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Drivers and trends of global soil microbial carbon
over two decades
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Soil microorganisms are central to sustain soil functions and services, like carbon and nutrient
cycling. Currently, we only have a limited understanding of the spatial-temporal dynamics of
soil microorganisms, restricting our ability to assess long-term effects of climate and land-
cover change on microbial roles in soil biogeochemistry. This study assesses the temporal
trends in soil microbial biomass carbon and identifies the main drivers of biomass change
regionally and globally to detect the areas sensitive to these environmental factors. Here, we
combined a global soil microbial biomass carbon data set, random forest modelling, and
environmental layers to predict spatial-temporal dynamics of microbial biomass carbon
stocks from 1992 to 2013. Soil microbial biomass carbon stocks decreased globally by
3.4 +£3.0% (mean £ 95% Cl) between 1992 and 2013 for the predictable regions, equivalent
to 149 Mt being lost over the period, or ~1%. of soil C. Northern areas with high soil microbial
carbon stocks experienced the strongest decrease, mostly driven by increasing temperatures.
In contrast, land-cover change was a weaker global driver of change in microbial carbon, but
had, in some cases, important regional effects.
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ARTICLE

oils account for the largest pool of terrestrial carbon! and

provide essential functions and services to human and nat-

ural communities?~4. Soil microorganisms occupy a central
role to sustain ecosystem functions by driving multiple biochemical
processes, like decomposition, nutrient mineralization, nitrogen
fixation, and carbon sequestration®-8. Microbial communities can
be described in a number of ways—e.g., based on their abundance,
diversity, and community composition—which are relevant facets
of how these communities perform the resulting soil ecosystem
functions®. Soil microbial biomass carbon (further as “microbial
carbon”) represents the amount of carbon in bacterial and fungal
cells per unit of dry soil and is a valuable measure to quantify the
size of the microbial community!0. It can be estimated using a set of
techniques developed since the 1970s, including fumigation,
substrate-induced respiration, and phospholipid-derived fatty acids
(PLFA)!1, and has been measured in a broad range of natural and
managed ecosystems across the globe, offering good spatial and
temporal coverage. Microbial carbon also acts as a critical carbon
pool accounting for ~1% of soil organic carbon (but reaching much
higher proportions in upper soil layers), and a dynamic ecosystem
component, having repercussions on climate feedbacks!213. It is
linked to soil functions like nutrient retention, enzyme activity, and
aggregate stability!4-16, and has been used as a bioindicator of soil
health and fertility in ecosystem assessments and modeling.
Microbial carbon is therefore a key component of the microbial
community that has been measured in numerous studies in many
regions of the world, therefore providing an important knowledge
base of the status of microbial communities globally.

To assure and support the continuation of soil ecosystem
functions, we need to develop comprehensive assessments of long-
term microbial carbon dynamics!”. Although a loss in soil micro-
bial carbon can undermine the provision of ecosystem functions!8,
there is, as with other soil organisms, limited available data on
microbial carbon changes over time!9-22, Microbial communities
are shaped by the interplay of geochemical and biological processes
and are affected by specific environmental conditions, which makes
it challenging to generalize observed patterns and develop a pre-
dictive understanding of their dynamics. Though, with sufficient
observations originating from different regions and ecosystem
types, it is possible to model microbial spatial-temporal dynamics
and make informed extrapolations for large regions of the globe.
Spatial-temporal models of soil biological communities can then
help us to evaluate which areas of the globe may experience
changes?3-2%, and design appropriate management and conserva-
tion strategies20.

At the global scale, soil microbial carbon depends primarily on
geo-climatic factors and physicochemical soil characteristics!¢-20.
Known parameters that affect soil microbial carbon include
temperature, moisture, land cover, soil pH, and elevation!6-26,
Specifically, water availability and soil organic carbon content are
crucial factors that promote microbial carbon and govern spatial
patterns!®. Soil pH also affects microorganisms in a non-linear
fashion, where more neutral pH values lead to higher abundances
and affects the community structure in terms of relative abun-
dance of bacteria and fungi?’. Of the known factors, climate and
land cover are the most dynamic drivers of microbial carbon
patterns, and have been heavily influenced by anthropogenic
activity. The effects of climate and land-cover changes on soil
communities, especially in interaction with each other, have not
been sufficiently studied>7-*8, With an increase in environmental
changes observed globally, soil communities and the resulting
ecosystem functions are potentially at risk!®2%. Particularly, the
last decades were subject to important changes in land cover and
vegetation types in many regions of the world3’, and were already
visibly affected by climate change in terms of temperature and
precipitation patterns®!. Changes in both climatic conditions, as

