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Diabetes mellitus is a group of complex metabolic disorders which has affected hundreds
of millions of patients world-widely. The underlying pathogenesis of various types of
diabetes is still unclear, which hinders the way of developing more efficient therapies.
Although many genes have been found associated with diabetes mellitus, more novel
genes are still needed to be discovered towards a complete picture of the underlying
mechanism. With the development of complex molecular networks, network-based
disease-gene prediction methods have been widely proposed. However, most existing
methods are based on the hypothesis of guilt-by-association and often handcraft node
features based on local topological structures. Advances in graph embedding techniques
have enabled automatically global feature extraction from molecular networks. Inspired by
the successful applications of cutting-edge graph embedding methods on complex
diseases, we proposed a computational framework to investigate novel genes
associated with diabetes mellitus. There are three main steps in the framework:
network feature extraction based on graph embedding methods; feature denoising
and regeneration using stacked autoencoder; and disease-gene prediction based on
machine learning classifiers. We compared the performance by using different graph
embedding methods and machine learning classifiers and designed the best workflow for
predicting genes associated with diabetes mellitus. Functional enrichment analysis based
on Human Phenotype Ontology (HPO), KEGG, and GO biological process and publication
search further evaluated the predicted novel genes.
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INTRODUCTION

Diabetes mellitus is a chronic disease where the blood sugar in patients is abnormally elevated
because of the underproductive pancreas or the ineffective response toward insulin (Kharroubi and
Darwish, 2015). According to the global diabetes map (ninth edition) published by the International
Diabetes Federation (IDF) in 2019 (Cho et al., 2018), the number of diabetic patients worldwide is
increasing, with an average global growth rate of 51%. There are currently 463 million diabetic
patients. According to the growing trend, there will be 700 million diabetic patients worldwide by
2045 (Cho et al., 2018). Diabetes mellitus and its multiple complications have largely increased the
risk of mortality, blindness, and kidney failure of patients, and posed a heavy burden on human
society. It is urgent to investigate the disease mechanisms and find more effective cures.

There are different types of diabetes: type 1 diabetes (T1D), type 2 diabetes (T2D), gestational
diabetes and other types (Geerlings and Hoepelman, 1999; Kharroubi and Darwish, 2015). For
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different types of diabetes, the causes and risk factors vary. Type
1diabetes is an autoimmune disease, where the insulin-producing
cells in the pancreas are attacked by the immune system of
patients. The pathogenesis of type 1 diabetes is still unclear,
but some researchers think it is caused by a combination of
genetic and environmental factors. The genome-wide association
studies (GWAS) have identified over 60 susceptibility loci for
T1D (Systematic evaluation of genes and genetic variants
associated with Type 1 diabetes susceptibility). And post-
GWAS functional analyses (Shabalin, 2012; Westra et al.,
2013; Fagny et al., 2017; Wang et al., 2019a; van der Wijst
et al., 2020) such as expression quantitative trait loci (eQTL)
analysis have been performed to infer the underlying causal genes
(Nyaga et al., 2018). Cells become resistant to insulin in type 2
diabetes, resulting in higher demand for insulin. However, the
dysfunction of pancreatic β cells decreases secretion of insulin,
leading to evaluated blood sugar levels in patients. The
pathogenesis of T2D is also unclear, but the genetic studies of
T2D provided novel susceptibility loci and candidate genes.
Similarly, the mechanisms of other types of diabetes are also
not clear. It is urgent to discover genes associated with diabetes
mellitus to find therapeutic targets and improve diagnoses
(Kharroubi and Darwish, 2015).

There have been intense efforts to predict genes associated
with complex diseases in recent years (Ghiassian et al., 2015; Peng
et al., 2017; Agrawal et al., 2018; Cheng et al., 2019; Wang et al.,
2020). GWASs can directly reveal the associations between
genome variants and diseases (Zhu et al., 2016a; Zhu et al.,
2016b; Visscher et al., 2017; Gallagher and Chen-Plotkin, 2018;
Visscher and Goddard, 2019). However, most GWAS SNPs locate
in non-coding regions, i.e., intronic or inter-genetic regions,
leading to a limited discovery of disease genes. Functional
analysis, such as eQTL analysis (Wang et al., 2021a; Wang
et al., 2021b), can further translate GWAS signals to functional
genes through measuring the regulation pattern between genomic
variations (genotypes) and transcriptome variations (gene
expression level). These statistical methods have achieved
tremendous success in discovering disease-associated genes. And
these discoveries have also been recorded in biological databases
such as DisGeNet (Piñero et al., 2015; Piñero et al., 2016; Piñero
et al., 2020). However, these methods mostly are based on simple
“gene-disease” associations and ignore the underlying functional
collaborations among genes.

