a subset of the necessary columns) of test_fam_1 pedigree is

shown below. Key figures relevant to the pedigree can be found in Appendix 1—table 2.

head(test_fam_1)

## ID Sex MotherID FatherID isProband CurAge isAffBC isAffBC AgeBC AgeOC isDead

## 1 1 0 NA NA 0 93 1 0 65 NA 1

## 2 2 1 NA NA 0 80 0 0 NA NA 1

## 3 3 0 1 2 0 72 1 1 40 NA 0

## 4 4 1 1 2 0 65 0 0 NA NA 1

## 5 5 1 1 2 0 65 0 0 NA NA 0

## 6 6 0 1 2 1 55 0 0 NA NA 0

The full specification of the pedigree structure is shown in Table 1. The family tree pedigree can

also be visualized by using the visPed package as in Figure 2. This external package is available

through https://github.com/bayesmendel/visPed version 0.1.0 (Lee, 2021) and is based on the kin-

ship2 package available in CRAN (Sinnwell et al., 2014). PanelPRO itself does not contain pedigree

plotting functionality. However, users can easily acquire the visPed package separately.

Prophylactic surgeries (mastectomy, oophorectomy and hysterectomy) act as risk modifiers. They

are specified in a column of lists in the user input pedigree. Including these risk modifiers changes

the resulting carrier probability and future risk outputs (see the Output section). Previous history of

biomarker testing for breast and colorectal cancers can also be included in the model.

Model input
Calculation of carrier probabilities requires information about allele frequencies and penetrances for

the mutations and cancers requested in the function call. They are derived from peer-reviewed stud-

ies whose results are cataloged in the PanelPRODatabase. At each function call, the code extracts

the appropriate subset of gene-cancer combinations. These combinations are specified in the main

PanelPRO function call, where the user should indicate the cancers for which family history in the

pedigree should be used, as well as the genes for which carrier probabilities are requested.

PanelPRO(pedigree = test_fam_1,

cancers = c(‘Breast’, ‘Ovarian’),

genes = c(‘BRCA1’, ‘BRCA2’, ‘ATM’, ‘MSH2’))

If no genes or cancers are specified, PanelPRO will default to all the supported genes in the ver-

sion at that time, with all the cancers in the pedigree.

Users are free to change the database defaults for their own purposes. The structure of this data-

base is an R list. A partial output is provided below.

str(PanelPRODatabase)X

## $XPenetrance :XnumX[1:18,X1:26,X1:8,X1:2,X1:94,X1:2]X3.98e-05X2.80e-07X0.00X5.00e-08X0.00X...

## X..-Xattr(*,X'dimnames')=ListXofX6

## X..X..$XCancer :XchrX[1:18]X'Brain'X'Breast'X'Cervical'X'Colorectal'X...X

## X..X..$XGene :XchrX[1:26]X'APC_hetero_anyPV'X'ATM_hetero_anyPV'X'BARD1_hetero_anyPV'X...

## ..X..$XRace :XchrX[1:8]X'All_Races'X'AIAN'X'Asian'X'Black'X...X

## X..X..$XSex :XchrX[1:2]X'Female'X'Male

## X..X..$XPenetType :XchrX[1:2]X'Net'X'Crude

Continued on next page
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## X$XAlleleFrequency :XnumX[1:24,X1:3]X1.45e-04X1.90e-03X3.41e-04X2.17e-05X1.37e-02X...

## X..-Xattr(*,X'dimnames')=ListXofX2

## X..X..$XGene :XchrX[1:24]X'APC_anyPV'X'ATM_anyPV'X'BARD1_anyPV'X'BMPR1A_anyPV'X...X

## X..X..$XAncestry :XchrX[1:3]X'AJ'X'nonAJ'X'Italian'

In the current PanelPRO database, cancer penetrances are taken from data included in the Bayes-

Mendel package when available: the BRCA1 and BRCA2 estimates for the probability of developing

breast or ovarian cancer Chen et al., 2020; the MLH1, MSH2, and MSH6 estimates for the probabil-

ity of developing colorectal or endometrial cancer Wang et al., 2020; Felton et al., 2007; and the

CDKN2A estimates for the probability of developing melanoma (Wang et al., 2010; Begg et al.,

2005; Bishop, 2002). All other cancer penetrances are pulled from the All Syndromes Known to

Man Evaluator (ASK2ME) clinical tool (Braun et al., 2018).

