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Abstract

Inhibitory interneurons shape the spiking characteristics and computational properties of

cortical networks. Interneuron subtypes can precisely regulate cortical function but the roles

of interneuron subtypes for promoting different regimes of cortical activity remains unclear.

Therefore, we investigated the impact of fast spiking and non-fast spiking interneuron sub-

types on cortical activity using a network model with connectivity and synaptic properties

constrained by experimental data. We found that network properties were more sensitive to

modulation of the fast spiking population, with reductions of fast spiking excitability generat-

ing strong spike correlations and network oscillations. Paradoxically, reduced fast spiking

excitability produced a reduction of global excitation-inhibition balance and features of an

inhibition stabilised network, in which firing rates were driven by the activity of excitatory

neurons within the network. Further analysis revealed that the synaptic interactions and bio-

physical features associated with fast spiking interneurons, in particular their rapid intrinsic

response properties and short synaptic latency, enabled this state transition by enhancing

gain within the excitatory population. Therefore, fast spiking interneurons may be uniquely

positioned to control the strength of recurrent excitatory connectivity and the transition to an

inhibition stabilised regime. Overall, our results suggest that interneuron subtypes can exert

selective control over excitatory gain allowing for differential modulation of global network

state.

Author summary

Inhibitory interneurons comprise a significant proportion of all cortical neurons and play

a crucial role in sustaining normal neural activity in the brain. Although it is well estab-

lished that there exist distinct subtypes of interneurons, the impact of different interneu-

ron subtypes upon cortical function remains unclear. In this work, we explore the role of

interneuron subtypes for modulating neural activity using a network model containing

two of the most common interneuron subtypes. We find that one interneuron subtype,

known as fast spiking interneurons, preferentially control the strength of activity between

excitatory neurons to regulate changes in network state. These findings suggest that
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interneuron subtypes may selectively modulate cortical activity to promote different

computational capabilities.

Introduction

Despite comprising only 15 to 20% of cortical neurons, inhibitory interneurons are crucial for

the normal operation and computational power of the cortex[1–3]. Inhibitory interneurons

maintain a balance of network excitation and inhibition and restrain the emergence of patho-

logical excitatory activity such as epileptic seizures[4,5].

Beyond simply ‘applying the brakes’ to excitation, however, interneurons also support the

existence of network states with specific computational capabilities[2,6]. The presence of exci-

tation-inhibition (EI) balance, in which inhibitory (hyperpolarising) synaptic currents are of

similar magnitude to excitatory currents, promotes asynchronous neuronal spiking and maxi-

mises network entropy[5,7–9]. Conservation of EI ratios through the adjustment of inhibitory

synapses has been observed across pyramidal cell populations, and EI balance can also exhibit

temporal characteristics, whereby inhibition tracks excitation with short time lag[10–12].

Rapid temporal EI balance may allow for efficient neural coding and provide a method for gat-

ing cortical information transfer[11,13]. Finally, powerful connectivity between inhibitory and

excitatory neurons can stabilise networks possessing strong excitatory-to-excitatory interac-

tions required for tasks such as short-term memory formation[14,15]. Networks possessing

these properties are known as inhibition-stabilised networks (ISN) and are associated with

unique computational properties such as non-linear receptive field response summation

[16,17]. Cortical networks with features consistent with ISNs have been demonstrated in-vivo
across multiple cortical regions and during both awake and anaesthetised states [16,18].

A remarkable feature of inhibitory interneurons is their diversity of electrophysiological

properties, gene expression patterns and morphology compared to excitatory neurons[19–21].

Two prevalent and well-studied interneuron subtypes include parvalbumin and somatostatin

interneurons[3]. Parvalbumin interneurons typically exhibit ‘fast spiking’ (FS) electrophysio-

logical features with narrow action potential width and rapid firing rates, and preferentially

synapse onto the peri-somatic region of excitatory pyramidal cells[3,6,22]. In contrast somato-

statin interneurons typically exhibit ‘non-fast spiking’ (NFS) features with wider action poten-

tial width and slower firing rates, and preferentially synapse onto the dendritic tree of

pyramidal cells.

The presence of interneuron populations with distinct properties may allow for interneuron

subtype-specific influence over cortical function and EI balance[1,2,6]. For example, the peri-

somatic distribution of FS interneuron synapses enables precise regulation of spike timing and

correlations between excitatory neurons, and differences in membrane kinetics between FS

and NFS interneurons may promote network oscillations at different frequency bands[2].

Although this hypothesis is supported by the observation that the excitability of interneuron

subtypes can be selectively modulated through the action of certain neurotransmitters such as

acetylcholine, serotonin and GABA, the precise role of interneuron subtypes for regulating

cortical activity remains unclear[23–25].

Therefore, we explored the influence of interneuron subtypes over cortical activity using a

spiking network model with one population of excitatory pyramidal cells (PC) and two inhibi-

tory neuronal populations: FS and NFS interneurons. The excitability of each interneuron

population was modulated by changing neuronal rheobase (or threshold) and evaluating net-

work spike characteristics and EI balance. We found that network properties were sensitive to
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modulation of the FS population, and that reduced FS excitability produced a paradoxical

reduction of EI balance. Using both a rate-based model and further analysis of our spiking net-

work, we found that reduced FS excitability can selectively enhance gain within the PC popula-

tion and mediate the transition into an inhibition stabilised state. An exploration of the

biophysical properties of the FS and NFS interneuron populations revealed that the rapid

intrinsic response properties and short synaptic latencies associated with FS interneurons

enables preferential modulation of PC population gain.

Methods

Overview and rationale of network model

There exists inter-species, regional and laminar variations in the cellular composition and con-

nectivity of cerebral cortex. For instance, the proportion of inhibitory interneurons to excit-

atory pyramidal cells may range from 9% to 20% across layers of mouse somatosensory cortex,

and the proportion of PV to non-PV interneuron subtypes from 30% to 60%[3,26]. Yet despite

this heterogeneity, there exist conserved features that suggest some differences represent a ‘var-

iation on a theme’ from which common principles can be understood[27]. For example, PV

and SST interneurons demonstrate connectivity preference with the peri-somatic and den-

dritic regions of pyramidal cells, respectively, and connection probability between pyramidal

cells and inhibitory interneurons is typically greater than recurrent connectivity between pyra-

midal cells [26,28,29]. For the purposes of this study, we consider PV and SST interneurons

equivalent to FS and NFS, respectively.

To explore the role of interneuron subtypes upon network activity we developed a model

that retained broad themes of cortical organisation with respect to intrinsic neuron electrophys-

iological features, the proportion of neuron subtypes, connection probability and synaptic prop-

erties (code available at https://osf.io/2sr6y/). We assume that incorporating these themes will

provide insight into principles of cortical network activity, while acknowledging that our model

is not necessarily representative of a specific cortical layer or brain region.

Pyramidal cell model

Excitatory pyramidal cell (PC) models possess both a proximal (‘somatic’) and distal (‘den-

dritic’) compartment and were optimised to exhibit realistic electrophysiological properties in

response to constant current stimuli. The soma contained a rapid-activating sodium (NaT),

persistent potassium (KP), hyperpolarisation-activated (Ih) and leak (L) conductance. The

dendrite contained an Ih, leak and high-voltage activated calcium (CaH) conductance, and cal-

cium accumulation/decay kinetics (channel mechanisms of Markram et al.[30] and their cited

references). The current-balance equations for somatic (S) and dendritic (D) compartments

are

CS
dvS
dt
¼ GNaTm

3

NaThNaT v � ENað Þ þ GKP
m2

KP
h v � EKP

� �
þ GIhmIh v � EIhð Þ þ GL V � ELð Þ þ

vD
RSD

CD
dvD
dt
¼ GCaHm

2

CaHhCaH v � ECaHð Þ þ GIhmIh v � EIhð Þ þ GL v � ELð Þ þ
vS
RSD

ð1Þ

mx ¼
m1ðvÞ � mx

mtðvÞ
hx ¼

h1ðvÞ � hx

htðvÞ
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Where C is the membrane capacitance, G the peak channel conductance, v the transmem-

brane voltage, E the channel reversal potential, RSD the intracellular resistance between somatic

and dendritic compartments, m/h the activation/inactivation gating variables, m1(v) and

h1(v) the steady-state and time-constant functions, and x represents the channel mechanism,.

Peak channel conductance, membrane capacitance, intracellular resistance and calcium kinet-

ics were optimised using a feature-based evolutionary algorithm in response to the following

external current stimuli based on Hay et al.[31,32]:

1. 5ms, 1.9nA, constant current at the soma

2. 5ms, 1.9nA, constant current & 5ms 0.2nA constant current at the dendrite at offset of

somatic stimulus

3. 500ms, 0.5nA, constant current at the soma

4. 500ms, 0.8nA, constant current at the soma

Parameters were optimised to reproduce AP waveform, back-propagating AP (BAP), and

BAP-activated Ca2+ spike features based on Hay et al[32]. A list of features and objective values

is provided in S1 Table. Given that our model contained only two compartments, feature 9

from Hay et al. (bAP amplitude at 620um) was excluded and to ensure realistic time lag

between APs generated at the soma and dendrite two additional features were added: times to

first spike at the soma and dendrite. Finally, to ensure realistic input-spike frequency charac-

teristics, the model was optimised to exhibit spike frequencies of 10 Hz and 20 Hz to stimuli 3

and 4, respectively, similar to the spike frequency generated by the model of Hay et al. [32]

Interneuron & simplified PC model

FS and NFS interneurons, and the simplified PC model, were described using the formulation

of Izhikevich et al[33,34],

dv
dt
¼ 0:04v2 þ fvþ g � uþ I

du
dt
¼ a bv � uð Þ if v � X then

v c

u uþ d

(

ð2Þ

Parameter values for FS and NFS interneurons were set to those found in Izhikevich et al
[33,34] to replicate features of FS and ‘low threshold spiking’ electrophysiologic subtypes,

respectively. The simplified PC model (the “Izhikevich PC model”) exhibited ‘regular spiking’

characteristics. To modify interneuron rheobase a constant current (I) was applied to the

soma. Increased rheobase (reduced excitability) was quantified as the percentage rheobase

increase relative to baseline in response to a constant depolarising stimulus.