well as land cover, can have significant consequences for soil
microbial carbon at the global and regional scales. The land-cover
type defines a large part of the soil microbial community by
changing the vegetation and carbon inputs32. In general, a higher
land-use intensity leads to decreased soil microbial carbon33, so
more intensively managed soils with less vegetation and lower
carbon content have less microbial carbon. Changes in land-cover
type due to intensified usage (e.g., deforestation or changing
grasslands to pastures) often affect the microbial community
composition and cause a decrease in microbial carbon and
diversity, often due to a reduction in above-ground plant biomass
and soil carbon inputs333:34,

To assess the sensitivity of microbial carbon to changes in
climate and land cover, we evaluated temporal trends based on
spatially-explicit predictions of soil microbial carbon globally.
We used a global data set of microbial carbon?® (Fig. 1) and
global environmental layers to train a random forest model
and generate global predictions of microbial carbon between
1992 and 2013. We then calculated rates of change in soil
microbial carbon stocks globally and regionally, and tested
which change in land cover or climate had the strongest effect
on microbial carbon dynamics. We present yearly global maps
of soil microbial carbon for that time period and the temporal
trends for each predictable terrestrial location and aggregated
by geographic region. While land-cover changes can result in
rapid and dramatic effects on the local environment, they are
globally less frequent than effects caused by climate change,
which can affect larger regions simultaneously. We, therefore,
expected climatic variables to have a stronger influence on soil
microbial carbon dynamics due to their continuous effects on
larger areas.

Results and discussion

Predictors of microbial carbon stocks. We used a machine
learning modeling approach to predict soil microbial carbon from
a set of environmental covariates. To account for stochastic
variability, we ran a set of models to assess the importance of
environmental factors, which showed that the contribution of
each variable to the model fit differed between runs, with some
overlap between a number of them (Fig. 2b). Mean annual
temperature was always the most important variable, with soil
organic carbon and soil pH following. Clay content, precipitation,
land-cover type, nitrogen content, and sand content contributed
roughly equally to explaining variations in microbial carbon.
Finally, NDVTI and elevation had the lowest variable importance.
Coniferous forests had the highest and most variable predicted
values of microbial carbon (Supplementary Figs. 1, 2), which can
be explained by high soil organic matter and a thick litter layer2®.
Tropical forests also had fairly high values of microbial carbon,
while shrublands and croplands had the lowest values2®. We used
partial prediction response curves to evaluate the direction and
range of effect of the predictor variables (Supplementary Figs. 1,
2). In agreement with the variable importance measure, variables
that scored high often showed strong effects on the predicted
microbial carbon values, while variables with a low variable
importance score (e.g., elevation, NDVI, and sand content) only
showed smaller responses. The only exception was for pre-
cipitation, which had a relatively high variable importance,
although the response curves only showed a weak effect of pre-
cipitation for forests and grasslands, with limited effect on other
land-cover types (Supplementary Fig. 2). The importance of
precipitation might also indicate that this relationship involves
interactions with other variables”28. Overall, the differences in
microbial carbon between land-cover types showed mostly
similar patterns across the range of variables. Soil organic carbon
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Fig. 1 Sampling locations and environmental coverage analysis. Sampling locations of the soil microbial carbon data set (n=762). The extent of the
environmental coverage of the global layers used (see Supplementary Table 3) as assessed by the Mahalanobis and Area of applicability methods with
outliers represented in blue and red, respectively, and in purple for locations determined as outliers with both methods (see main text for details). Areas in
gray are from regions with excluded land cover types (e.g., desert, glaciers). Further analyses were performed with the area in green that could be predicted

with high confidence.

and nitrogen content had a positive and mostly linear effect on
microbial carbon (Supplementary Fig. 1). In contrast, clay con-
tent, soil pH, and mean temperature had non-linear relationships,
with high microbial carbon in the low range of these variables and
a rapid decrease that reached an asymptote at low microbial
carbon values for the higher portion of the range. Soil pH patterns
showed a decrease in microbial carbon for values between 4.1 and
5.8, and a constant pattern between 5.8 and 8.6. Contrary to our
expectations, we did not find a parabolic effect of soil pH on
microbial carbon?®. Instead, our model predicted higher values in
very acidic soils with a pH below 5.2, which are rare globally and
almost only found in central Amazonia. Similarly, locations with
a clay content lower than 16.9% had higher values in microbial
carbon, and then stabilized until 51.0%.