For allele frequencies, we use the non-Ashkenazi, Ashkenazi Jewish, and Italian BRCA1 and

BRCA2 allele frequency estimates from BRCAPRO (Chen et al., 2004; Antoniou et al., 2002); for

MLH1, MSH2, and MSH6, we use the allele frequency estimates from MMRpro (Chen et al.,

2004; Chen et al., 2006); and for CDKN2A, we use the allele frequency estimate from Melapro

(Chen et al., 2004; Berwick, 2006). Allele frequency estimates for ATM, CHEK2, and PALB2 are

taken from Lee et al., 2016. The allele frequencies of the remaining genes are estimated based on a

25-gene panel study of 252,223 individuals (Rosenthal et al., 2017) that did not adjust for ascertain-

ment. In this case, we rescale the reported estimates by the ratio of the ascertained and unascer-

tained allele frequencies for a gene reported in both our existing database and the study.

New genes and cancers will be added to PanelPRO based on regular literature reviews as con-

ducted in ASK2ME (Braun et al., 2018). The ASK2ME approach identifies best-available studies that

adjust for ascertainment; since many papers report odds ratios or relative risks, it then calculates

absolute age-specific cancer penetrances when necessary.

The user can also select other options in the function call which are relevant at run-time. Examples

include the maximum number of simultaneous gene mutations considered for a given individual,

whether a parallelized version of the algorithm is performed, and the number of imputations in case

of missing age data (see the Missing Data section). Many of the useful options are listed in Table 2.

Passing these options to the function call is simple, as shown below.

Figure 3. The sample pedigree err_fam_1 which contains a pedigree loop, due to the mating pattern of the

siblings aged 59 and 55 with the siblings aged 60 and 62, respectively. The two circles linked by a dotted line

represent the same individual.
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PanelPRO(pedigree = test_fam_1,

cancers = c(‘Breast’, ‘Ovarian’),

genes = c(‘BRCA1’, ‘BRCA2’, ‘ATM’, ‘MSH2’),

max.mut = 1,

parallel = FALSE)

Instead of specifying a set of cancers and genes, users can call models corresponding to those in

the BayesMendel package, as well as other predefined models. For example, the two calls below

are equivalent.

bayesMendelCall <- BRCAPRO6(pedigree = test_fam_1)

panelProCall <- PanelPRO(pedigree = test_fam_1,

cancers = c(‘Breast’, ‘Ovarian’),

genes = c(‘BRCA1’, ‘BRCA2’, ‘MLH1’, ‘MSH2’, ‘MSH6’,

‘CDKN2A’))

all.equal(bayesMendelCall, panelProCall)

## (1) TRUE

Preprocessing
Pedigree check
First, PanelPRO checks the structure of the user-supplied RXdata.frame containing the family his-

tory to be evaluated, using a call to the checkFam function. A description can be found in Table 3.

Messages or warnings are given to the user if values have been automatically changed to rectify con-

flicts. For example, test_fam_1 contains some ancestry and race inconsistencies.

checkFam(test_fam_1)

## Your model has two cancers - Breast, Ovarian and 24 genes - APC_hetero_anyPV,

ATM_hetero_anyPV ...

## Germline testing results for BRCA1 are assumed to be for default variant BRCA1_-

hetero_anyPV.

## Germline testing results for BRCA2 are assumed to be for default variant BRCA2_-

hetero_anyPV.

## ID 3 ’s Ancestry has been changed to nonAJ to meet heredity consistency

## ID 10 ’s race has been changed to All_Races to meet heredity consistency

## ID 9 ’s Ancestry has been changed to nonAJ to meet heredity consistency

## ID 16,17 ’s Ancestry has been changed to nonAJ to meet heredity consistency

## ID 29,30 ’s Ancestry has been changed to nonAJ to meet heredity consistency

## ID 33,34 ’s race has been changed to All_Races to meet heredity consistency

## ID 33,34 ’s Ancestry has been changed to nonAJ to meet heredity consistency

Errors are given if inconsistencies or ambiguities in the pedigree cannot be resolved such that the

pedigree can be safely passed into downstream functions. Most of the checks are for the presence

of required information; whether the pedigree variables have values in the expected range/set; and

for consistency between cancers and sex and in terms of features with hereditary assumptions

among parents/children and twins. The pedigree is also checked for ‘loops’, which PanelPRO cur-

rently does not support. For example, within err_fam_1, there are two sets of male and female sib-

lings (four individuals) who have mated with the corresponding siblings in another family, as shown

in Figure 3. This mating configuration results in a loop. For a more detailed definition of loops, see

Fernando et al., 1993. In addition, disconnected family members are detected and removed from

the pedigree if they will not influence the counselee’s results.