Synapse model

Synaptic conductance dynamics were modelled with a bi-exponential formalism,

gsynðtÞ ¼W
X

k

aðt � tkÞ ð3Þ

a tð Þ ¼ F e�
t
t2 � e�

t
t1

� �
ð4Þ
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where tk denotes spike times of presynaptic neurons, F is a normalisation factor such that peak

conductance equals 1uS and W is synaptic weight. Excitatory synapses contain fast (AMPA)

and slow (NMDA) conductances with AMPA:NMDA ratio of 0.2, reversal potential of 0mV

and τ1/τ2 set to 0.1/1.5 ms for AMPA and 2/20 ms for NMDA, respectively[35–37]. Rise/decay

inhibitory (GABAA) conductance time constants were set to 0.25/5 ms with reversal potential

of –80 mV.

Synaptic weights & latencies

A range of synaptic post-synaptic potential (PSP) amplitudes and latencies have been recorded

from cortex with significant variation across species and brain regions[3,26,28,38–42]. Never-

theless, there exist broad differences between neuronal populations that we have aimed to cap-

ture using a parsimonious approach with the following considerations:

1. PSP amplitudes have consistently been observed to be of greatest magnitude from PC to FS

neurons and of smallest magnitude between PC neurons.[26,28,38–41,43]

2. Synaptic latencies have consistently been found to be shortest between PC and FS interneu-

rons and longest between PC neurons.[3,26,28,39,40,42]

Given these observations, synaptic weights were adjusted to generate mean peak PSPs of 0.8

mV for PC-to-FS connections, 0.4 mV for PC-to-PC connections and 0.6 mV for other con-

nections. These values are comparable to recordings from mouse somatosensory cortex

[26,28]. The distribution of experimentally measured PSPs are typically skewed and so weights

were drawn from a log-normal distribution that generated a PSP sample variance of 0.1 mV

[26,39]. To account for filtering of synaptic input, synaptic weights onto the PC dendrite were

scaled to generate a PSP amplitude two-thirds of the PSP elicited at the soma, a value that

approximates the somatic PSP amplitude in response to synaptic input ~150 um from the

soma in the PC model of Hay et al. [32]

To reflect population differences in synaptic latencies, mean latencies from PC-to-FS and

from PC-to-PC neurons were set to 1.0 ms and 1.8 ms, respectively. Other mean latencies were

set to 1.5 ms, values comparable to recordings from mouse somatosensory cortex[26,28,40].

Latencies were drawn from a normal distribution with variance of 0.1 ms[39]. To prevent

instantaneous or negative values, PC-to-FS latencies were drawn from a truncated normal dis-

tribution with lower limit of 0.1 ms.

Cell numbers & connectivity

The network contained 1800 (80%) PC neurons and 450 (20%) inhibitory interneurons. These

values approximate neuron numbers and excitatory-inhibitory cell ratios within a single corti-

cal column layer[26]. Inhibitory interneurons were divided equally between FS and NFS sub-

types, which approximates proportions measured in some studies, although variation exists

across layers[3,28,30].

Connection probabilities from 5% to 20% have been estimated between PC neurons within

a cortical column. In comparison, connectivity between PC and FS/NFS interneurons has

been found to be denser but with a wide range of measured values from 10% to over 50%,

which may reflect differences between species, brain region and experimental technique

[28,29,40,41,44,45]. A number of studies have found denser connectivity between PC and FS

compared to PC and NFS interneurons[28,40]. To reflect these trends, we assigned a connec-

tion probability of 15% between PC neurons, 25% between PC and FS interneurons and 20%

for all other connections. FS interneurons preferentially synapse onto the axon, soma and

proximal dendrites of pyramidal neurons in contrast to NFS interneurons which tend to
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synapse distally[46,47]. To preserve differences in synaptic distribution we assigned 80% of

FS/NFS synapses onto the proximal/distal PC compartment. PC-to-PC synapses were more

evenly distributed, with 60% assigned to the soma[48].

External stimulation & network simulation

Neurons in each population were stimulated with external Poisson-distributed excitatory and

inhibitory synaptic stimuli. Excitatory and inhibitory stimulation frequencies and conductance

magnitude for each population were equal to generate ‘balanced’ external input[49]. Cortical

excitatory neurons typically fire sparsely compared to inhibitory interneurons, with mean

rates often under 1Hz[50–52]. To provide a baseline from which to assess the relative impact

of FS and NFS excitability upon network activity, a grid parameter search of external stimula-

tion frequencies upon each population was performed to elicit equal mean firing rates within

the FS and NFS populations of 2.0 Hz, and 0.3 Hz within the PC population. An identical

approach was used to generate baseline firing frequencies for the network receiving only excit-

atory external stimulation. Network simulations were performed with NetPyNE using a fixed

integration time step (dt = 0.025ms)[53]. Mean values of network properties were obtained by

performing 10 simulations initiated with a different random seed.

One & two-population networks

To isolate the role of interneuron properties and external input upon PC gain, we developed a

two-population network with PC and FS interneurons (the “PC-FS network”), and one-popu-

lation networks with PC, FS and NFS neurons alone (the “FS interneuron network” and “NFS

interneuron network”). FS neurons comprised 20% of the population in the PC-FS network

(450). Otherwise, cell numbers were identical to the original network. Each network was stim-

ulated by excitatory and inhibitory synapses to elicit the same firing rates as the three-popula-

tion network under baseline conditions.

Network spike characteristics & excitation-inhibition balance

Inter-spike interval coefficient of variation (ISICV) for neuron n was defined as the ratio of ISI

mean (hISIni) and ISI standard deviation (σISI,n),

ISICVn ¼
hISIni
sISI;n

ð5Þ

The spike correlation coefficient (CC) was estimated by converting spike trains for each PC

neuron into 10 ms binned spike count vectors (x) and calculating the mean cross-correlation

between all distinct neuron pairs (a, b) within the PC population (size N),

CCp ¼
1

N

2

 !
XN� 1

a¼1

XN

b¼aþ1

Covðxa; xbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxaÞVarðxbÞ

p ð6Þ

Values for mean and standard deviation were calculated across ten simulations initiated

with a different random seed for external stimulation. To estimate population synchrony, a

Fourier transform was performed on the vector of mean population firing rates binned into 10

ms intervals. Results shown are normalised to the peak value at baseline.

The mean conductance from synaptic inputs from population P onto PC neuron n (�gP
n) was

calculated as the temporal average of the vector of mean synaptic input conductance onto

PLOS COMPUTATIONAL BIOLOGY State transitions through inhibitory interneurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009521 October 15, 2021 6 / 29

https://doi.org/10.1371/journal.pcbi.1009521


neuron n (h�g P
ni),

�gP
n ¼ h�g

P
ni; �g P

n ¼
1

Sn;P

XSn;P

i¼1

gP
n;i ð7Þ

where i represents individual synaptic inputs from population P and Sn,P is the total number of

synapses onto neuron n from population P. P represents either the PC, FS or NFS populations,

or input from external stimulation sources. To calculate temporal EI balance the normalised

cross-correlation function of the vector of mean conductance onto a PC neuron n from PC

(�gPC
n;t ) and either FS or NFS (�g I

n;t) synaptic inputs was first computed,

EIðkÞn ¼
1

T

PT� k
t¼0
ð�g PC

n;t � h�g
PC
n iÞð�g

I
n;tþk � h�g

I
niÞ

sg;PCsg;I
ð8Þ

where T is simulation length, k is temporal lag, I is the inhibitory (FS or NFS) population,

h�g PC
n i is the temporal average of the vector of mean synaptic input conductance from the PC

population onto PC neuron n and σg is the standard deviation of the vector of mean synaptic

input conductance onto PC neuron n. To estimate average temporal balance ( �EIðkÞ), 500 PC

neurons were selected at random and the mean cross-correlation function of all neurons in

this sample was calculated,

�EIðkÞ ¼
1

500

X500

n¼1

EIðkÞn ð9Þ

Temporal EI balance between PC and either the FS or NFS population was calculated using

the same approach.

Assessment of ISN properties & PC gain

In networks containing multiple inhibitory populations, the existence of an ISN can be evalu-

ated by stimulating the inhibitory population and observing a paradoxical reduction of inhibi-

tory current onto the excitatory population in the presence of lower excitatory firing rates [54].

Therefore, we tested for an ISN by applying constant-current stimuli of increasing magnitude

to the FS and NFS populations and calculating the change in PC firing rate and inhibitory

input current. A stimulus range that elicited up to a 1Hz change in FS and NFS firing rates was

used.

To estimate effective synaptic weight of the PC subnetwork, a 1 ms constant current stimu-

lus of 0.9 nA was applied to 20% of PC neurons. An average population response was obtained

by applying the stimulus 100 times and calculating the mean spike frequency of the PC popula-

tion. The stimulus produced a bi-modal response: the first peak from spikes elicited by the

stimulus and the second peak via PC-to-PC interactions. To estimate effective synaptic weight,

the ratio of spikes recruited via PC-to-PC interactions (P2) to spikes elicited by the stimulus

(P1) was calculated. Periods corresponding to P1 and P2 were obtained from the bi-modal aver-

age population response. P1 was defined from stimulus onset to the minimum between peaks.