Mean temperature showed an interesting shift with much
higher microbial carbon values with a mean annual temperature
below zero, but had otherwise a limited effect on microbial
carbon values in the rest of the range above zero up to 28.9 °C.
Based on partial predictions (Supplementary Figs. 1-2), micro-
bial carbon decreased monotonically with an increase in
temperature (with all other variables fixed to their median),
with the relationship being mostly stable for parts of the
range. We observed an especially sharp decrease at around 0°C,
which is in agreement with the patterns observed in the
data. The reason for sites with a mean annual temperature
below the freezing point to have higher microbial carbon stocks
is not fully understood. This could be due to a regime shift in
which microbial communities are in a semi-dormant state for a
major part of the year3>. Moreover, it could also be in part
explained by the soil organic carbon content that follows
a similar trend and accumulates in higher latitude soils®, thus
promoting higher microbial carbon stocks. Within these cold,
high organic carbon soils, large microbial populations can
be maintained, due to the low temperature that reduces
metabolic requirements3>. In contrast, at higher temperatures,
metabolic activity increases and requires more resources and
nutrients to maintain microorganisms alive. Experimental
evidence is divided about the effects of warming on microbial
carbon!8:36, highlighting the strong context-dependency of this
relationship, although global observations show a clear pattern,

where low-temperature sites have higher soil microbial carbon
stocks. Despite this uncertainty, there is a strong indication that
a warming soil would tend to lose organic carbon!”37, and
subsequent patterns in microbial carbon can also be expected,
because of the dependency on organic substrate®20-38, These
dynamics were observed in Melillo et al.3, where the warming
of sites in a mid-latitude forest ecosystem led to a decrease in
soil carbon, followed by a decrease in microbial carbon!?.

Even with predictions being made for each grid location
separately, microbial carbon values showed distinctive patterns
and transitions over the globe (Fig. 2a). While temporal changes
took place, broad spatial patterns were relatively constant over the
range of years studied (Supplementary Movie 1). The highest
microbial carbon stock values ranging from 1.50 to 7.00 tha=!
were found at high latitudes in the Northern Hemisphere in areas
of coniferous forest. Tropical humid regions also showed high
microbial carbon values between 0.50 and 1.50tha—! in the
Amazon Rainforest and Central Africa. The main regions with low
microbial carbon below 0.30 t ha~! were in Eastern South America,
areas directly south of the Sahara Desert, East Africa, and most of
Australia, all of which mostly correspond to shrublands. Cropland
areas as seen in India were also predicted with low microbial
carbon values ranging from 0.06 to 0.38 t ha—1. A strong latitudinal
gradient was visible for North America and Eurasia, with the
highest microbial carbon stocks at high latitude, medium values in
temperate ecosystems, and decreasing values towards the Equator.
Positive coastal effects can also be observed, mostly on the Eastern
South American and Australian coasts. In total, we estimated that
there is 4.34 Gt of microbial carbon in the 5 to 15 cm layer for the
predicted areas. Using the coefficient of variation calculated from
the variability assessment set of models, we found that predictions
made for the Amazon Basin, Northern Canada, and South-East
Russia were more variable than for other regions (Supplementary
Fig. 3a). Especially Western Europe, Central North America, and
South-East Asia, however, showed high stability in the predictions
between model runs.

Drivers of change. The analysis of the rate of change of microbial
carbon stocks over time revealed that large regions of the globe
experienced important changes in soil microbial carbon stocks
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Fig. 2 Microbial carbon stock spatial predictions and temporal trends. a Microbial carbon stock predictions for 2013. b Variable importance from 100
random forest model runs, calculated by the mean decrease in accuracy after variable permutation. Variables were ordered by the median variable
importance. SOC soil organic carbon, NDVI normalized difference vegetation index. Center line, median; box limits, upper and lower quartiles; whiskers,
1.5% interquartile range; points, outliers. ¢ Relative microbial carbon stocks rate of change in percentage per year.