Lee, Liang, et al. eLife 2021;10:e68699. DOI: https://doi.org/10.7554/eLife.68699 8 of 22

Tools and resources Cancer Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68699


Build database
Depending on the configuration of the model requested (cancers in the family, genes considered), a

subset of PanelPRODatabase or a user-modified database will be created and passed through for

further calculation by the buildDatabase function. A description of this function can be found

in Table 3 .

Algorithm
The checked pedigree and PanelPRODatabase subset, as well as any user options, are then passed

to the ‘peeling-paring’ algorithm, which approximates Equation 2 in the Genotype

probabilities section. It is based on the ‘peeling’ algorithm as introduced by Elston and Stewart,

1971 with its implementation based on Fernando et al., 1993. The ‘paring’ aspect of the algorithm

limits the number of simultaneous mutations allowed. This is called the paring parameter and has a

default value of 2, which results in an approximation which has been shown to be adequate for clini-

cal purposes (Madsen et al., 2018). When the paring parameter is set equal to the number of dis-

tinct genes to be considered, the calculation is exact (assuming no other missing information about

the pedigree). Future cancer risks are then calculated based on the law of total probability, using the

previously calculated posterior carrier probabilities, as described in the Methods: Mendelian

modeling section. These two calculations are performed in PanelPROCalc, as listed in Table 3. The

underlying algorithm is written in Rcpp using the RcppArmadillo package (Eddelbuettel and Sand-

erson, 2014; Eddelbuettel and Francois, 2011). It uses, as much as possible, optimized data struc-

tures, vectorized operations and in-place modifications to be both time and memory efficient.

See the Discussion section for benchmarks on the run-time of the implementation.

The recursive nature of the peeling-paring algorithm allows for multiple counselees to be speci-

fied in the function call without significant increase in the computational time. This is an advantage

when multiple family members are at high risk and would benefit from knowing their carrier proba-

bilities and future cancer risks.

Missing data
PanelPRO calculates mutation carrier probabilities for one or more counselees. The peeling-paring

algorithm requires both parents of the counselee to be present in the pedigree in order to link indi-

viduals who are non-founders. When there is only data for a single parent (whose children influence

the results), we add a pseudo-parent who has the same prior allele frequencies as the parent for

whom we do have information on. This allows the peeling-paring algorithm to run and serves as an

approximation of the final results.

When the current age or age of cancer diagnosis of a family member is unknown, we use a multi-

ple imputation procedure to repeatedly sample their age (Biswas et al., 2013). Unknown current

ages are sampled based on the current ages of the relatives, and unknown ages of cancer diagnosis

are sampled from the cancer penetrances, using the current age as an upper bound. The optional

impute.times argument in the main PanelPRO function can be used to set the number of samples

taken. The value labeled ‘estimate’ in the output is the average of the results over the sampled

ages, whilst the ‘lower’ and ‘upper’ bounds are the minimum and maximum values over the respec-

tive samples (whether it be for the posterior probabilities or future risks).

When impute.times is high (say, 50 or more), it is recommended to set the parameter parallel to

TRUE. The algorithm will then use the foreach package and the existing cores in one’s machine to

execute the imputations in a parallel fashion, instead of sequentially, thereby speeding up the

computation.

Output
For each proband in the pedigree, the output consists of:

. estimates of carrier probabilities,

. lower and upper bound estimates of carrier probabilities if imputations were made for missing
data,

. estimates of future risks of cancers in 5-year intervals (the user can also change the length of
the intervals),
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. lower and upper bound estimates of future risks of cancers in 5-year intervals if imputations
were made for missing data.