P2 was defined from the minimum between peaks to the time at which the average population

response returned to this value.

To explore the role of correlated inputs upon PC neuron excitability, artificial spike trains

of increasing pairwise spike cross-correlation were generated. Spike correlations were intro-

duced by first creating 100 independent Poisson spike trains of fixed rate, and then shifting

randomly selected spikes within a train to fall within 5ms of a spike within a different train.

This process was repeated for spike trains of different mean rate.
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Optimisation of firing rate model

A three-population Wilson-Cowan rate model was developed to explore changes in network

dynamics associated with increased FS and NFS rheobase,

tE
dRE

dt
¼ � RE þ BE WEERE � WEFRF � WENRN þ IEð Þ

tF
dRF

dt
¼ � RF þ BF WFERE � WFFRF � WFNRN þ IFð Þ ð10Þ

tN
dRN

dt
¼ � RN þ BN WNERE � WNFRF � WNNRN þ INð Þ

where Rx are the mean firing rates of the PC (x = E), FS (x = F) or NFS (x = N) populations,

Wyx are the synaptic weights from population x to y, τX time constant of the population firing

rate responses, Bx are the population gains and Ix are external stimulation currents. Under the

baseline condition, gains for all populations were set to 1.

The synaptic weights of the rate model were optimised to reproduce the firing rates of the

spiking network under baseline conditions using the following approach. First, to reflect fea-

tures of the spiking network, inhibitory synaptic weights onto each population were expressed

as a proportion of the integral of the PSP elicited by an excitatory synapse. For example, the

FS-to-PC weight is given by,

WEF ¼

R
jPSPEFjR
jPSPEEj

WEE ð11Þ

where PSPEF is the post-synaptic potential elicited by an FS synapse onto a PC neuron at the

resting membrane potential. This approach was used to calculate WEN in terms of WEE, and

weights received by the FS & NFS populations in terms of WFE & WNE, respectively.

Second, to estimate external stimulation (Ix), the spiking network was simulated under

baseline conditions with weights of internal network connections set to zero. IE, IF and IN were

assigned mean firing rates of the PC, FS and NFS populations, respectively. Since this approach

will contain error related to changes in membrane conductance after removing internal con-

nections, both external stimulation (Ix) and free weight parameters (WEE, WFE & WNE) were

optimised using a least-squares algorithm and an iterative approach so that firing rates of the

rate model approximated firing rates of the spiking network. First, synaptic weights were opti-

mised so that the rate model firing rates approximated baseline firing rates of the spiking net-

work for fixed Ix. Ix bounds were then relaxed by 10% of their original value, synaptic weights

fixed to their updated value, and the optimisation repeated. These steps were repeated until the

least-squares error was under 0.001. Final parameter values were: WEE = 0.95, WFE = 9.36,

WNE = 9.71, IE = 0.89, IF = 1.44, IN = 2.5.

Estimation of gain with modulation of FS & NFS excitability

To estimate the impact of reductions in FS and NFS excitability upon network dynamics, we

assume that synaptic weights and external stimulation remain fixed at baseline values, but the

gain (Bx) of each population varies with modulation of interneuron excitability. Therefore, to

determine excitatory population gain corresponding reductions of FS excitability in the spik-

ing network, BE was re-calculated using the optimised synaptic weights and the steady-state
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firing rates of the spiking network,

BE ¼
RE

WEERE � WEFRF � WENRN þ IE
ð12Þ

The same approach was used to calculate BE associated with reductions of NFS excitability.

To create a rate model that approximates conditions of reduced FS excitability, PC gain

(BE) was expressed as a function of the total input current onto the PC population (IT) and fit-

ted with a sigmoidal function,

BE ¼ f ðITÞ IT ¼WEERE � WEFRF � WENRN þ IE ð13Þ

Therefore, BE approximates PC population gain as total input current increases due to

reductions of FS excitability. This approach was also used to estimate BE under conditions of

reduced NFS excitability to yield two rate models: one for reductions of FS and one for reduc-

tions of NFS excitability. Phase portraits and bifurcation analyses were performed using

XPPAUT[55].

Statistics

Results and error bars shown in Figures represent mean ± s.e.m. Comparisons of spiking char-

acteristics, EI balance and changes in PC gain for a given FS/NFS rheobase value were per-

formed using Welch’s t test. Changes in PC gain and population characteristics compared to

baseline across different rheobase values were performed with one-way ANOVA and post-hoc

Tukey’s test. Differences were considered significant if P< 0.01.

Results

Network model

We developed a network model that incorporated connectivity and synaptic parameters that

reflect broad differences between FS and NFS interneuron populations observed in experi-

mental data (Fig 1A and 1C). Notably, connection probability was highest between the FS and

PC populations and lowest within the PC population, and synaptic latencies shortest between

the FS and PC populations (Fig 1). We used a network state in which mean firing rates of the

FS and NFS populations are equal (2Hz) as a baseline condition from which to evaluate the

impact of interneuron excitability upon network activity.

Emergent network properties: Spike characteristics & EI balance

A remarkable feature of cortical networks is their ability to maintain a precise balance of exci-

tation and inhibition under different behavioural conditions[12,56,57]. Certain characteristics

of EI balance, such as the net current (i.e., the sum of excitatory and inhibitory currents) and

temporal relationship determine cortical spiking characteristics and computational properties

[58]. Therefore, we evaluated the spiking characteristics and EI balance of our network during

the baseline condition to provide a point of comparison with experimental studies.

Under the baseline condition, spiking was highly irregular with a mean ISI coefficient of

variation (ISICV) of 1.1 and a long-tailed distribution of inter-spike intervals, qualitatively

similar to in-vivo observations (Fig 2, spike raster plot shown in Fig 1)[59,60]. The mean firing

rate of most PC neurons (77%) was under 0.5 Hz with a range from 0 to 1.9 Hz and spike cor-

relations within the PC population were very small (0.001) consistent with an irregular and

asynchronous network regime[8,61].
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To quantify EI balance, we recorded mean synaptic currents and conductance from excit-

atory and inhibitory inputs onto each PC neurons. Most excitatory current was obtained via

external stimulation, and only 3% of the mean total excitatory current onto the entire PC pop-

ulation was obtained via internal network activity from other PC neurons (Fig 2). In contrast,

51% of mean total inhibitory synaptic current was obtained from the FS and NFS populations

(32% and 19%, respectively). Since FS and NFS populations fire at similar rates under baseline

conditions, greater current from the FS population is due to denser connectivity from FS to

PC neurons. Finally, mean net current was of similar magnitude to total excitatory current

(-0.23 nA compared to -0.43 and 0.2 nA, respectively, Fig 2) and net conductance was inhibi-

tion-dominated with an EI conductance ratio of 0.5 (S1 Fig). The presence of inhibition-domi-

nated synaptic input onto the PC population is consistent with previous intracellular cortical

recordings, and the magnitude of net current onto the PC population suggests a ‘loosely bal-

anced’ network regime[49,58]. Similar EI characteristics were observed within the FS and NFS

populations (S1 Fig).

Intracellular recordings from cortical pyramidal cells have revealed the existence of fast

temporal correlations between excitatory and inhibitory synaptic currents, suggesting inhibi-

tory neurons can be rapidly recruited by moment-to-moment fluctuations of excitatory activ-

ity[10]. Temporal EI balance may play an important role in maintaining asynchronous activity

within densely connected cortical networks[7]. We investigated temporal EI balance charac-

teristics by calculating the mean cross-correlation between network-driven excitatory and

inhibitory synaptic conductances onto the PC population. We observed a peak in excitatory-

inhibitory cross-correlation onto the PC population at a short time lag of 6ms, consistent with

rapid activation of the inhibitory population in response to PC spiking (Fig 2). To dissect the

Fig 1. Characteristics of network model. A) The network contained one excitatory (PC) and two inhibitory (FS and

NFS) populations stimulated by external (Eext and Iext) input. Neuron models possessed intrinsic electrophysiological

properties typical for each population and, under the baseline conditions, both the FS and NFS populations had mean

firing rates of ~2Hz. B) Raster plot of network activity under baseline conditions. C) Distributions of synaptic latencies

and post-synaptic potentials for all synaptic connections onto the PC population. FS to PC connections had shorter

latencies and elicited greater post-synaptic potential amplitudes compared with NFS to PC connections.

https://doi.org/10.1371/journal.pcbi.1009521.g001
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relative contributions of FS and NFS interneurons to temporal EI balance, we repeated this

analysis for synaptic conductances from each interneuron population. Stronger correlation

between PC to FS compared with PC to NFS conductance was observed (0.07 and 0.019,

respectively), and peak PC to FS correlations occurred at a shorter time lag compared to PC to

NFS (6 ms and 12 ms respectively, Fig 2). Correlated excitatory-inhibitory synaptic input is

appreciated visually with a trace of normalised mean excitatory and inhibitory conductance

onto the PC population (Fig 2). Our model, therefore, exhibits rapid recruitment of inhibition

in response to fluctuations of excitatory activity, with FS neurons providing faster and more

robust inhibitory feedback.

Modulation of network activity through FS and NFS interneurons

There is accumulating evidence from studies employing targeted optogenetic silencing or acti-

vation that interneuron subtypes may exert selective influence over cortical network state[62–

65]. This idea is supported by the observation that some neurotransmitters selectively modu-

late the excitability of interneuron subtypes[23–25]. Therefore, we explored the impact of

reductions of FS and NFS excitability upon network spike characteristics and EI balance.