between 1992 and 2013, with contrasting patterns across areas,
and overall larger regions showed a decrease rather than an
increase in microbial carbon stocks (Fig. 2¢ and Supplementary
Fig. 3b). To account for spatial differences in microbial carbon
stocks, we calculated the relative rate of change in percentage for
each location (Fig. 2c). When considering all predictable regions
together, microbial carbon stocks in the 5-15 cm layer showed a
decrease of 7.09 Mt per year, summing to 148.80 Mt between
1992 and 2013, or 3.4% of the global microbial carbon pool
predicted (Supplementary Fig. 4a; p = 0.038). The main regions
with a microbial carbon loss higher than 0.7 kgha=! y~! were in
Northern Canada and a large continuous region in North-Eastern
Europe. These northern regions accounted for an important part
of the global loss in microbial carbon stocks, with large areas that
had both a high soil microbial carbon stock and a fast decrease
(Figs. 3 and 4). Other areas of high loss were in the Amazon
basin, Western Argentina, the USA East Coast, Southern South
Africa, and South-East Russia. The main continuous region of
microbial carbon increase above 0.7 kgha=1y~1 was in central

Russia, with smaller regions present in India, Europe, Central
North America, and parts of Africa. Besides these general pat-
terns, predictions vary at the local scale, and they consider the
effects of parameters including soil properties, elevation, and
land-cover type, which change between neighbor locations
and affect the observed patterns. This is especially visible in
the Americas, where both increases and decreases happen side-
by-side.

Patterns in the relative rate of change have a lot in common
with that of absolute change, with a few notable differences
(Fig. 2c and Supplementary Fig. 3b). Both positive and negative
stock changes in tropical and subtropical regions are more
prominent in relative terms, as these regions typically have low
microbial carbon stocks. Similarly, regions in Central Russia with
high microbial carbon stocks show less decrease in relative terms.
To assess how stable these trends are over time, we show the p
values of the rate of change for the 22 years (Supplementary
Fig. 3c). The largest region with low p values is associated with
more significant trends in Western Russia, and corresponds to an
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Fig. 4 Distribution and classification of point values from the locations in
Fig. 3. The assignment of points into the 9 groups was performed using
quantile distributions. Areas in dark red are especially vulnerable to climate
and land-cover change.

area with a fast loss of microbial carbon. India and Central Russia
show high p values, and are informative of high variability
compared to the strength of the signal. Considering that only up
to 22 data points are available for each grid location and that
especially climatic conditions vary considerably from year to year,
p values are only provided as a complementary assessment. We
can summarize the global situation by combining the two maps of
microbial carbon stocks and relative rate of change to categorize
and define vulnerable locations that experienced a high loss of
microbial carbon (Figs. 3 and 4), and where the provision of soil
functions is potentially at risk.

It is informative to look at regional trends, by grouping grid
locations using the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) sub-regions, and
assessing regional-scale changes in microbial carbon stocks (Fig. 5,
Supplementary Table 1). The main regions that contributed to
microbial carbon loss were North America with a decrease of
62.49 Mt of microbial carbon and Eastern Europe with 60.88 Mt
over the studied period, although both trends had high yearly
variability and were non-significant. The region with the highest
increase was North-East Asia with a gain of 4.49 Mt, but this
change was also non-significant. The Caribbean was the only

region to show a significant increase in soil microbial carbon
stocks over time (4-2.1% over 22 y, p = 0.017), while significant
decreases in stocks were found in North Africa (—4.1%,
p<0.001), South America (—1.7%, p =0.010), Southern Africa
(—2.6%, p=0.017), and Central and Western Europe (—2.7%,
p=0.034; Supplementary Fig. 4a). Marginally significant
decreases over the studied period were found in Western Asia
(—2.5%, p=0.086) and North America (—7.2%, p =0.093). The
10 other regions showed no significant change in microbial
carbon stocks, namely in Central Africa, Central Asia, East Africa
and adjacent islands, Eastern Europe, Mesoamerica, North-East
Asia, Oceania, South-East Asia, South Asia, and West Africa.
Climatic conditions and land-cover type are important aspects
that affect soil microbial carbon stock dynamics. As we expected
and has been found for other soil organisms (e.g., refs. 40-42),
climatic changes tended to have a stronger effect on microbial
carbon stocks than those related to land cover (Fig. 5).
Temperature patterns showed overall long-term warming in
most regions, despite yearly variability, with a mean increase of
0.28 °C globally, promoting microbial carbon losses (Supple-
mentary Figs. 5, 6). When looking at the separate effects of
changes in climatic or land-cover variables (obtained by fixing
the other set of variables), we found that globally, the decrease in
microbial carbon was driven by climate change, with little effect
on land-cover change (Fig. 5). Regionally, however, different
resulting scenarios emerged from this analysis (Fig. 5 and
Supplementary Fig. 4). The two groups of global change drivers
had different influences on the predicted microbial carbon stocks
depending on the region, with some being mostly affected by
climate and others by land-cover change. The results of the
interaction of both groups of variables either reinforced or
masked the effect of each other. In many regions, one group of
drivers was more prominent than the other and was mostly
driving the general pattern. In a few cases, regions with non-
significant effects in the full dynamic model showed significant
effects of land-cover changes only (where climate variables are
fixed), either with a positive effect (Central Asia and North
America) or negative effect (South-East Asia). In addition, there
were cases where the non-significant effects of climate and land-
cover change combined to produce a significant overall effect
(e.g., South America) and a special case in Western Asia (and less
strongly in Oceania), where the significant effects of both driver
types went in opposite directions, leading to overall non-
significant effects. In these cases, the negative effect of one driver
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Fig. 5 Regional and global drivers of trends in microbial carbon stocks.
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and precipitation) or land cover (land cover type and NDVI) variables. The
central values are relative rates of change of soil microbial carbon stocks
per year, calculated as the slope of the model fit, with 95% CI whiskers.
Pale points are shown where the 95% CI crosses zero.