Messages or warnings generated from checkFam have been omitted in the example below for

brevity.

output <- PanelPRO(pedigree = test_fam_1,

cancers = c(‘Breast’, ‘Ovarian’),

genes = c(‘BRCA1’, ‘BRCA2’, ‘ATM’, ‘MSH2’),

max.mut = 2,

parallel = FALSE)

## Your model has two cancers - Breast, Ovarian and four genes - BRCA1_hetero_anyPV

...

output

## $posterior.prob

## $posterior.prob$‘6‘X

## genes estimate lower upper

## 1 noncarrier 6.895857e-01 6.852634e-01X 6.901750e-01

## 2 BRCA1_hetero_anyPV 3.028050e-01 3.009048e-01 3.030639e-01

## 3 XBRCA2_hetero_anyPV 3.486877e-04 2.817221e-04 4.216045e-04

## 4 ATM_hetero_anyPV 4.027689e-03 3.904178e-03 5.532214e-03

## 5 MSH2_hetero_anyPV 9.814770e-04 5.697486e-04 4.574016e-03

## 6 BRCA1_hetero_anyPV.BRCA2_hetero_anyPV 1.462717e-04 1.181799e-04 1.768601e-04

## 7 BRCA1_hetero_anyPV.ATM_hetero_anyPV 1.689866e-03 1.638046e-03 2.321095e-03

## 8 BRCA2_hetero_anyPV.ATM_hetero_anyPV 7.125399e-07 6.081245e-07 9.481190e-07

## 9 BRCA1_hetero_anyPV.MSH2_hetero_anyPV 4.118459e-04 2.390780e-04 9.481190e-07

## 10 BRCA2_hetero_anyPV.MSH2_hetero_anyPV 4.118459e-04 1.361573e-07 9.481190e-07

## 11 ATM_hetero_anyPV.MSH2_hetero_anyPV 2.541503e-06 1.637872e-06 9.481190e-07

##

##

## $future.risk

## $future.risk$‘6‘X

## $future.risk$‘6‘$Breast

##

## ByAge estimate lower upper

## 1 60 0.04694233 0.04691714 0.04707834

## 2 65 0.09340834 0.09336108 0.09367413

## 3 70 0.13709254 0.13702686 0.13747579

## 4 75 0.17464537 0.17456501 0.17513057

## 5 80 0.20483919 0.20474732 0.20541009

## 6 85 0.22687210 0.22677195X 0.22750817

## 7 90 0.23927170 0.23916714 0.23994509

##

## $future.risk$‘6‘$Ovarian

## ByAge estimate lower upper

## 1 60 0.03600079 0.03598267 0.17954734

Continued on next page
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## 2 65 0.07186345 0.07183188 0.17954734

## 3 70 0.10464159 0.10460004 0.10477485

## 4 75 0.13238354 0.13233432 0.13253217

## 5 80 0.15520230 0.13233432 0.15536227

## 6 85 0.17183044 0.17177152 0.15536227

## 7 90 0.17960786 0.17954734 0.15536227

The package includes the function visRisk to visualize the output graphically. Figure 4 demon-

strates this usage for test_fam_1. The visRisk function was implemented using the plotly (Sie-

vert, 2020) package, so that the output can be rendered interactively and display the exact

probabilities upon hovering.

Additional examples
In this section, we display some of the other test pedigrees included in PanelPRO and their corre-

sponding output from the visRisk function, as well as a comparison to some other platforms and

models. We compared PanelPRO to: BRCAPRO and MMRPRO in BayesMendel (Chen et al., 2004),

CanRisk (Lee et al., 2019; Carver et al., 2021), IBIS (Tyrer et al., 2004), and PREMM-5

(Kastrinos et al., 2017), which all support different cancers, genes and model assumptions. Table 4

summarizes the supported inputs and outputs of each model. If a particular model or platform does

not support certain cancers, the irrelevant family history is simply omitted from input. For brevity,

Figures 5–9 provide visualizations of the pedigrees of these additional examples, and the corre-

sponding model outputs are reported in as figure supplements. In all cases, we used the default

model settings (if any). Many of the aforementioned platforms have long reports as outputs, so we

have only included the portions concerned with carrier probabilities and future risks. The same infor-

mation contained in the PanelPRO sample pedigrees is input to the other models; however not all of

the features are used by these other platforms. Conversely, there are some inputs for the other mod-

els that PanelPRO does not include.