With the development of molecular networks, such as protein-
protein interaction (PPI) networks and gene regulatory networks,
it is feasible to investigate disease genes based on gene networks
(Peng et al., 2021a). Under the hypothesis of guilt–by–association
(GBA), the novel disease-associated genes can be predicted by
measuring the neighborhood structures of known disease genes.
In recent years, there have been many network-based methods
emerging as powerful tools for disease-gene prediction (Wang
et al., 2019b; Wang et al., 2019c; Yang et al., 2019). The task of
disease-gene prediction can be considered as a classification
problem in machine learning. There are two types of
classification in disease-gene prediction based on the types of
entity the methods aim to predict. One is node classification,
where genes in the gene network can be separated into two

groups: known disease-genes and unlabeled genes, and the
prediction methods aim to give a rank to unlabeled genes
based on the prediction model. Top-ranked genes will be
predicted as novel disease genes. Methods such as PRINCE
(Vanunu et al., 2010), VAVIEN (Erten et al., 2011), and N2A-
SVM (Peng et al., 2019a) belong to this category. The other type
of classification in disease-gene prediction is edge classification,
also called link prediction. In this category, genes and diseases
both exist in the network as nodes, which comprise a
heterogeneous graph. The prediction methods learn features
from known disease-gene edges and predict novel disease-gene
links. The feature of a disease-gene link is combined from a pair of
node features. Methods such as RWRH (Li and Patra, 2010) and
RWPCN (Yang et al., 2011) belong to this category.

From the aspect of features extracted from the network, the
disease-gene predictionmethods can be separated into handcrafted
feature-basedmethods and automatic feature representation-based
methods. In the first category, methods engineered features for
nodes in biological networks, such as using node degree, graphlet
degree, common neighbors, shortest path length meta-paths, etc.
However, methods relying on direct neighborhood counting can
only capture the local network structure while ignoring the global
structure. To overcome this issue, Xu et al. proposed a method by
integrating multiple topological features to predict disease genes
(Xu and Li, 2006). In their methods, they expanded the neighbors
of a seed by considering 2-hop neighbors. Besides the network
topological structure, some methods integrated more biological
data as features. DERanking (Nitsch et al., 2010) incorporated
differential expression in features. BRIDGE (Chen et al., 2013)
integrated multiple data sources besides the PPI network, such as
gene expression, gene ontology (GO), and the KEGG database.
DiGI (Tran et al., 2020) used gene co-expression network,
functional pathways, PPI network, and other cofunction
networks in feature engineering. Although these methods based
on handcrafted features have achieved tremendous success in
multiple fields, there needs a lot of domain knowledge and it
may also introduce biases with manually engineered features.

In recent years, graph embedding learning methods emerged
as powerful tools for extracting the latent features from networks.
Graph embedding is also known as graph representation learning,
aiming at mapping large and sparse graph data into low-
dimensional dense feature vectors. There are matrix
factorization-based graph embedding methods [such as IMC
(Natarajan and Dhillon, 2014) and PCFM (Zeng et al., 2017)],
and also methods based on skip-gram based neuron networks
[such as LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014),
and Node2Vec (Grover and Leskovec, 2016)], and graph neuron
networks [such as graph convolutional network (Wu et al.,
2020)]. These techniques have been widely used in
bioinformatics applications such as the discovery of antibiotics
(Stokes et al., 2020), disease genes (Peng et al., 2021b), disease
modules (Wang et al., 2020), drug targets (Peng et al., 2021c),
drug side-effects (Han et al., 2021), RNA-targets (Peng et al.,
2019b), molecular network edges (Perozzi et al., 2014; Ribeiro
et al., 2017; Peng et al., 2021d), etc. However, there has been a lack
of research on discovering genes associated with diabetes mellitus
using cutting-edge graph-embedding techniques. In this study,
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we designed a computational framework based on graph
embedding approaches to discover novel genes associated with
diabetes mellitus without distinction between diabetes types. We
first extracted gene features from a PPI network. During this
phase, we compared three cutting-edge graph embedding
methods, i.e., LINE (Tang et al., 2015), DeepWalk (Perozzi
et al., 2014), and Node2Vec (Grover and Leskovec, 2016).
Next, we applied a stacked auto-encoder to further process the
node embeddings into lower-dimensional space. Finally, we used
widely-used machine learning classifiers for the task of gene
prediction. In the experiments, we evaluated the performance
of our model by using five-fold cross-validation, and we also
compared the performance using various graph embedding
methods, hyper-parameters, and machine learning classifiers.