Fig 2. Network spike characteristics and excitation-inhibition balance. A) Distributions of spike characteristics for PC neurons under

baseline conditions. PC spiking is irregular with a long-tailed ISI distribution and mean ISICV of 1.1. B) Breakdown of excitation-

inhibition balance and synaptic input current sources onto the PC population during the baseline condition. Points within each cloud

represent mean input current from different sources onto individual PC neurons. Mean current from external stimulation (Eext, shown in

orange) represented the majority (97%) of mean total excitatory current (E, shown in yellow). A similar proportion of inhibitory current

was derived from both external (Iext) and network sources (FS & NFS). Net current (E+I) was of similar magnitude to total excitatory and

inhibitory currents (denoted E & I, respectively). Net conductance onto the PC population (S1 Fig) was dominated by inhibitory inputs.

C) Mean cross-correlation between synaptic conductance’s received from the PC and FS (PC-FS), NFS (PC-NFS) or both inhibitory

populations (PC-I) onto the PC population. There is stronger and more rapid cross-correlation between the PC and FS, compared to PC

and NFS, populations (peak cross-correlation at 6 and 12ms, respectively). The temporal lag and co-fluctuation of PC and FS synaptic

conductance’s can be appreciated from a trace of mean synaptic conductance onto the PC population (C, lower).

https://doi.org/10.1371/journal.pcbi.1009521.g002
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Interneuron excitability was modulated by increasing the rheobase (or spiking threshold) of

neurons within the FS and NFS populations (Fig 3).

Increasing NFS rheobase reduced NFS firing rates, as would intuitively be expected, and

increased PC and FS firing rates consistent with disinhibition from the NFS population (Fig

3). As NFS firing rates approach zero PC and FS firing rates plateaued at ~0.4 Hz and ~3.2 Hz,

respectively (S1 Fig). These changes suggest that the PC population exerts only small influence

over NFS firing rates, relative to external excitatory stimulation, because NFS firing rates drop

despite higher PC firing rates and excitatory input. Furthermore, the FS population appears to

Fig 3. Changes in network properties with modulation of interneuron excitability. A) FS interneuron input-frequency relationship following

modulation of interneuron excitability in response to random excitatory synaptic input. Interneuron excitability was quantified as the

percentage increase in rheobase relative to baseline in response to a constant current stimulus (shown here for baseline, 25% and 50% increase in

rheobase). B) Increased NFS rheobase produced stepwise reductions of NFS firing rates and increases of FS & PC firing rates. Increased NFS

rheobase did not produce a significant change in PC spike correlations (C) or population oscillations (D). In contrast, an increase in FS firing

rates beyond a 25% increase in FS rheobase was observed (B, right), together with large increases in both PC spike correlations and population

synchrony (normalised relative to baseline, C & D). E) Changes in characteristics of excitatory and inhibitory input current onto the PC

population with modulation of interneuron excitability. As FS rheobase was increased, the proportion of excitatory current onto the PC

population derived from within the network (i.e., from other PC neurons, denoted Int) increased from ~3 to 9% (E, upper left). Since external

stimulation remained fixed, this change in network-derived excitatory current must drive increased firing rates observed in B. Furthermore,

increased FS rheobase also produced greater network-derived inhibition (E, top right). Despite increased population firing rates, a paradoxical

reduction of EI balance was observed (E, bottom).

https://doi.org/10.1371/journal.pcbi.1009521.g003
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adopt a compensatory role to provide sufficient inhibition to maintain an upper limit of PC

firing rates. Finally, a significant change in PC spike correlations and population synchrony

was not observed under these conditions (Fig 3).

Increased FS rheobase produced a qualitatively different influence upon network activity.

Here, the FS population firing rate exhibited a U-shaped relationship when rheobase was

increased beyond 25% (Fig 3). PC and NFS firing rates also increased. This transition in net-

work activity was associated with a significant and greater than 10-fold increase in both spike

correlations (from 0.001 to 0.012, P< 0.001 for FS rheobase� 10%, Welch’s t test, Fig 3) and

oscillatory power between 20 and 25Hz within the PC population (P< 0.001 for FS

rheobase� 10%, Welch’s t test, Fig 3). Stronger temporal EI correlation between excitatory

and inhibitory synaptic inputs were also observed (S1 Fig). Interestingly, despite higher firing

rates within the PC population, EI balance within the network transitioned to a more inhibi-

tory state with a reduction of the EI ratio and greater recruitment of network-driven inhibitory

activity (Fig 3). Since external stimulation was fixed across all conditions, increased FS firing

rates are therefore driven by increased internal excitatory network activity via the PC popula-

tion (Fig 3). Likewise, an increase in PC firing rates despite higher inhibitory interneuron fir-

ing rates implies the existence of enhanced recurrent excitation within the PC population.

Fast spiking interneurons promote the transition into an inhibition-

stabilised state

The presence of strong coupling between excitatory neurons can endow cortical networks

with unique computational properties, such as input amplification and pattern completion

associated with memory formation, but are also at risk of developing pathologic excitatory

activity unless stabilised by recurrent inhibition[15]. Networks with these properties, known

as inhibition-stabilised networks (ISN), have been confirmed experimentally by their paradox-

ical response to external stimulation of the inhibitory population: a reduction of steady-state

firing rate in both the inhibitory and excitatory populations[16,66]. After increasing the rheo-

base of the FS population, we observed changes in network activity to suggest strong coupling

between PC neurons and hypothesised that these changes may represent the transition into an

ISN. Therefore, we tested for the presence of an ISN by applying an external stimulus to both

FS and NFS populations (Figs 4 and S2). Since our network contains two inhibitory popula-

tions an ISN is characterised by a reduction in the magnitude of mean inhibitory current onto

the PC population despite the presence of lower PC firing rates[54].

Under the baseline condition, external stimulation of the FS and NFS populations enhanced

net inhibitory current onto the PC population and reduced PC firing rates, consistent with a

non-ISN (Fig 4). These changes suggest that greater activity within the inhibitory population

exerts a direct inhibitory influence over the PC population, and that reductions of PC firing

rate have little bearing over the recruitment of inhibitory neurons. We observed similar find-

ings under conditions of reduced NFS excitability, suggesting that modulation of NFS excit-

ability does not alter the network state (S2 Fig).

With reductions of FS excitability under 25%, external stimulation of the inhibitory popula-

tion also revealed changes consistent with a non-ISN (Fig 4B and 4C). However, further sup-

pression of excitability produced a paradoxical reduction in the magnitude of inhibitory

current onto the PC population despite lower PC firing rates, consistent with an ISN (Fig 4).

Since more external current is applied to the inhibitory population, this ‘reduction of

inhibition’ implies diminished recruitment of feedback inhibition driven by the PC popula-

tion. A more pronounced paradoxical response was observed with greater increases of FS

rheobase.
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Overall, these results show that interneuron subtypes exert differential control over network

state in our model. Notably, reduced FS excitability promoted a regime in which firing rates

are driven by PC neurons and are associated with stronger spike correlations and oscillatory

activity. To test the generality of these findings, we investigated if network modulation through

FS and NFS interneurons is dependent upon either the characteristics of external stimulation

applied to the network, or the properties of the model used for the pyramidal cell population.

Therefore, we stimulated our network with just excitatory inputs (as opposed to balanced

inputs) to reproduce the baseline firing rates, and also developed a second network that con-

tained a simplified single-compartment pyramidal cell model, similar to that used for the FS

and NFS populations (the “Izhikevich network”, S3 and S4 Figs). We observed qualitatively

similar changes to the original network under both conditions: increasing FS rheobase pro-

duced an unexpected reduction of EI balance, the emergence of population oscillations, and

promoted a more pronounced paradoxical response to stimulation of the inhibitory popula-

tions (S4 Fig). Interestingly, one distinguishing feature in the Izhikevich network is the

absence of strong spike correlations associated with increased FS rheobase. This difference in

considered further in the Discussion.

Fast spiking interneurons modulate excitatory gain in a rate-based model

Our network model suggests that FS interneurons can preferentially mediate a transition of

network activity into an inhibition-stabilised state. To obtain further insight into the dynamics

of this transition, we developed a Wilson-Cowan firing rate model with synaptic weights

Fig 4. Reduced FS excitability promotes a paradoxical response to inhibitory stimulation. A) The presence of an ISN was explored by applying an external

current stimulus to the FS (y axis) and NFS (x axis) population and recording the mean change in inhibitory (hyperpolarising) current received by the PC

population (increased inhibitory current in green, decreased inhibitory current in red). This process was repeated after increasing FS (B & C) and NFS (S2 Fig)

rheobase. During the baseline condition and increased NFS rheobase, external stimulation of the inhibitory population increased inhibitory current received by

the PC population. In contrast, increased FS rheobase (C) was associated with a paradoxical reduction of inhibitory current received by the PC population

despite lower PC firing rates, consistent with an ISN regime. This effect was more pronounced with greater increases of FS rheobase (panel 3).

https://doi.org/10.1371/journal.pcbi.1009521.g004
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estimated from features of the detailed network (Fig 5). The rate model was first optimised to

reproduce firing rates of the detailed network during the baseline condition with the gain of

each population (BX) set to 1. Under the assumption that synaptic weights are fixed, the firing

rates during reduced FS and NFS excitability were then reproduced by re-fitting the gain of

each population. This resulted in two distinct models that approximate conditions of reduced

FS and NFS excitability, respectively.

To reproduce the baseline firing rates of the detailed model, the PC-to-PC synaptic weight

(WEE) was optimised to a value of 0.95 and firing rates settled to a stable fixed point (Fig 5).