is compensated by the positive effect of the other. Regions with a
negative effect on at least one of the global drivers of change are
especially vulnerable to being affected by the functions provided
by the soil microbial community, especially in combination with
high soil microbial carbon stocks!8. These areas of vulnerability
also often coincide with those most affected by environmental
changes (Supplementary Figs. 5, 6). As global changes are
expected to continue, and potentially accelerate3!, areas of
vulnerability are likely to experience a continued decrease in soil
microbial carbon stocks and a potential reduction or change of
soil ecosystem functions. With our approach, we can look into
region-specific drivers that led to modeled changes in microbial
carbon stocks (Supplementary Figs. 3, 4). For example, Central
and Western Europe experienced a decrease of 2.9% between
1992 and 2013, almost entirely driven by an increase in
temperature of 0.64°C. In this case, despite the increase in
NDVI values over the period, land cover changes did not have
much of an effect on microbial carbon dynamics. This region as a
whole also experienced yearly fluctuations in precipitation, but
showed no general trend over the studied period.

Model evaluation and coverage. The random forest model used
for temporal predictions was validated by comparing the
observed and predicted values of microbial carbon concentra-
tions. The root-mean-square error (RMSE) was 65.0 mmol kg~1,
and the cross-validated R? for out-of-bag predictions was 0.40,
while the overall R2 was 0.90. The observed microbial carbon
values correlated to the fitted values, with a Pearson’s r value of
0.59 (Fig. 6; p <0.001). We believe that the clear definition of the
geographical area of applicability of results is crucial for its proper
interpretation, and that this type of assessment is often lacking
from global predictions*3, especially as strong spatial biases in
sampling locations are often observed#4. To detect grid locations

that could be predicted with high confidence, we performed an
environmental coverage analysis based on two complementary
methods that detect locations with environmental parameters
(i.e., predictive variables) that are multi-dimensional outliers
compared to the predictive data set. With the combined results of
the two approaches to detect environmental outliers, we identified
that the current knowledge of soil microbial carbon can be used
to make predictions with confidence for locations representing
50.2% of terrestrial surfaces excluding glaciers (Fig. 1, Supple-
mentary Fig. 7). Western Asia and North Africa were the regions
with the lowest percentage area that could be predicted, with
5.1% and 10.6%, respectively (Supplementary Table 2). All other
regions could be predicted for above 40% of their area, with
Western and Central Europe having the largest proportion at
84.7%, followed by South America with 63.6% (Supplementary
Table 2). As expected, highly sampled areas were included in
regions that could be predicted with high confidence based on the
environmental coverage assessment. Despite relatively low sam-
pling density, South America, East Africa, and the western part of
Eastern Europe were also regions with a large portion that could
be predicted with confidence by both methods (Fig. 1, Supple-
mentary Table 2). Outlier regions from both methods include
North-East Russia and the Tibetan plateau, as well as a few
smaller regions, mostly related to high latitude, elevation, or
aridity. An important portion of the African continent consists of
outlier regions, detected by both methods, but rarely in con-
junction. The larger outlier areas in Africa mostly match regions
of deciduous woodlands and savannah. A number of tropical
rainforest regions were also excluded, including most of the
Malay Archipelago, as well as central Amazonia.