METHODOLOGY

There are three main steps in our graph embedding based
diabetes-gene prediction model: 1) we used three cutting
graph embedding methods, i.e., LINE, DeepWalk, and
Node2Vec, to extract node features from a PPI network; 2) A
three-layer stacked autoencoder was applied to further reduce
feature dimension and automatic feature extraction; 3) disease
gene prediction using support vector machine (SVM) (Chang and
Lin, 2011), and other two widely-used classifiers (random forest
and logistic regression) were compared. Four metrics (AUPRC,
AUROC, ACC, and F1 score) were used to measure the
performance in five-fold cross-validation. Functional
enrichment and network analysis were applied for evaluation.
The workflow of our method is shown in Figure 1.

Extract Features From PPI Network Based
on Graph Embedding
To extract the latent feature from PPI network, we adopt three
cutting-edge graph embedding methods: Node2vec, DeepWalk,
and LINE, and compared their performance in the task of
predicting genes associated with diabetes mellitus. DeepWalk
draws on the idea of the word2vec algorithm. Word2vec is a
commonly used word embedding method in natural language

learning (NLP). It describes the co-occurrence relationship
between words and words through the sentence sequence in
the corpus and then learns the vector representation of words
based on skip-gram neuronal network model. The DeepWalk
algorithm is similar to word2vec and uses the co-occurrence
relationship between nodes in the graph to learn the vector
representation of nodes. DeepWalk uses random walk to
sample paths with fixed lengths. The paths are consisted of
randomly visited nodes and are similar to sentences in NLP.
And then word2vec is used to learn the co-occurrence
relationship of nodes based on skip-gram neuronal network
model. The weights on the hidden layer of skip-gram model
will be the latent features.

Node2vec is a graph embedding method improved based on
DeepWalk. The novel part of Node2vec is that it uses a biased
random walk process to generate random paths. The
hyperparameters p and q are used to control the directions of
random walk in consonance with breadth-first search (BFS) or
depth-first search (DFS) in the PPI network. Parameter p
determines the process of revisiting the nodes within random
walk and q affects the possibility of capturing local or global
nodes. Compared to DeepWalk, Node2vec provides more various
elements, and particularly, if the value of p and q both equal 1,
these two algorithms are the same.

LINE is also a method based on the assumption of
neighborhood similarity, except that LINE uses BFS to
construct neighborhoods while DeepWalk uses DFS to
construct neighborhoods. LINE also takes into account the
first-order and second-order similarities between nodes and
can be applied to various types of networks and large-scale
networks. However, some vertices have few adjacent points,
which leads to insufficient learning of embedding vectors and
insufficient use of high-level information.

Feature Regeneration and Reduction Using
Stacked Autoencoder
Autoencoder is an unsupervised artificial neural network that can
automatically extract latent features from data. Autoencoder has
been successfully applied in many applications, such as speech
recognition, self-driving cars, human gesture detection, etc. The

FIGURE 1 | Workflow of our method. Abbreviations: SVM: supporting vector machine, RF: random forest, LR: logistic regression.
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autoencoder structure is composed of three parts: the input layer,
the hidden layer, and the output layer, which correspond to the
encoder, bottleneck and decoder respectively. Among them, the
encoder is responsible for selecting key features from the data,
and the decoder is responsible for recreating the original data
using key components. Since the number of hidden layer nodes is
less than the number of input nodes, the autoencoder can reduce
the data dimension by retaining only the features needed to
reconstruct the data. The autoencoder is also a feed-forward
network, which can be trained using the same procedure as the
feed-forward network. Although Autoencoder has the same input
and output, it also has a certain degree of loss, so autoencoder is
also called lossy compression technology.