Fig 5. FS interneurons enhance PC gain and promote transition to an ISN regime in a rate model. A) A rate model was optimised

with synaptic weights (W) based on features of the spiking network. During baseline conditions the gain of each population was set to

1.0. B) Under the assumption that synaptic weights remain fixed, changes of PC population gain (BE) in the rate model were required

to reproduce firing rates from the spiking network associated with increased FS/NFS rheobase. Increased FS rheobase increased BE

such that the effective recurrent excitatory synaptic strength (BE x WEE) exceeded 1.0. C) Two rate models were developed based on

changes in PC gain shown in B: one approximating increased NFS rheobase (‘NFS model’) and one FS rheobase (‘FS model’, firing

rates during baseline conditions in lower left caption). C) The FS model loses stability via a Hopf bifurcation as BE x WEE exceeds 1.0

(asterix) and exhibits sustained oscillations, whereas a qualitative change in network behaviour does not occur in the NFS model. D)

Phase portraits and firing rate trajectories of the NFS and FS models for inputs shown in C under the condition of fixed NFS firing

rate. The PC nullcline of the FS model has a rightward inflection, and stimulation of the FS population moves the fixed point to lower

PC and FS firing rates, suggestive of an ISN regime. In contrast, stimulation of the FS population in the NFS model increases the

steady-state FS firing rate, suggestive of a non-ISN regime. These findings are confirmed by changes of inhibitory current onto the PC

population in response to stimulation of the FS and NFS population (S5 Fig).

https://doi.org/10.1371/journal.pcbi.1009521.g005
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Networks in which the effective excitatory-to-excitatory synaptic weight (BEWEE) is greater

than 1 can generate self-sustained excitatory activity required for an ISN regime[15]. Conse-

quently, although at baseline the rate model did not behave as an ISN (confirmed by the

response of the model to external stimulation of the inhibitory population, S5 Fig), it is possi-

ble a small increase in PC gain could reproduce this condition.

To reproduce firing rates corresponding to increased NFS rheobase within the detailed

model, the gain of the PC population dropped below 1 (Fig 5). Stimulation of the PC popula-

tion within the NFS model, which approximates conditions of increased NFS rheobase, did

not produce a qualitative change in network behaviour with firing rates again reaching a stable

fixed point (Fig 5). Furthermore, consideration of both the FS-PC phase portrait (Fig 5C and

5D) and the response to external stimulation of the inhibitory population reveal features con-

sistent with a non-ISN regime (S5 Fig). Here, external stimulation of the FS population (a

rightward translation of the FS nullcline) decreases steady-state firing rates of both the PC and

FS populations.

In contrast, to reproduce firing rates corresponding to increased FS rheobase, the gain of

the PC population increased such that BEWEE exceeds a value of 1 (Fig 5). When stimulating

the PC population of the FS model to approximate conditions of increased FS rheobase, the

model underwent a Hopf bifurcation and exhibited sustained oscillations (Fig 5). Further-

more, both the FS-PC phase portrait and the model’s response to external inhibitory stimula-

tion demonstrated features consistent with an ISN (Figs 5D and S5). Compared to the NFS

model, the PC nullcline has a rightward inflexion (Fig 5). With sufficient external input, the FS

nullcline passes above this inflexion, and stimulation of the FS population leads to a reduction

in steady-state firing rates of both PC and FS populations. Therefore, to reproduce firing rates

of the spiking network, the FS and NFS rate models exert different influence over the gain of

the PC population. Notably, reduced FS excitability is associated with increased PC gain that

generates characteristics of an inhibition-stabilised state.

Excitatory gain modulation in the detailed network

The findings from our rate models and the existence of a paradoxical response to inhibitory

perturbation in the spiking network provide indirect evidence that reduced FS excitability

enhances the effective synaptic weight (BEWEE) of the PC population. We sought to directly

confirm this finding within our spiking network, and to then investigate mechanisms through

which BEWEE is modulated via the FS interneuron population.

To measure the effective synaptic weight in our detailed network, we perturbed a fraction

(20%) of the PC population with a brief current stimulus and calculated the average response

of the network (Fig 6). An estimate for BEWEE was obtained by measuring the ratio of PC neu-

rons recruited via PC-to-PC interactions compared to spikes directly evoked by the stimulus.

According to our hypothesis, if BEWEE is less than 1, fewer PC neurons should be recruited

through PC-to-PC interactions. Conversely, if BEWEE is greater than 1, more PC neurons

should be recruited through PC-to-PC interactions, suggestive of excitatory subnetwork

instability.

At baseline, fewer PC neurons were recruited through PC-to-PC interactions, consistent

with an estimated value of BEWEE under 1 (Fig 6). As FS rheobase is increased, we observed a

progressive increase in BEWEE that exceeded 1, with more PC neurons recruited through PC-

to-PC connections (P< 0.001 for greater than 10% increase in rheobase, one-way ANOVA

with post-hoc Tukey’s test). Furthermore, BEWEE was significantly higher for increased FS

compared to NFS rheobase (P< 0.001, Welch’s t-test, for rheobase values of 10, 20, 30, 40 &

50%). In contrast, increased NFS rheobase did not increase BEWEE above 1, suggesting that the
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excitatory subnetwork remains stable under these conditions. These findings are consistent

with results from our simple model and, given that synaptic weights in the model are fixed,

provide further evidence that reductions of FS excitability enhance PC gain.

Mechanisms of gain modulation

We next investigated potential mechanisms through which the excitability of the FS popula-

tion can modulate PC gain. Since we can assume the intrinsic and synaptic properties of the

PC model are fixed, we surmise that changes of gain are related to input conditions to which

the PC population is exposed. Therefore, we explored the influence of three changes to input

conditions associated with increased FS rheobase: reductions of inhibitory current, delayed

feedback inhibition, and stronger excitatory input correlations.

First, we note that increased FS rheobase initially reduces total mean inhibitory current

onto the PC population (S6 Fig, also appreciated by an increase of EI ratio in Fig 3). A change

to the balance of excitatory and inhibitory inputs have previously been demonstrated to

enhance neuronal gain, and it is possible reductions of inhibition may exert a similar influence

in our network[63,67,68]. Therefore, to test if a reduction of inhibitory input can enhance gain

in the absence of input correlations, a network containing only PC neurons (the “PC net-

work”) was created and stimulated with Poisson-distributed inputs that reproduce the condi-

tions of the three-population network (S6 Fig). PC gain was assessed by stimulating a fraction

of the PC neurons and recording the average spiking response of the network (S6 Fig). Here,

Fig 6. PC gain modulation in the spiking network. A) Raster plot of PC spiking (spikes denoted in red) and average population

response (top trace, grey) in response to a brief stimulus applied to 20% of the PC population (black arrow). The stimulus elicited

a bi-modal population response: the first peak (P1) in response to the stimulus and the second peak (P2) from PC-to-PC

interactions. The effective synaptic weight was estimated by calculating the ratio of the area under the curves of P2 (yellow) to P1

(blue). B) Estimated effective synaptic weight (BEWEE) under conditions of increased FS and NFS rheobase. FS rheobase

increased BEWEE above 1, consistent with excitatory subnetwork instability, and produced a significant increase in BEWEE

compared to NFS rheobase (P< 0.001). C) Examples of normalised average population response to the perturbation (arrow)

following increased FS rheobase.

https://doi.org/10.1371/journal.pcbi.1009521.g006
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we used a simplified measure of gain: since the PC network contains no inhibitory feedback, a

value of BEWEE above 1 will generate persistent excitatory activity, which we observed after a

~10% reduction of inhibition (S6 Fig). However, although reductions of inhibitory input

caused by increased FS rheobase may contribute to enhanced PC gain, increased NFS rheobase

in fact produced greater reductions of inhibitory input yet did not modulate PC gain (S6 Fig).

Therefore, there must also exist other mechanisms associated with increased FS rheobase that

enhance PC gain.

Mean synaptic latencies between PC and FS interneurons are shorter compared to NFS

interneurons in our detailed network (1.0 ms and 1.5 ms, respectively), and it is possible that

delayed feedback inhibition may contribute to differential PC gain modulation. To test this

hypothesis, a network with a homogeneous interneuron population comprising just FS neu-

rons was developed (the “PC-FS network”). PC and FS parameters were otherwise identical to

the original network (Fig 7). To isolate the role of feedback inhibition upon PC gain, we esti-

mated the value of BEWEE after progressively increasing mean synaptic latency between the PC

and FS population to 1.5 ms (denoted 100% of the NFS value, Fig 7B and 7D) whilst preserv-

ing all other synaptic properties. Prolongation of synaptic latency produced a progressive

increase in mean estimated BEWEE, and BEWEE was significantly greater than baseline values

(P< 0.01, Welch’s t-test, Fig 7). Therefore, an isolated prolongation of feedback inhibition,

similar to that provided by the NFS population, can indeed enhance PC gain relative to the

faster feedback inhibition provided by the FS population. We also used the PC-FS network to

Fig 7. Interneuron properties and PC gain modulation. A) A network with a homogeneous FS interneuron population

was developed to explore the role of interneuron synaptic properties upon PC gain. B) Histogram of FS-to-PC synaptic

latencies before (purple, ‘FS’) and after (green, ‘NFS’) modification to resemble NFS latencies. Connectivity and synaptic

distribution were modified in a similar manner. C) Example of normalised average population response to the perturbation

(arrow) following modification of interneuron latency. C) Estimated effective PC synaptic weight (BEWEE) within the FS

network after modifying interneuron properties to resemble the NFS population (100% represents NFS values). An increase

in estimated BEWEE was observed across all parameters, and at 100% latency and connectivity generated a significant

change compared to baseline (P< 0.01, Welch’s t test).

https://doi.org/10.1371/journal.pcbi.1009521.g007
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explore the contribution of differences in synaptic connectivity and distribution between the

FS and NFS populations upon PC gain modulation. Both connectivity and distribution also

increased BEWEE, but only connectivity generated a significant change compared to the base-

line value (Fig 7D.