The environmental coverage assessment highlights uncertainty
in large regions, for which targeted sampling campaigns are
needed to complement available data sets?!. To further our
understanding of microbial carbon dynamics across the globe, it
is especially relevant to target regions with underrepresented
environmental parameters, with high variability in microbial
carbon, and that is expected to be most affected by changes in
climate and land cover®. In addition, just as exploring under-
sampled areas is important, repeated sampling at the same
location provides valuable information for research, monitoring,
and conservation efforts#047, Like other global predictions based
on statistical modeling*14248, the results of this study represent
general patterns and are informative to detect regional trends and
should not be extrapolated to accurately estimate soil microbial
carbon stocks at fine spatial and temporal scales, as local
heterogeneity in soil properties and temporal climatic conditions
can lead to variations in microbial carbon stocks.

Ecological impacts and implications. Soil microbial carbon is a
crucial aspect of ecosystem health and services, and there are
indicators that it is decreasing in many parts of the world. The
effects of climate and land-cover change will continue to affect
biological communities with potentially stronger effects in the
years to come®®. Targeted microbial communities that experience
a decrease in microbial carbon can be affected in their ability to
provide ecosystem functions, including food and material pro-
duction, nutrient cycling, and carbon cycling. Microbial carbon
represents a carbon pool that contributes to carbon sequestration
and mediates carbon cycling”®®!. As the amount of micro-
organisms declines, these ecosystem functions are at risk to be
affected negatively, and the continuity and magnitude of these
services cannot be guaranteed2. With a decrease in soil microbial
carbon, dark CO, fixation is also likely to decrease, therefore
reducing the climate mitigation effects of soil microbial
communities®>>*. While some regions were more affected by
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Fig. 6 Microbial carbon model validation. Relationship between observed
results from two-sided linear regressions. Gray areas represent 95% Cl.

climatic changes, others were mostly driven by changes in land
cover. In order to limit further losses in soil microbial carbon, both
sets of drivers need to be addressed in cohesion, especially given the
context-dependent effects of climate change®. Anthropogenic
climate disruptions have led to regional changes in temperature
and precipitation patterns that will continue to affect soil microbial
communities?2. While regulations and actions at the global scale
are needed to slow anthropogenic climate change, local-scale
management can address land degradation caused by changes in
land cover that are detrimental to soil microorganisms and threaten
soil functions>>>. Changes in land cover may take place naturally,
e.g., as a response to climate changes, come from unregulated
actions—as often seen in deforestation by small land-owners—or
be the consequence of political decisions that affect land manage-
ment at a larger scale. In that regard, land management can also be
leveraged as a climate change mitigation and adaptation strategy,
both to preserve microbial communities and sequester carbon®#°.
In this stream, conservation, rewilding, and reforestation efforts
focused on vulnerable areas can strongly contribute to supporting
soil ecosystem functions and services, and soil communities should
therefore be better integrated into conservation efforts°.

While soil microbial communities continue to be studied, we can
refine our mechanistic understanding of the belowground commu-
nities using diverse techniques that become increasingly accessible
to describe additional aspects (e.g., diversity, community composi-
tion) and functionality, contributing to improving our under-
standing of this important ecosystem compartment and reduce
uncertainty in global estimates®’~>°, to complement microbial
carbon measurements as the base measurement of microbial
community size®2!. Currently, major global monitoring*®0 as well
as data mobilization and synthesis efforts?! are taking place, that
will help develop a more detailed perspective on the distribution,
drivers, and trends of soil microbial communities and functions.

Methods

Data set description

Microbial carbon. The microbial carbon data set originated from a recent version
of the global data set described in Xu et al.2%, updated with newly published data
for 2012-2016. The data set contains microbial carbon values gathered from
published literature with, when stated in the original paper, geographic coor-
dinates, land cover description, sampling date, depth, and additional metadata.
From that data set, we selected entries with soil microbial carbon measurements
sampled at a mean depth above 30 cm. To allow the use of land-cover type as a
predictor in further steps, we created a standardized land-cover type classifi-
cation based on the ESA CCI data product®! that harmonized classes across
the microbial data set and the land-cover type gridded layers, based on the
sampling sites” original description and geographic location from the papers
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Intercept = -0.421 AT
256 7= Slope = 1.01 O
p <0.001 o 3
®
o o
5
>
c
2 °
173
Q °
(]
S R Y N N N NN N N N M