Since there are complicated relationships within the elements
in some data sets, only one autoencoder cannot meet the
requirements. To reduce the dimensionality of the input
features, a single autoencoder may not be able to complete it.
In response to this situation, the stacked autoencoder was
proposed. As the name suggests, stacked autoencoders are
multiple autoencoders stacked on top of each other. The
specific process of the stacked autoencoder method is
described as follows: First, given the initial input, train the
first-layer autoencoder in an unsupervised way to reduce the
reconstruction error to the set value. Second, take the output of
the hidden layer of the first autoencoder as the input of the second
autoencoder, and use the same method as above to train the
autoencoder. Third, repeat the second step until all autoencoders
are initialized. Finally, use the weights of the hidden layer of the
last stacked autoencoder as the final features.

Machine Learning Classifiers Used for
Disease Gene Prediction
After the process of network representation learning and feature
denoising, we apply classification methods for the final prediction
task. Three widely-used machine learning algorithms were used
for predicting genes associated with diabetes mellitus: support
vector machine (SVM), Logistic regression, and Random Forest.
Logistic regression models the relationship between predictor
variables and a categorical response variable. Given feature vector
x and the label y ∈ {0, 1} of each sample, the logistic regression
models feature x and the probability of y by Eq. 1, where w
represents weights and b represents bias. This equation means the
log odds of prediction y � 1 equals linear regression of input
feature x. The parameters w and b can be estimated by maximum
likelihood estimation.

wTx + b � ln
p(y � 1

∣∣∣∣x)
1 − p(y � 1

∣∣∣∣x)
i.e., p(y � 1|x) � 1

1 + e−(wTx+b)
(1)

Random Forest is an integrated algorithm composed of decision
trees, which achieves excellent performance in many applications.
Decision tree is a supervised learning algorithm based on “if-
then-else” rules. When we perform the classification task, the
input samples are classified by each decision tree separately. And
each decision tree will get its own classification result. Those

decision trees form the random forest, and it will ensemble all
prediction results, and output the label with the most consistent
evidence.

Support vector machines (SVM) is a binary classification
model. Its basic model is a linear classifier featured with the
largest interval between two classes in the feature space. Kernel
techniques can be applied to SVM, which makes it a non-linear
classifier. The learning strategy of SVM is to maximize the
interval, which can be formalized as a problem of solving
convex quadratic programming. As shown in Eq. 2, the SVM
model is to construct the hyperplane (ω is the variable coefficient,
c is the constant), so that the labels of the samples can be divided
correctly.

ωxT + c � 0 (2)

Metrics for Evaluating Prediction
Performance
In the task of binary classification, samples in the test set can be
separated into four classes: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). And the sample size of
the test set (N) equals to the sum of TP, TN, FP, and FN. Based on
these measures, we used four metrics to evaluate the prediction
performance: accuracy (ACC), area under the receiver operating
characteristic curve (AUROC), area under the precision and
recall curve (AUPRC) and F1 score. The accuracy is defined
as the ratio of number of correctly predicted samples (TP + TN)
and the sample size of the test set (N). However, ACC is not
robust in study with unbalanced samples, which means there is
only a small number of positive/negative sample. The other three
metrics can solve this problem to some extent. The PR curve is
defined based on precision and recall which are defined in Eqs 3,
4, respectively. The precision and recall are on y and x-axis
respectively. Since there are N possible thresholds of prediction
probability, there would beN points, i.e., (precision, recall) on the
PR curve.

precision � TP

TP + FP
(3)

recall � TP

TP + FN
(4)

Similarly, the ROC is defined based on true positive rate (TPR)
and false positive rate (FPR), which are defined in Eqs 5, 6
respectively. In ROC, the TPR and FPR are on y and x-axis
respectively. F1 score is a combination of precision and recall,
which is defined in Eq. 7.

TPR � TP

TP + FN
(5)

FPR � FP

TN + FP
(6)

F1 � 2 p precision p recall

precision + recall
(7)

The area under ROC and PRC (AUROC and AUPRC) are widely
used to compare the performance of different classifiers. Given a
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series of points {(x1, y1), (x2, y2), . . . . . . , (xn, yn)} on the ROC
or PRC curve, the area under the curve (AUC) can be
approximately computed by Eq. 8.