Notably, all the cancers and genes supported by these other models are a subset of those sup-

ported in PanelPRO, except for PREMM-5, which takes into consideration other cancers associated

with Lynch syndrome which are not currently included in PanelPRO (bile duct and sebaceous gland).

Figure 4. Sample output using visRisk function.
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However, PREMM-5 does not provide the associated future risk for these additional cancers, only

carrier probabilities for MLH1, MSH2, MSH6, PMS2, and EPCAM.

Comparing PanelPRO with BRCAPRO and MMRPRO, we see that PanelPRO offers carrier proba-

bility estimates for a larger set of genes, as well as a graphical output of the future risk. IBIS does

not give any estimates for carrier probabilities; however, it gives a summary of the future risks in text

format, relative to population averages. Finally, PREMM-5 gives an estimate of carrying any of five

genes (MLH1, MSH2, MSH6, PMS2, or EPCAM), whilst PanelPRO is able to give estimates for each

of those individual genes. PREMM-5 also does not give estimates for future risks of cancer.

Two pedigrees that illustrate the differences between PanelPRO and PREMM-5 are test_fam_7

(Figure 5) and test_fam_11 (Figure 9). For test_fam_7, PanelPRO estimates a 42.3% probability of

carrying an MLH1, MSH2, MSH6, PMS2, or EPCAM mutation (when excluding the possibility of

Table 4. Comparison between supported cancers and genes in PanelPRO and other platforms.

Model or
platform
name Version Supported cancer input types Supported gene carrier probability outputs

Supported
future cancer
risk outputs

PanelPRO 0.2.0 Brain, breast, cervical, colorectal, endometrial, gastric,
kidney, leukemia, melanoma, ovarian, osteosarcoma,
pancreatic, small intestine, soft tissue sarcoma, thyroid,
urinary bladder, hepatobiliary

APC, ATM, BARD1, BMPR1A, BRCA1, BRCA2, BRIP1,
CDH1, CDK4, CDKN2A, CHEK2, EPCAM, MLH1, MSH2,
MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C,
RAD51D, STK11, TP53

same as
cancer inputs

BRCAPRO 2.1–7 Breast, ovarian BRCA1, BRCA2 same as
cancer inputs

MMRPRO 2.1–7 Colorectal, endometrial MLH1, MSH2, MSH6 same as
cancer inputs

IBIS 0.8b Breast NA Breast

CanRisk 1.2.3 Breast, contralateral breast, ovarian, prostate, pancreatic BRCA1, BRCA2, PALB2, CHEK2, ATM, RAD51D,
RAD51C, BRIP1

Breast, ovarian

PREMM-5 NA Colorectal, endometrial, other (group of ovarian,
stomach, small intestine, urinary tract/bladder/kidney,
bile ducts, brain, pancreas, sebaceous gland skin)

MLH1, MSH2, MSH6, PMS2, EPCAM NA

Figure 5. Sample pedigree test_fam_5.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. PanelPRO output with test_fam_5 as pedigree input.

Figure supplement 2. BRCAPRO output with test_fam_5 as pedigree input.

Figure supplement 3. IBIS output with test_fam_5 as pedigree input.
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Figure 6. Sample pedigree test_fam_6.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. PanelPRO output with test_fam_6 as pedigree input.

Figure supplement 2. BRCAPRO output with test_fam_6 as pedigree input.

Figure supplement 3. MMRPRO output with test_fam_6 as pedigree input.

Figure 6 continued on next page

Figure 7. Sample pedigree test_fam_7.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. PanelPRO output with test_fam_7 as pedigree input.

Figure supplement 2. MMRPRO output with test_fam_7 as pedigree input.

Figure supplement 3. PREMM-5 output with test_fam_7 as pedigree input.
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Figure 8. Sample pedigree test_fam_10.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. PanelPRO output with test_fam_10 as pedigree input.

Figure supplement 2. BRCAPRO output with test_fam_10 as pedigree input.

Figure supplement 3. MMRPRO output with test_fam_10 as pedigree input.

Figure supplement 4. IBIS output with test_fam_1 as pedigree input.

Figure supplement 5. PREMM-5 output with test_fam_10 as pedigree input.

Figure 9. Sample pedigree test_fam_11.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. PanelPRO output with test_fam_11 as pedigree input.

Figure supplement 2. BRCAPRO output with test_fam_11 as pedigree input.