2 16 128
Predicted

and predicted values on a a linear scale and b log-scale. Reported statistical

(see Supplementary Table 3). Sites from wetlands and bare areas (including both
cold and warm deserts) were removed, as too few entries were available for
proper statistical analysis and predictions (20 and 31 entries, respectively). The
remaining six land cover categories used for further analysis were cropland,
grassland, coniferous forest, tropical forest, broadleaf forest, and shrubland.
Microbial carbon values measured from the same study were pooled together
and averaged in cases where they were taken from the same location, year, and
land-cover type, providing a total of 762 independent entries, with the number
of sites per land cover ranging from 37 for shrublands to 370 for croplands (see
inset in Fig. 1). This final data set contained 22 cases (57 entries) of time series,
ranging between two and six years. Sampling locations spanned all continents
except Antarctica with a higher concentration in Europe, North America, South-
East Asia, Australia, and New Zealand, while lower representation in Western
Asia, South America, and North Africa (Fig. 1).

Global environmental layers. We used gridded data sets representing climatic,
environmental, geographic, land cover, vegetation, and soil property variables at
the global scale to explain the observed patterns in microbial carbon (Supple-
mentary Table 4). Soil property layers for organic carbon, total nitrogen, pH,
sand proportion, and clay proportion were from the SoilGrids 250 m resolution
data set*S. The elevation layer was taken from WorldClim®2. Global layers with
yearly resolutions were used for climate, land cover, and vegetation cover. Yearly
mean temperature and total precipitation were calculated from the monthly
CHELSA time series®>4, The land-cover type layers from the ESA CCI data
product®! were reclassified to match the six categories from the microbial carbon
data set (Supplementary Table 3). Land-cover types that could not be assigned to
one of these categories were considered missing data (Fig. 1, Supplementary
Table 3), which included bare areas, wetlands, and glaciers. To represent the
amount of active vegetation, we compiled yearly estimates of the Normalized
Difference Vegetation Index (NDVI) CDR acquired from NOAA’s National
Centers for Environmental Information®>%., As the NDVI daily data availability
coverage was heterogeneous (i.e., clustered missing values), a monthly average
was first taken, from which a yearly average was calculated, with an equal
contribution from each month.

Data extraction. Values from all gridded environmental layers were extracted for
each independent data point based on location, year, and sampling depth, where
appropriate. The mean sampling depth was matched to one of the SoilGrids depth
layers (0-5cm, 5-15 cm, 15-30 cm), using the central layer of 5-15 cm when
sampling depth was not specified. The sampling year was used to extract values
from global data sets with a temporal component (i.e., climate and land cover,
Supplementary Table 4). If the sampling year was not available from the paper, we
used the five previous years before the publication year to extract the environ-
mental values and average them. This range of years was chosen to match the
pattern observed by other papers in the data set for the sampling-publishing year
relationship. If the range of available years for a parameter did not cover the
sampling year, we used the layer from the closest available year. Geographic
coordinates for sampling locations were collected from the reviewed papers when
available, or estimated based on the site name, research station, or the closest
municipality. In order to standardize the extraction of values from global layers,
correct for sampling locations that ended up inside water bodies or urban areas,
and address the uncertainty in site geographic location, we selected the locations
with matching land-cover types within 8 km of the provided sampling site and
averaged the values using an inverse-distance weighting factor (i.e., the higher
influence of closer locations).
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Environmental coverage. To make spatial-temporal predictions of soil microbial
carbon, we used the global layers of all model predictors for each year between
1992 and 2013, projected where needed, and resampled to a 0.05-degree grid
resolution with the World Geodetic System 1984 as a coordinate reference system.
To determine the spatial extent to which predictions could be made with high
confidence, we used two complementary approaches that represent each grid
location in multi-dimensional space, with one dimension per predictive variable,
and compared it to the environmental coverage of the microbial carbon data set
(Fig. 1). The first approach uses the Mahalanobis distance between the point given
by all values of environmental variables of a grid location and the mean of the data
set, once controlled for multicollinearity, which needs to be lower than an outlier
threshold set at chisq = 0.97520, The second approach defines the Area of
Applicability of the predictions, by comparing the dissimilarity index (DI; based on
the distance to its closest neighbor in multi-dimensional space) of each grid
location to the DI values from the training data*3. Locations that have a DI higher
than the threshold are considered outliers that cannot be predicted with high
confidence. As they function under different principles, the two approaches
complement each other well, and were therefore combined to define the spatial
region where model predictions can be applied with confidence (Fig. 1). Locations
are considered as environmental outliers from at least one of the methods were
removed. Further analysis was performed using the remaining 2.6 million locations
(Supplementary Table 2) on a 0.05 degree size grid with yearly predictions for the
period 1992-2013.