AUC � 1
2
∑
n−1

i�1
(xi+1 − xi) · (yi + yi+1) (8)

RESULTS AND DISCUSSION

Datasets
We first downloaded the diabetes mellitus associated genes
from DisGeNet database (as of June 2021, UMLS CUI:
C0011849). 2,803 genes were recorded in this database, and
each gene was assigned with a gene-disease association (GDA)
score, indicating the levels of evidence. The GDA score takes into
account the number and type of sources (level of curation,
organisms), and the number of publications supporting the
association. After filtering GDA score with threshold set to
0.1, there were 476 genes left that were used for model
training in the downstream prediction.

The protein-protein interaction network was obtained from
Menche et al.’s work (Menche et al., 2015). This PPI network
consists of multiple sources of protein interactions, such as
regulatory interactions, yeast two-hybrid high-throughput
interactions, literature curated databases, metabolic enzyme-
coupled interactions, protein-protein complexes, etc. By
combining those interactions, we obtained this PPI network of
13,460 proteins and 141,296 interactions.

Network Representation Learning Using
DeepWalk, LINE, and Node2vec
We extracted the node features of the PPI network using the
technique of network representation learning or graph
embedding, which maps the topological features of nodes in
the network into the embedding space. To choose a proper
method, three cutting-edge network representation learning
methods were used for feature extraction. And we compared
their performance using five-fold cross-validation. To balance the
sample size of positive samples and negative samples, we
randomly selected the same number of nodes not labeled as
disease genes as negative samples.

We run these methods on the PPI network and generate
features with 512 dimensions. Then the features were further
processed by a stacked autoencoder with three levels, which will
reduce noises and generate latent features. The 512-dimensional
features were converted to 64-dimensional features using this
autoencoder. And SVM was used for final classification using the
same setting parameters.

Figure 2 shows the average AUROC, AUPRC, F1 score, and
accuracy (ACC) values of three methods achieved in this
experiment. We can see that Node2vec achieves the best
performance under all metrics. And DeepWalk is the second-
best method. This is easy to understand because Node2vec

improves DeepWalk by a biased random-walk strategy (see
details in Methods).

Feature Dimension Affects Prediction
Performance
As a non-end-to-end model, our framework first generates
features of network nodes and then predicts disease-associated
genes based on SVM. All of the three network-representation-
learning methods mentioned above are based on a skip-gram
neuron network model, where the dimension of output features
equals the number of neurons in the hidden layer of skip-gram
neuron network. To explore the impact of feature dimensions on
our predicting framework, we compared the performance of the
representation learning methods with various dimensional
features extracted from the PPI network. Those features were
all converted to 64-dimensional features using the stacked
autoencoder described above, followed by the SVM classifier
under the same settings (RBF kernel and other settings in default).

Based on five-fold cross-validation, we got the results shown in
Figure 3. The four sub-panels in Figure 3 represent the prediction
performance on diabetes genes using different feature dimensions
(i.e., 64, 128, 256, and 512 feature dimensions) generated by three
network representation learning methods. The average AUROC,
AUPRC, F1 score, and ACC values were compared.

When the feature dimension equals 64, Node2vec achieved the
best performance in ACC, F1 score, and AUROC. And LINE
achieved the best performance in AUPRC and the second-best
performance on ACC and F1 score. While as the feature
dimension increased to 128 and 256, the DeepWalk achieved
the best performance, and Node2vec achieved the second-best
rank. However, The Node2vec achieved the maximum AUROC
(0.74) and AUPRC (0.72) scores with 512 feature dimensions
compared with other methods in various feature dimensions. In
summary, the feature dimension and network representation
learning method both affect the prediction performance in a

FIGURE 2 | Prediction performance in five-fold cross validation based on
three graph embedding methods. Three different graph embedding methods
are compared: DeepWalk, LINE, and Node2vec. Four metrics are used for
performance evaluation: AUROC, AUPRC, F1 score, and
accuracy (ACC).
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task-dependent way. In our case, i.e., predicting genes associated
with diabetes mellitus, we choose Node2vec as the method of
feature learning from PPI network, and output 512-dimensional
features in downstream analysis.