Considering these findings, we wondered if the intrinsic electrophysiological properties of

FS and NFS interneurons are also relevant for feedback inhibition and gain modulation. To

address this question, we created networks containing only FS or NFS interneurons (the “FS

interneuron network” and “NFS interneuron network”, Fig 8). The FS and NFS interneuron

networks were then stimulated with excitatory synaptic input designed to replicate fluctuations

of input from the PC population (Fig 8A and 8B). Although both the FS and NFS interneuron

networks generated similar total spikes to excitatory inputs (S6 Fig) we observed a significantly

shorter response latency in the FS interneuron network of over 2 ms (P< 0.001 for input rates

above 0.5 Hz, Welch’s t test, Fig 8). Importantly, this value is greater than the difference in

mean synaptic latency between the FS and NFS populations that was sufficient to enhance PC

gain, implying that rapid intrinsic response properties to synaptic input also afford the FS pop-

ulation influence over PC gain (Fig 7B and 7C).

Fig 8. Intrinsic interneuron electrophysiological properties. A) To explore the influence of interneuron

electrophysiological properties, a network of just FS or NFS interneurons was developed and stimulated with excitatory

synaptic input of increasing mean frequency (‘Stim’). B) Normalised average interneuron population responses to

synaptic input demonstrating differences in mean response latency between the FS and NFS populations. C) Mean

latency to peak response as a function of excitatory input frequency. Excitatory inputs generated a more rapid-onset

response within the FS compared to NFS population (P< 0.001 for input rates above 15 Hz). D) Efficacy of modifying

intrinsic electrophysiological and synaptic NFS interneuron properties upon rescuing the original three-population

network from an ISN regime. The spiking network was first initialised into an ISN by increasing FS rheobase by 50%

(‘Baseline’). Specific properties of the NFS population were then modified to resemble the FS population, and a

paradoxical response assessed by perturbing the FS and NFS populations, calculating the change of inhibitory current

onto the PC population and then averaging these responses (paradoxical response denoted by negative values in red,

e.g., Fig 4). Synaptic connectivity, distribution and latency were adjusted incrementally to resemble the FS population

(25, 50, 75 & 100%).

https://doi.org/10.1371/journal.pcbi.1009521.g008
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Finally, we explored if the emergence of excitatory spike correlations can also enhance gain.

This was achieved by stimulating PC neurons with artificial spike trains containing progres-

sively stronger correlations that approximated those arising within our network during

increased FS rheobase (S7 Fig). We found that spike correlations significantly enhanced PC

excitability: at an input rate that elicits a mean frequency of 10 Hz for uncorrelated inputs, a

spike cross-correlation of 0.0025 elicited a mean frequency of 29.5 Hz (P< 0.001, Welch’s t
test, S7 Fig). Furthermore, these findings held regardless of the distribution of spikes across

different regions of the PC model, consistent with previous studies demonstrating gain modu-

lation through enhanced fluctuations of membrane potential [69,70]. Indeed, we found that

reductions of FS excitability produced a large and significant increase in excitatory current

variance onto the PC population (P< 0.001 for FS rheobase� 10%, Welch’s t test, S7C and

S7D Fig).

In summary, three mechanisms together enhance gain within the PC population of our net-

work: reduced inhibitory input, delays of feedback inhibition, and excitatory input correla-

tions. An important difference between the FS and NFS population is the rate at which they

can provide feedback inhibition in response to excitatory input, a property associated with

both synaptic delay and their intrinsic electrophysiological properties. Suppressing FS excit-

ability will preferentially shift feedback inhibition within the network onto the NFS popula-

tion. Since NFS-mediated inhibition is provided at longer latencies, this in turn may enhance

gain within the PC population to promote a transition in network state.

Discussion

Experimental recordings of cortical activity have revealed a diversity of network states that are

thought to enrich the brain’s computational capabilities and allow for context-dependent cog-

nitive flexibility[1,71–74]. Neuronal and synaptic heterogeneity provide a substrate from

which diverse regimes of activity can emerge and interneuron subtypes, in particular, appear

to play an important role for promoting different network states[1,2,42,75]. To explore the

impact of interneuron excitability upon cortical activity, we used a spiking network model that

incorporated synaptic and electrophysiologic features of FS and NFS interneuron subtypes.

We found that reductions of FS excitability promoted network activity characterised by

enhanced spike correlations and population synchrony, and features of an inhibition stabilised

state associated with increased gain within the PC population.

Our findings suggest that FS interneurons can preferentially modulate gain within the excit-

atory population to enable transitions in network state. We found indirect evidence for

enhanced PC gain through a paradoxical response to inhibitory stimulation, a shift to lower EI

ratios, and a Wilson-Cowan model that reproduced firing rates of the detailed network

through modulation of excitatory gain. These findings were confirmed by direct perturbation

of the PC population, and further analysis revealed several mechanisms through which

reduced FS excitability can modulate gain (Figs 6 and 8). Interestingly, although reductions of

total inhibitory input may contribute, this alone was insufficient to account for enhanced PC

gain as reduced NFS excitability produced greater reductions of inhibitory input (see S6 Fig)

[68]. Indeed, we found that gain was also modulated through temporal variability of feedback

inhibition and the emergence of spike correlations–mechanisms which have been demon-

strated previously to modify the excitability of pyramidal cell populations and contribute to

orientation tuning in visual cortex[63,76,77]. Although membrane potential fluctuations asso-

ciated with correlated excitatory or inhibitory inputs can enhance gain, stronger temporal cou-

pling between excitatory and inhibitory inputs can dampen excitability[69,70]. Suppression of

FS excitability in our network transfers the dominant mode of inhibition onto the NFS
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population which is characterised by more prolonged feedback inhibition. Therefore, a trans-

fer to NFS-mediated inhibition lengthens the temporal window for rapid PC-to-PC synaptic

interactions to emerge.

By using a network with a homogeneous interneuron population and then introducing fea-

tures specific for FS and NFS interneurons, we found that differences in synaptic latency, con-

nectivity, and the intrinsic electrophysiological properties of the interneuron models were of

relevance for PC gain modulation (Figs 7D and 8). A lingering question is the impact of these

interneuron properties upon a paradoxical response to stimulation of the inhibitory popula-

tion. In addition to enhanced PC gain, ISNs also require the presence of other complex net-

work features, such as strong coupling between PC and interneuron populations[15,66].

Therefore, we tested the influence of interneuron properties upon the ability to ‘rescue’ the

spiking network from an inhibition stabilised state (Fig 8). Here, we found that differences in

the intrinsic electrophysiological properties of the interneuron models appeared to exert great-

est influence. Interestingly, although increasing synaptic latency enhanced PC gain, we also

observed that shortening synaptic latency could promote a stronger paradoxical response (Fig

8). This counterintuitive finding may be explained by the fact that a shortened latency

strengthens interactions between the PC and interneuron populations and, provided PC gain

is sufficiently high, enhance a paradoxical response to inhibitory stimulation. Overall, our

findings confirm that specific biophysical properties of FS interneurons afford them a powerful

inhibitory influence over network activity[3,28,63]. Furthermore, our model suggests that the

ability of FS interneurons to provide rapid feedback inhibition is of particular importance in

this respect.

A reduction of FS excitability also produced a state transition within a network containing

simplified Izhikevich PC models, supporting the generalisability of our results. Although PC

gain in the Izhikevich network could be modulated through similar mechanisms as the

detailed network, the Izhikevich network exhibited weaker pair-wise spike correlations and

population oscillations, and the timing of excitatory and inhibitory inputs had less impact

upon neuronal excitability (S8 Fig). In light of these variations in network behaviour, we also

investigated differences in the biophysical properties of the detailed and Izhikevich PC model

and found that a crucial distinction is the presence of a shorter effective membrane time con-

stant in the detailed PC model that confers sensitivity to input correlations (S9 Fig)[78]. Fur-

thermore, it has been shown that pyramidal neurons that are sensitive to correlated

(coincident) inputs can exhibit more precise spike-time synchronisation[79]. This may

account for the emergence of stronger synchrony and spike correlations in the network con-

taining the detailed PC model (Fig 3). Therefore, although FS interneurons could mediate a

state transition in both the detailed and Izhikevich networks, the spike features and mecha-

nisms that drive this transition are to some extent dependent upon the intrinsic properties of

the PC population[79,80]. In the detailed PC model, a shorter time constant allows variation of

input timing to modulate gain, and promoted correlated spiking as the network undergoes

transition.

This study provides further evidence for the existence of inhibition stabilised states in net-

works with biologically realistic connectivity, synaptic parameters and cellular composition

[16,66]. We also tested the generalisability of these findings under different conditions by stim-

ulating the model with just excitatory inputs (S4 Fig). Our network also exhibits several fea-

tures consistent with experimental cortical recordings, including irregular and asynchronous

firing, inhibition-dominated synaptic input conductances, and fast temporal correlations

between excitatory and inhibitory inputs[10,49,59,61]. One difference is the proportion of

excitatory input derived from recurrent network connections. In our model, only ~3% of

excitatory current is obtained from within the network, whereas it has been estimated
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experimentally that over 50% of excitatory inputs are derived from recurrent cortical connec-

tions (Fig 2)[81]. Furthermore, in theoretic models of ‘balanced’ networks, external input is

assumed to be of similar order of magnitude to recurrent input[58]. These differences may

relate to the size of our network and the use of biophysically realistic synaptic weights that

were not tuned to recreate certain input conditions. We used cell numbers that approximated

a cortical column layer, whereas experimental estimates of recurrent input have been derived

after suppressing activity throughout large regions of cortex[81]. Therefore, our model’s exter-

nal stimulation would implicitly contain ‘recurrent’ cortical inputs under this scenario, and it

is possible a more expansive network may closer approximate balanced conditions without a

need to scale synaptic weights.