Figure supplement 3. MMRPRO output with test_fam_11 as pedigree input.

Figure supplement 4. IBIS output with test_fam_11 as pedigree input.

Figure supplement 5. PREMM-5 output with test_fam_11 as pedigree input.
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multiple simultaneous gene mutations), compared to 32% for PREMM-5. This pedigree only contains

family history of colorectal and endometrial cancers, which PREMM-5 uses as key risk factors, leading

to similar results. In contrast, the mutation probability estimates between the same two models for

test_fam_11 are quite different. This pedigree is an extreme example that contains history of endo-

metrial, small intestine, ovarian, and pancreatic cancers, but PREMM-5 groups the latter three can-

cers into a single risk factor for any other Lynch syndrome-associated cancers. The differences in the

model approaches and assumptions result in PanelPRO giving a 93% estimate for a mutation in any

of the aforementioned genes (without multiple simultaneous gene mutations), while PREMM-5

returns 3.2%. test_fam_11 is an extreme pedigree, but it nonetheless illustrates the flexibility of Pan-

elPRO for incorporating very detailed pedigree information with a high clinical impact.

Implementation summary
We list the key functions with their input(s) and output(s) in Table 3. The PanelPRO function calls the

pre-processing functions and the algorithm engine in the back-end, so we expect that most users

will only need to use this main function. However, the other functions can be called separately if

desired. For example, users can call buildDatabase to inspect the database of model parameters or

run checkFam to examine the pedigree after it has been checked.

Methods: Mendelian modeling
In this section, we give the mathematical details of the main PanelPROCalc engine, which encom-

passes approximating genotype distributions of counselees and their future cancer risks.

Genotype probabilities
PanelPRO predicts an individual’s probability of having a specified genotype. We use the notation in

Table 5. Without loss of generality, let the subscript i ¼ 1 represent the counselee (i.e. the individual

who is counseled). For simplicity, we only consider one counselee, although the model can handle

multiple counselees in a computationally efficient manner. The counselee’s genotype probability is:

P G1 jH;Uð Þ: (1)

Using Bayes’ rule, the law of total probability and the assumption of independence of family phe-

notypes given genotypes and sex, this can be written as

P G1 jH;Uð Þ / P G1ð Þ
P

G2 ;...;GI

Q

I

i¼1
P Hi jGi;Uið ÞP G2; . . . ;GI jG1ð Þ

¼ P G1ð Þ
P

G2 ;...;GI

Q

R

r¼1

Q

I

i¼1
P Hri jGi;Uið ÞP G2; . . . ;GI jG1ð Þ:

(2)

From this representation of the posterior probability, we can clearly see the model and user

inputs to PanelPRO. P G1ð Þ represents the allele frequencies for each gene in the model.

P Hri jGi;Uið Þ are derived from the cancer penetrances P Tri ¼ t jGi;Uið Þ. Explicitly,

P Hri jGi;Uið Þ ¼
1�

P

Ci

s¼1
P Tri ¼ s jGi;Uið Þ if dri=0

P Tri ¼ T
obs

ri
jGi;Ui

� �

if dri=1

�

Table 3. List of main functions in PanelPRO.

Category Name Description

Pre-
processing

checkFam Checks family structure as defined by the user. The inputs are a data.frame specifying the pedigree and a built database
returned by buildDatabase. The output is a modified data.frame pedigree and list of imputed ages, if missing ages were
imputed (see the Missing Data section).

Pre-
processing

buildDatabase Subsets the internal database PanelPRODatabase depending on the cancers and genes selected. The input is the list
PanelPRODatabase. The output is another list which is a subset of PanelPRODatabase.

Algorithm PanelPROCalc Estimates the posterior carrier probabilities and future risks of the proband. The inputs are the outputs of checkFam. The
outputs are lists of posterior probabilities and future risks for the proband.

Main
function

PanelPRO Runs main function. The inputs are the user-specified pedigree, a vector of cancers in the model, a vector of genes in the
model, and other optional parameters. The output is a list of estimates of posterior carrier probabilities for each genotype,
along with future cancer risks and ranges for each of these.