Modeling microbial carbon stock dynamics. The effects of climate, land cover,
vegetation, soil properties, and elevation on soil microbial carbon were studied with
random forest modeling using R version 3.6.3%7, and the packages tidyverse®s,
raster®, caret’%, randomForest’!, and CAST72 for data processing, model building,
evaluation, and presenting results. Random forest is a modeling framework that
accounts for non-linear effects and complex interactions between the predictors’>.
Model cross-validation was performed using 75% of the data set for training and
the remaining part for validation at each resampling iterations. We used 500 trees
for model training (ntree value) and 2 predictors sampled at each node for splitting
(mtry value), chosen to minimize RMSE”3. We trained one main “prediction
model” to study the variable responses and to make yearly global predictions for
the 22 years of this study. Predictions were made by extrapolating the relationships
found in the model, using year-specific layers for all dynamic climatic and land
cover layers. The model predictions could not be compared to an external
microbial carbon data set, as no available additional data set could be found with
sufficient spatial-temporal coverage that was not already included in the training
data set. To evaluate the direction and shape of the response curve of microbial
carbon for each variable separately, we looked at how model predictions changed
over the range of values for each variable, while fixing the values of all other
variables to the 0.25 and 0.75 quantiles. This approach provides a descriptive
interpretation of the random forest model output that can be visualized and more
easily interpreted. Due to the intrinsic stochasticity of random forest modeling, the
measures of variable importance, as well as the predictions made from the trained
models, can be sensitive to random changes in seed numbers and differ between
runs’“. To account for this variability, we also used a “variability assessment” set of
100 model runs specified with the same tuning parameters as the temporal pre-
diction model to assess variable importance and calculate the coefficient of var-
iation as the standard deviation of the microbial carbon predictions divided by the
mean for each location.

The different methods used to measure microbial carbon are normally
considered to be calibrated, so that they can be compared directly to each other!l.
To test this assumption and the potential effect of measurement methods on
microbial carbon, we took two complementary approaches. We first reproduced
the analysis using a reduced data set composed of only entries taken from
fumigation methods, which was the most popular method, accounting for 72.7% of
the entries. Using this reduced data set based on a unique measurement method,
we reproduced the analysis workflow by training another random forest model and
producing global predictions for the year 2013. The resulting predictions of the two
data sets correlated with R? = 0.97. As a complementary analysis, we also ran a
random forest model using the full data set, adding the measurement method as a
model variable, and found that the measurement method was a poor predictor of
microbial carbon and did not improve model fit substantially (RMSE = 66.2, cross-
validated R? = 0.41; Supplementary Fig. 8). Taken together, the results of these
sensitivity analyses indicate that there is no bias based on the method used.

We followed the approach described in Hengl et al.” to calculate microbial
carbon stocks from the predicted concentrations considering the soil bulk density
and fraction of coarse fragments. It has been reported that bulk density values
might be overestimated, especially at high latitude3”. We consider the risk of bias to
be low for our predictions, considering that we excluded most locations at very
high latitudes and limit our predictions to the 5-15 cm soil depth layer. We used all
spatial grid locations with at least 10 years of predictions available and calculated
the mean rate of change in microbial carbon over time using a separate linear
regression model for each of the 2.6 million locations. To assess the global and
regional patterns in soil microbial carbon stocks, we used the 17 IPBES sub-
regions’®, combined all predicted grid locations, calculated a region-wise total
amount of microbial carbon for each year, and studied the variation and trends

over the 1992-2013 period. We used a yearly temporal resolution for the
predictions without temporal correlation between predicted values and therefore
cannot account for seasonal variations. We took this approach to describe
microbial carbon dynamics as microbial communities can adapt fast enough in
response to their environment so that legacy effects at the yearly scale are minimal.
To test whether climate or land cover change had the strongest effect on microbial
carbon changes, we compared the regional results with predictions made using
fixed climatic and land cover variables over time. We, therefore, assigned the values
from 1992 (the first predicted year) for either climatic (temperature and
precipitation) or land cover (land-cover type and NDVI) variables.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The microbial carbon data set generated and used for analysis in this study has been
deposited at https://zenodo.org/record/6645922 in the rawdata folder’”. The global
gridded data sets used in this study as covariates are publicly available (see
Supplementary Table 4 for a full list).

Code availability
The code used for analysis is available at https://zenodo.org/record/6645922 in the code
folder””.
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