Our results suggest that FS interneurons are uniquely positioned to enable transitions in

cortical state characterised by large changes in gain within the excitatory population. Strong

coupling between excitatory neurons endows cortical networks with certain computational

abilities including nonlinear response summation to external input, multi-stable dynamics

and persistent activity associated with short-term memory formation[15,58,82]. Consequently,

neurotransmitters that selectively inhibit FS interneurons may promote this regime for the

execution of cognitive tasks[23]. High excitatory gain is also associated with the emergence of

epileptic seizures, and therapeutic strategies augmenting FS activity have been demonstrated

to be an effective method for seizure termination[83–85]. Although FS interneurons in our

network could also mediate the transition between a non-ISN and ISN, it remains unclear if

cortical networks operate as a non-ISN regime, with recent studies demonstrating the exis-

tence of ISNs across multiple cortical regions and behavioural conditions[15,16]. Interestingly,

it has been shown that the extent of the paradoxical response to perturbation of the inhibitory

population, measured by the magnitude of change of inhibitory firing rate, may be dependent

upon brain state such as the degree of arousal[16]. Therefore, it is possible that under states of

low arousal, such as anaesthesia or deep sleep, regions of cortex may indeed operate as a non-

ISN. If so, and considering our results, FS interneurons could play a central role in the transi-

tion between states of arousal.

This study contains several limitations that may be addressed in future work. Since we

incorporated broad biological differences in FS and NFS interneurons our conclusions may

not generalise to specific brain regions as cell composition and connectivity vary widely across

cortical regions and layers[3,86]. Furthermore, although we utilised spiking models with

electrophysiological differences between neuron subtype our models did not possess complex

dendritic morphology, limiting the realism of synaptic input integration[87]. In this study we

have explored the role of two interneuron populations that approximate the features found in

PV and SST subtypes. Notably, we have not investigated vasoactive intestinal peptide-express-

ing (VIP) interneurons that have been shown to mediate a disinhibitory circuit[3]. Activity of

the VIP population, therefore, may further modify the influence of FS and NFS interneuron

subtypes upon networks dynamics.

Supporting information

S1 Fig. A) Breakdown of excitatory and inhibitory input conductances onto the PC popula-

tion. Net conductance (E+I) was received from inhibitory input sources (inhibition-domi-

nated). B) Excitation and inhibitory synaptic input currents onto the FS (left) and NFS (right)

population during baseline conditions. C) Mean firing rates of each population with increased

NFS rheobase. As NFS firing rates approach 0 there is a compensatory increase in FS firing

rates (raster plot on right corresponds to NFS rheobase of 100%). D) Cross correlation of excit-

atory and inhibitory synaptic input conductance’s onto the PC population with increased NFS
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(left) and FS (right) rheobase (corresponding to PC-I in Fig 1).

(TIF)

S2 Fig. Change in total inhibitory current onto the PC population with external stimulation of

the FS and NFS populations during baseline conditions (A) and with increased NFS rheobase

(B-C). A reduction of inhibitory current in the presence of external FS/NFS stimulation was

not observed, consistent with a non-ISN regime.

(TIF)

S3 Fig. Characteristics of the Izhikevich network in response to modulation of the FS and

NFS populations. Increased FS rheobase evoked higher PC firing rates (A) compared to

increased NFS rheobase. Increased FS rheobase also generated stronger population oscillations

(B) compared to baseline (P< 0.001 for FS rheobase above 10%, one-way ANOVA with post

hoc Tukey test) and a significant increase in spike correlations compared to baseline above

30%, although the magnitude of spike correlations was much smaller compared to the original

model (mean of 0.00048 vs 0.012, respectively, for increased FS rheobase of 50% in the Izhike-

vich vs original network. Increased FS rheobase was also associated with a reduction of EI bal-

ance (D) and a more pronounced paradoxical response to inhibitory stimulation (E)

consistent with an ISN.

(TIF)

S4 Fig. Characteristics of the network stimulated by just excitatory synaptic input in

response to modulation of the FS and NFS populations. Increased FS rheobase evoked

higher PC firing rates (A) compared to increased NFS rheobase. Increased FS rheobase also

generated stronger population oscillations (B) and pairwise spike correlations (C) compared

to baseline (P< 0.001 for FS rheobase above 5%, one-way ANOVA with post hoc Tukey test).

A significant increase in either population oscillations or spike correlations compared to base-

line was not observed with increased NFS rheobase. Again, increased FS rheobase was associ-

ated with a reduction of EI balance (D) and a more pronounced paradoxical response to

inhibitory stimulation (E).

(TIF)

S5 Fig. A) Progression of fitness values with successive iterations during optimisation of the

rate model. B) PC gain (BE) was recalculated in terms of net current for increasing FS and NFS

rheobase values (purple & green respectively and corresponding rheobase values labelled). The

change in PC gain (BE) with net input current was fitted with a sigmoidal function (B, right).

Since net input current during conditions of increased FS rheobase shifted to more hyperpo-

larised values as the network transitioned into an ISN regime (evident by the leftward deflec-

tion of the PC gain curve) only the initial upstroke in PC gain was used to ensure that BE is a

one-to-one function of net input current for the purposes of the rate model. C) Change in

inhibitory current onto the PC population of the rate model, during external stimulation of

the FS/NFS population. Conditions at baseline and for the NFS/FS rate models correspond to

Fig 4. A paradoxical reduction of inhibitory current onto the PC population, despite external

stimulation of the inhibitory population, was observed in the FS model but not during baseline

conditions or the NFS model, confirming the presence of an ISN regime.

(TIF)

S6 Fig. A) Change in total inhibitory current onto the PC population with increased FS rheo-

base. A reduction of inhibitory current is observed with increased FS rheobase before the net-

work transitions to an ISN. Although increased NFS rheobase was associated with greater

reductions of inhibitory current these changes did not produce an increase in PC gain (Fig 6).
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B) To investigate the impact of reductions of inhibitory input upon PC gain, a network of PC

neurons (“the PC network”) was developed with external stimulation that reproduced the

mean inhibitory and excitatory current of the original three-population network. C) Mean

population response of the PC network in response to a brief stimulus (black arrow) after a

reduction of external inhibition (coloured traces). A reduction greater than ~10% was suffi-

cient to generate unrestrained excitatory activity, demonstrated by the raster plot for one sim-

ulation in D. E) Total number of spikes generated by the FS and NFS interneuron networks in

response to excitatory stimuli shown in Fig 8. We observed small differences in total spikes

elicited by each interneuron population, and at lower input rate fluctuations more spikes were

elicited by the NFS interneuron network.

(TIF)

S7 Fig. A) Raster plots for spike trains generated using a Poisson-process (baseline) and after

introducing pair-wise spike correlations. Both spike trains have identical mean firing rate. B)

Input-output relationship of PC neurons in response to generated spike trains of increasing

rate (x-axis) and pair-wise spike correlation (colours). Inputs were applied to either the soma,

dendrite or distributed equally across both compartments (“Both”). The presence of stronger

spike correlations enhanced the excitability of the PC neuron model: at an input rate that elic-

its a spike frequency of 10Hz for uncorrelated inputs, a spike cross-correlation of 0.0025 elic-

ited a frequency of 29.5Hz (P< 0.001, Welch’s t-test). Error bars denote s.e.m. C) Variance of

excitatory synaptic input derived from internally generated excitatory network activity during

conditions of increased FS and NFS rheobase. C) Greater variance with increased FS rheobase

is appreciated visually from the traces of mean-normalised excitatory current input during

baseline (left) and increased FS/NFS rheobase (right, purple/green traces respectively).

(TIF)

S8 Fig. Mechanisms of gain modulation in the Izhikevich network. A) Input-output rela-

tionship of the single compartment Izhikevich PC model in response inputs of increasing rate

and spike correlation (colour coded). Compared to the original PC model (S7 Fig), correlated

synaptic inputs had less impact upon the excitability of the Izhikevich PC model: at a rate that

elicits a spike frequency of 10Hz for uncorrelated inputs, a spike cross-correlation of 0.0025

elicited a frequency of only 13Hz (P< 0.001, Welch’s t test). B) Mean population response of

the Izhikevich PC network in response to a brief stimulus (arrow) after a reduction of external

inhibition. Similar to the PC network in S6 Fig, reduced inhibition generated unrestrained

excitatory activity consistent with enhanced PC-to-PC synaptic gain. C) To explore the timing

of inhibition, both the detailed and Izhikevich (simple) PC models were stimulated with iden-

tical excitatory and inhibitory spike trains, and a delay introduced to the inhibitory inputs of

increasing duration. Here, inhibitory spikes have a mean delay of 2.0 ms compared to excit-

atory spikes. Input-firing rate relationship of the detailed (B) and Izhikevich (C) PC models

with lengthening of inhibitory delays (color-coded). We found that the detailed model was

sensitive to small delays of inhibitory input under 1ms: a delay of 0.5 ms increased the mean

spike rate from 5 Hz to 34 Hz (P < 0.001, Welch’s t-test). Furthermore, delays greater than 0.5

ms had insignificant further impact on excitability. Although the Izhikevich PC model was

also sensitive to inhibitory delays, the magnitude of the change in excitability was considerably

smaller: a delay of 10 ms increased the mean spike rate from 5 to 11 Hz (P< 0.001). Changes

to excitability occurred across a wider range of values, and delays greater than 10 ms did not

exert a significant additional impact on excitability.