Lee, Liang, et al. eLife 2021;10:e68699. DOI: https://doi.org/10.7554/eLife.68699 15 of 22

Tools and resources Cancer Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68699


where Tri is the random variable and T
obs

ri
is the observed cancer age. By default, the allele frequen-

cies and penetrances are obtained from existing peer-reviewed studies and estimates, but are

completely customizable within PanelPRO.

Since the genotype space fðG2; . . . ;GIÞ : Gi 2 f0; 1gK ; i ¼ 2; . . . ; Ig is large for large values of K,

we use the peeling-paring algorithm (Madsen et al., 2018) as an approximation, only allowing a

pre-specified number of mutations to be simultaneously present in the same individual. The

Table 5. Notation for Mendelian Modeling for a model with K genes and R cancers and a family of I members.

The subscript i denotes the i th family member.

Variable and notation Description
R object from user input, if
applicable

Genotypes

Gi ¼ ðGkiÞ
K

k¼1
Genotype of individual i, where Gki is the binary indicator for carrying a deleterious
mutation in the k th gene

G ¼ ðGiÞ
I

i¼1
Genotypes of all family members i ¼ 1; . . . ; I

Sex

Ui Binary indicator that individual i is male Sex

U ¼ ðUiÞ
I

i¼1
Binary male indicators for all family members i ¼ 1; . . . ; I

Cancer history

Tri Age of diagnosis of the r th cancer for individual i AgeXX

Ci Individual i’ s censoring age (current age or age of death) CurAge

dri ¼ IðTri � CiÞ Binary indicator that cancer r occurs before the censoring age for individual i

Hri ¼
ðCi; driÞ if dri=0

ðCi; dri; TriÞ if dri=1

�

Observed history of the r th cancer for individual i, not including risk modifiers and
interventions

Hi ¼ ðHriÞ
R

r¼1
All observed history for individual i

H ¼ ðHiÞ
I

i¼1
Observed histories for all family members i ¼ 1; . . . ; I

Td;ri Individual i ’s age of death from causes other than cancer r

T
�
ri
¼ minðTri;Td;riÞ Individual i ’s age of first outcome, either cancer r or death from causes other than cancer

r

Jri ¼ IðT�
ri
¼ TriÞ Binary indicator that individual i develops the r th cancer isAffXX
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Figure 10. Sample run-times for test_fam_1 evaluated by PanelPRO on the default settings, as a function of the

number of genes considered. The paring parameter is set to 2. These run time experiments were performed on a

2020 Linux machine with an 11th Gen Intel(R) i7-1165G7 chip at 2.80 GHz.
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pedigree structure from the user input is used to derive the P G2; . . . ;GI jG1ð Þ term in

Equation 2 using Mendelian laws of inheritance.

Future cancer risk
PanelPRO also estimates future cancer risk, based on the previously calculated genotype distribution

of the individual. Suppose the counselee has not developed the r th cancer by their current age.

Then the risk of developing the r th cancer in t0 years is

P T
�
r1
�C1 þ t0;Jr1 ¼ 1 jH;U

� �

¼
X

G1

P T
�
r1
�C1 þ t0;Jr1 ¼ 1 jG1;U

� �

P G1 jH;Uð Þ: (3)

Equation 3 produces so-called ‘crude’ risk, since competing risks of death from causes other

than the specified cancer are accounted for. Thus, the reported future risk is the probability that the

counselee develops the r th cancer within the next t0 years and does not die from other causes

beforehand, given the cancer history and sexes of the family. P T
�
r1
�C1 þ t0;Jr1 ¼ 1 jG1;U

� �

is the

crude penetrance and is also a model input with default values estimated from the literature.

PanelPRO also provides the option to report ‘net’ future risk, which is the probability that the

counselee develops the r th cancer in a hypothetical world where they cannot die from other causes,

given the cancer history and sexes of the family. This risk type is not as realistic but some clinicians

find it useful, as it focuses on the specified cancer and allows them to factor qualitatively the patient-

specific covariates that may affect the patient’s risk. To report net future risk, PanelPRO uses the net

penetrances P Tri ¼ t jGi;Uið Þ. Note that the genotype probabilities in Equation 2 were calculated

using net penetrances, as we do not collect death from other causes as a user input.

Discussion
PanelPRO is a highly flexible package which provides an interface to efficiently calculate carrier prob-

abilities for a wide array of cancer susceptibility genes, as well as future cancer risks. It is designed

for R users. Similarly to the BayesMendel package, it can provide the computational engine behind

clinical and counseling decision support tools.