Exploring the Effect of Hyper-Parameters in
Node2vec and Different Classifiers
As previous publications have pointed out, the hyper-parameter p
and q, in Node2vec have potential influence to feature learning

and downstream analysis. To optimize the two parameters, we
performed a grid search on p and q, and calculated the
corresponding performance. Since p controls the random walk
to visit new nodes or visited nodes, we set p in a larger manner to
encourage the random walk to visit new nodes, and we choose p ∈
(2, 20, 200). And q controls the random walk towards a BFS or
DFS graph search. To let the random walk be biased to a DFS
search, we set q ∈ (0.1,0.01, 0.001, 0.0001). The performance of
various p and q values is shown in Figure 4A. It seems there is not
a linear relationship between (p, q) values and the performance.

FIGURE 3 | The effects of feature dimension on prediction performance. Four feature dimensions (i.e., 64, 128, 256, and 512) generated by graph embedding
methods are used for comparison. Three different graph embedding methods are also compared.

FIGURE 4 | Effect on prediction performance by hyper-parameters in Node2vec and different machine learning classifiers. (A) Prediction performance under
various p and q values in Node2vec. (B) Prediction performance of SVM, Logistic regression and Random Forest in five-fold cross validation.
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TABLE 1 | Top 15 genes predicted associated with diabetes mellitus.

Gene id Gene name Gene description Score

331 BIRC4 X-linked inhibitor of apoptosis 0.78
7098 TLR3 Toll like receptor 3 0.77
55905 ZNF313 Ring finger protein 114 0.76
8915 BCL10 BCL10 immune signaling adaptor 0.76
3654 IRAK1 Interleukin 1 receptor associated kinase 1 0.75
3659 IRF1 Interferon regulatory factor 1 0.75
84270 CARD19 Caspase recruitment domain family member 19 0.75
64320 RNF25 Ring finger protein 25 0.75
340061 TMEM173 Stimulator of interferon response CGAMP interactor 1 0.74
59307 SIGIRR Single ig and TIR domain containing 0.74
9451 EIF2AK3 Eukaryotic translation initiation factor 2 alpha kinase 3 0.74
5608 MAP2K6 Mitogen-activated protein kinase 6 0.73
51135 IRAK4 Interleukin 1 receptor associated kinase 4 0.73
220885 RPSAP15 Ribosomal protein SA pseudogene 15 0.73
9344 TAOK2 TAO kinase 2 0.73

FIGURE 5 | Largest component of PPI subnetwork among these top-predicted genes and known genes associated with diabetesmellitus. Nodes in pink represent
top predicted genes. Nodes in blue represent know diabetes genes.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7791867

Du et al. Predict Genes Associated with Diabetes

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


As we can see, when p � 200 and q � 0.001, it achieves the best
performance (AUROC � 0.74) on this specific task, i.e., prediction
genes associated with diabetes mellitus. Since the best
combination of (p, q) values varies from study to study, it is
recommended to perform a grid search to find the best
hyperparameters.

To evaluate the effect of different classifiers, we compared
SVM with two other widely-used classifiers: Logistic regression

and Random Forest. Using the same features obtained from
Node2vec followed by a stacked autoencoder, we compared
the prediction performance of SVM, Logistic regression, and
Random Forest in five-fold cross-validation. The results are
shown in Figure 4B, where we can see SVM achieves the best
performance than Logistic regression and Random Forest. Based
on this analysis, our prediction model will use SVM as classifier to
predict genes associated with diabetes mellitus.

FIGURE 6 | Functional enrichment results based on HPO, KEGG, and GO. p-values are shown in log scale and only top 10 terms are shown in each category.
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Top Genes Predicted to Be Associated With
Diabetes Mellitus
To discover novel genes associated with diabetes mellitus, we
predicted all unlabeled genes in the PPI network using the final
trained model. The model uses Node2vec (with p � 200 and q �
0.001) to extract node features in 512-dimension followed by a three-
layer autoencoder to compress the feature to 64-dimension, and SVM
is applied to predict the possibility of unlabeled genes to be a diabetes
gene. The SVM model was trained using all the 476 genes labels as
disease-related. Then all the unlabeled genes were predicted by SVM.
We ranked the gene predicted by our methods and listed the top 15
genes in Table 1. The size of the top 15 genes is artificially set.