(TIF)
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S9 Fig. A) Time-voltage trace of the original (top) and Izhikevich (bottom) PC model in

response to excitatory synaptic inputs (arrows). Membrane voltage decays more rapidly in the

original PC model. B) Mean input-firing rate relationship of the Izhikevich model in response

uncorrelated (solid line) and correlated (pair-wise cross-correlation of 0.005, dashed line)

input after reducing membrane capacitance to 50 and 25% (blue and orange traces, respec-

tively). Reducing the membrane time constant of the Izhikevich model by reducing membrane

capacitance increases the sensitivity of the model to correlated input. For instance, the mean

spike threshold at 25% capacitance decreased from 19.6 to 3.3Hz for inputs with a pairwise

cross-correlation of 0.005, compared to 4.9 to 3.3Hz at 100% capacitance. C)The impact of

other mechanisms for conferring sensitivity to correlated inputs in the detailed PC model was

also explored by reducing the conductance of each ion channel mechanism, and then re-calcu-

lating the input-output relationship in response to uncorrelated (solid line) and correlated

(dashed line) input. No mechanisms could abolish sensitivity to input correlations, further

supporting the importance of the rate of decay of synaptic input. Here, enhanced sensitivity to

correlated inputs was clearly retained despite complete removal of the CaH and Ih channels.

Reductions of KP and NaT conductance below 75% and 50% respectively produced a loss of

sustained firing.

(TIF)

S1 Table. Stimuli, features and objective values used to constrain the Pyramidal Cell

model. AP: action potential; BAP: back-propagating action potential; AHP: after-hyperpolari-

zation potential; ISI: inter-spike interval; ms: millisecond; mV: millivolt.
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60. Buzsáki G, Mizuseki K. The log-dynamic brain: How skewed distributions affect network operations.

Nature Reviews Neuroscience. 2014. https://doi.org/10.1038/nrn3687 PMID: 24569488

61. Softky WR, Koch C. The highly irregular firing of cortical cells is inconsistent with temporal integration of

random EPSPs. J Neurosci. 1993; 13: 334–350. Available: http://www.ncbi.nlm.nih.gov/pubmed/

8423479 https://doi.org/10.1523/JNEUROSCI.13-01-00334.1993 PMID: 8423479

62. Callaway EM. Inhibitory cell types, circuits and receptive fields in mouse visual cortex. Research and

Perspectives in Neurosciences. 2016. https://doi.org/10.17712/nsj.2016.1.20150252 PMID: 26818160

63. Atallah B V., Bruns W, Carandini M, Scanziani M. Parvalbumin-Expressing Interneurons Linearly Trans-

form Cortical Responses to Visual Stimuli. Neuron. 2012; 73: 159–170. https://doi.org/10.1016/j.

neuron.2011.12.013 PMID: 22243754

64. Kvitsiani D, Ranade S, Hangya B, Taniguchi H, Huang JZ, Kepecs A. Distinct behavioural and network

correlates of two interneuron types in prefrontal cortex. Nature. 2013; 498: 363–366. https://doi.org/10.

1038/nature12176 PMID: 23708967

65. Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A. Cortical interneurons that specialize in

disinhibitory control. Nature. 2013. https://doi.org/10.1038/nature12676 PMID: 24097352

66. Sadeh S, Silver RA, Mrsic-Flogel TD, Muir DR. Assessing the Role of Inhibition in Stabilizing Neocortical

Networks Requires Large-Scale Perturbation of the Inhibitory Population. J Neurosci. 2017. https://doi.

org/10.1523/JNEUROSCI.0963-17.2017 PMID: 29074575

67. Rubin DB, VanHooser SD, Miller KD. The stabilized supralinear network: A unifying circuit motif under-

lying multi-input integration in sensory cortex. Neuron. 2015; 85: 402–417. https://doi.org/10.1016/j.

neuron.2014.12.026 PMID: 25611511

68. Katzner S, Busse L, Carandini M. GABAA inhibition controls response gain in visual cortex. J Neurosci.

2011; 31: 5931–5941. https://doi.org/10.1523/JNEUROSCI.5753-10.2011 PMID: 21508218

69. Ferguson KA, Cardin JA. Mechanisms underlying gain modulation in the cortex. Nature Reviews Neuro-

science. 2020. https://doi.org/10.1038/s41583-019-0253-y PMID: 31911627

70. Salinas E, Sejnowski TJ. Impact of correlated synaptic input on output firing rate and variability in simple

neuronal models. J Neurosci. 2000. https://doi.org/10.1523/JNEUROSCI.20-16-06193.2000 PMID:

10934269

71. Haider B, McCormick DA. Rapid Neocortical Dynamics: Cellular and Network Mechanisms. Neuron.

2009. pp. 171–189. https://doi.org/10.1016/j.neuron.2009.04.008 PMID: 19409263

72. Engel TA, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Boahen K. Selective modulation of corti-

cal state during spatial attention. Science (80-). 2016. https://doi.org/10.1126/science.aag1420 PMID:

27934763

PLOS COMPUTATIONAL BIOLOGY State transitions through inhibitory interneurons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009521 October 15, 2021 28 / 29

https://doi.org/10.1038/nn.3051
http://www.ncbi.nlm.nih.gov/pubmed/22366760
https://doi.org/10.1016/j.tins.2012.03.008
http://www.ncbi.nlm.nih.gov/pubmed/22579264
https://doi.org/10.1016/j.neuron.2011.02.022
http://www.ncbi.nlm.nih.gov/pubmed/21435560
https://doi.org/10.7554/eLife.44494
http://www.ncbi.nlm.nih.gov/pubmed/31025934
https://doi.org/10.1152/jn.00732.2015
https://doi.org/10.1152/jn.00732.2015
http://www.ncbi.nlm.nih.gov/pubmed/26740531
https://doi.org/10.1115/1.1579454
https://doi.org/10.1115/1.1579454
https://doi.org/10.1016/j.neuron.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/25843405
https://doi.org/10.7554/eLife.43415
http://www.ncbi.nlm.nih.gov/pubmed/31021319
https://doi.org/10.1016/j.neuron.2009.03.021
http://www.ncbi.nlm.nih.gov/pubmed/19447097
https://doi.org/10.1038/nrn3687
http://www.ncbi.nlm.nih.gov/pubmed/24569488
http://www.ncbi.nlm.nih.gov/pubmed/8423479
http://www.ncbi.nlm.nih.gov/pubmed/8423479
https://doi.org/10.1523/JNEUROSCI.13-01-00334.1993
http://www.ncbi.nlm.nih.gov/pubmed/8423479
https://doi.org/10.17712/nsj.2016.1.20150252
http://www.ncbi.nlm.nih.gov/pubmed/26818160
https://doi.org/10.1016/j.neuron.2011.12.013
https://doi.org/10.1016/j.neuron.2011.12.013
http://www.ncbi.nlm.nih.gov/pubmed/22243754
https://doi.org/10.1038/nature12176
https://doi.org/10.1038/nature12176
http://www.ncbi.nlm.nih.gov/pubmed/23708967
https://doi.org/10.1038/nature12676
http://www.ncbi.nlm.nih.gov/pubmed/24097352
https://doi.org/10.1523/JNEUROSCI.0963-17.2017
https://doi.org/10.1523/JNEUROSCI.0963-17.2017
http://www.ncbi.nlm.nih.gov/pubmed/29074575
https://doi.org/10.1016/j.neuron.2014.12.026
https://doi.org/10.1016/j.neuron.2014.12.026
http://www.ncbi.nlm.nih.gov/pubmed/25611511
https://doi.org/10.1523/JNEUROSCI.5753-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21508218
https://doi.org/10.1038/s41583-019-0253-y
http://www.ncbi.nlm.nih.gov/pubmed/31911627
https://doi.org/10.1523/JNEUROSCI.20-16-06193.2000
http://www.ncbi.nlm.nih.gov/pubmed/10934269
https://doi.org/10.1016/j.neuron.2009.04.008
http://www.ncbi.nlm.nih.gov/pubmed/19409263
https://doi.org/10.1126/science.aag1420
http://www.ncbi.nlm.nih.gov/pubmed/27934763
https://doi.org/10.1371/journal.pcbi.1009521


73. Polack PO, Friedman J, Golshani P. Cellular mechanisms of brain state-dependent gain modulation in

visual cortex. Nat Neurosci. 2013; 16: 1331–1339. https://doi.org/10.1038/nn.3464 PMID: 23872595

74. Harris KD, Thiele A. Cortical state and attention. Nature Reviews Neuroscience. 2011. https://doi.org/

10.1038/nrn3084 PMID: 21829219

75. Litwin-Kumar A, Doiron B. Slow dynamics and high variability in balanced cortical networks with clus-

tered connections. Nat Neurosci. 2012; 15: 1498–1505. https://doi.org/10.1038/nn.3220 PMID:

23001062

76. Chance FS, Abbott LF, Reyes AD. Gain Modulation from Background Synaptic Input. Neuron. 2002;

35: 773–782. https://doi.org/10.1016/s0896-6273(02)00820-6 PMID: 12194875

77. Shu Y, Hasenstaub A, Badoual M, Bal T, McCormick DA. Barrages of synaptic activity control the gain

and sensitivity of cortical neurons. J Neurosci. 2003; 23: 10388–10401. Available: http://www.ncbi.nlm.

nih.gov/pubmed/14614098 https://doi.org/10.1523/JNEUROSCI.23-32-10388.2003 PMID: 14614098

78. Koch C, Rapp M, Segev I. A brief history of time (constants). Cereb Cortex. 1996; 6: 93–101. https://doi.

org/10.1093/cercor/6.2.93 PMID: 8670642
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