It excels in being fully customizable. Any combination of the 24 genes and 18 cancers currently in

version 0.2.0 of the package can be included in the model. New genes and cancers can easily be

added, and in fact the code allows for an arbitrary number of genes and cancers. Risk modifiers

have been included for certain procedures, and more can be added as additional information

becomes available. The user can also change the internal database of parameter values.

The package includes a comprehensive check on the input pedigree to ensure users are informed

of potentially inconsistent or infeasible data entries. When it is possible to do so safely, the data is

automatically remedied and the user is then notified. Otherwise, the program will halt with an infor-

mative error message. Once the pedigree is pre-processed, the posterior probabilities are calculated

efficiently. For example, test_fam_1, which has 19 members and family history of 2 cancers, runs

with all the default settings in a few seconds as shown in Figure 10. The polynomial run-time of the

peeling-paring algorithm is alleviated with PanelPRO’s Rcpp implementation. Even when relaxing

the maximum mutations (paring) parameter, the C++ implementation is able to handle the calcula-

tions efficiently. Run-times in these ranges are certainly appropriate for clinical use, as well as use in

a research setting where possibly hundreds of pedigrees have to be processed through PanelPRO.

Moreover, the peeling-paring algorithm run-time scales linearly in the number of family members in

the pedigree and can handle hundreds of members in an inter-generational configuration easily.

PanelPRO has two main limitations. Firstly, the initial release does not handle pedigrees which

contain loops. This additional functionality would be desirable in future releases, although loops in

pedigrees do not happen frequently. Several studies suggest either exact or approximate computa-

tions for pedigrees with loops, see Stricker et al., 1995 and Totir et al., 2009. Secondly, the poly-

nomial scaling of peeling-paring as a function of the number of genes considered becomes

significant when many genes are incorporated. This issue is of concern because we strive for future

releases to contain far more genes than 24 as data becomes available. Alternative algorithms which

have different time complexity properties, such as the Lander-Green family of algorithms

(Lander and Green, 1987), should be explored. These algorithms scale linearly in terms of the
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number of genes considered, but are exponential in the number of family members in the pedigree

(Gao et al., 2009). A future objective for this package is to contain a choice of the carrier probability

calculation method, and ideally an automatic selection of the one which is most efficient, depending

on family size and total number of genes. Appropriate thresholds of these two parameters need to

be determined by a comprehensive benchmarking exercise.
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Appendix 1

In depth package workflow
Cancer name mapping

Appendix 1—figure 1. PanelPRO in depth package workflow.

Appendix 1—table 1. Abbreviations of cancers in PanelPRO.

Short name Long name Short name Long name

BRA Brain OC Ovarian

BC Breast OST Osteosarcoma

CER Cervical PANC Pancreas

COL Colorectal PROS Prostate

ENDO Endometrial SI Small Intestine

GAS Gastric STS Soft Tissue Sarcoma

KID Kidney THY Thyroid

LEUK Leukemia UB Urinary Bladder

MELA Melanoma HEP Heptobiliary

Sample pedigrees

Appendix 1—table 2. Summary of sample pedigrees provided within the package.

Pedigree name Number of family members Cancers present

test_fam_1 19 BC, OC

test_fam_2 25 ENDO, PANC, SI

test_fam_3 50 BRA, BC, COL, ENDO, GAS, KID, MELA, OC, PANC, PROS, SI

test_fam_4 9 BC, OC, BRA, COL, PROS, ENDO, SI,

test_fam_5 17 BC, MELA

test_fam_6 19 BC, ENDO, MELA, PANC

test_fam_7 19 COL, ENDO

test_fam_8 20 COL, PROS

test_fam_9 19 BC, PROS

Continued on next page
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Appendix 1—table 2 continued

Pedigree name Number of family members Cancers present

test_fam_10 21 BC, COL

test_fam_11 16 BC, ENDO, OC, PANC, SI

test_fam_12 21 all cancers in Appendix 1—table 1

err_fam_1 10 BC, PANC

Lee, Liang, et al. eLife 2021;10:e68699. DOI: https://doi.org/10.7554/eLife.68699 22 of 22

Tools and resources Cancer Biology Genetics and Genomics

https://doi.org/10.7554/eLife.68699