Researchers have delineated the relevance of some predicted
genes to diabetes mellitus. Zhou et al. (2017), evaluated the gene-
environment interactions and haplotype associations and
extrapolated the pathogenic role of genetic variants in the
TLR3-TRIF-TRAF3-INF-β in causing type 2 diabetes mellitus.
Al Dubayee et al. (2021), examined the increased expression of
BCL10 and reduced expression of caspase-7 from peripheral
blood mononuclear cells of diabetic individuals during the
apoptosis in insulin resistance, which reveals close relationship
between BCL10 gene and diabetes mellitus. Maikel et al. (Colli
et al., 2018), utilized immunofluorescence to discern the positive
correlation between expression of PDL1 and IRF1, based on the
fact that PDL1 expression is elevated in insulin-containing islets
of individuals with type 1 diabetes, IRF1 and Diabetes Mellitus
show a high probability of interaction.

Figure 5 shows the largest component of PPI subnetwork
among these top-predicted genes and known genes associated
with diabetes mellitus. Those predicted genes are closely
connected with known diabetes genes in the database. For
example, IRAK1 and IRAK4 have the highest degrees
connecting both known genes and predicted genes. It has been
shown that deletion of IRAK1 improves glucose tolerance by
elevating insulin sensitivity (Sun et al., 2017). IRAK4 inhibitors
can block MyD88 dependent signaling, which contributes to the
pathogenesis of type I diabetes (Sabnis, 2021).

Functional Enrichment Analysis of the
Predicted Genes
Gene set enrichment analysis has been performed for the top 15
genes predicted to be related to diabetes mellitus. Gene functional
categories in Human Phenotype Ontology (HPO), KEGG, and
GO biological process were used for over-representation analysis
using WebGestaltR (Liao et al., 20192019). The top enrichment
terms are shown in Figure 6. Our predicted genes have shown
over-representation in genes of the HPO term “transient neonatal
diabetes mellitus” with suggestive p-value < 0.01. The top HPO
term enriched was “hepatic encephalopathy,” and it has been
shown that diabetes mellitus plays a role in hepatic
encephalopathy by releasing and enhancing the inflammatory
cytokines (Ampuero et al., 2013). In KEGG enrichment results,
the term “NF-kappa B signaling pathway” achieves the best
significance with p-value < 5*10–5. Romeo et al. (2002) has
shown that diabetes and high glucose can induce the

activation of nuclear factor-kB (NF-kappa B), which regulates
a proapoptotic program in retinal pericytes. The second term is
“Toll-like receptor signaling pathway diabetes” with enrichment
p-value < 5*10–5. Dasu and Martin (2014) has shown the
increased toll-like receptors (TLRs) expression and activation
contribute to the hyper inflammation in human diabetic wounds.
The third enriched term is “toxoplasmosis”. There have been
findings that patients with toxoplasmosis are more susceptible to
be diabetics than those without toxoplasmosis, suggesting a role
of toxoplasmosis in diabetes mellitus (Shirbazou et al., 2013).
Most enriched terms in GO are related with the immune
response. And it has been well established that patients with
diabetes mellitus have more susceptibility to infections (Berbudi
et al., 2020). The high blood glucose levels, as well as the
inflammatory mediators produced by adipocytes and
macrophages, can result in the immune response (Geerlings
and Hoepelman, 1999).

CONCLUSION

Diabetes mellitus has widely affected the population in the world,
without knowing the underlying mechanism. Discovering genes
associated with diabetes will pave the way for developing novel
efficient therapies. In this work, we designed a computational
framework for diabetes gene prediction based on graph
embedding techniques. This framework consists of three main
steps: network feature extraction based on graph embedding
methods; feature denoising and regeneration using stacked
autoencoder; and disease-gene prediction based on machine
learning classifiers. By comparing with different graph
embedding methods and widely-used machine learning
classifiers, we proved the efficiency and accuracy of our
method. By applying this method to diabetes gene discovery,
we found novel genes that have been reported in publications
with clear association evidence but not recorded in the database.
Through functional enrichment analysis based on Human
Phenotype Ontology (HPO), KEGG, and GO biological
process, we found the top predicted genes are enriched in
multiple terms that have been proved to have a role in
diabetes mellitus. Our computational method may also benefit
gene discoveries for other complex diseases.
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