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The brain can be regarded as an information processing system in which neurons store and propagate
information about external stimuli and internal processes. Therefore, estimating interactions between
neural activity at the cellular scale has significant implications in understanding how neuronal circuits
encode and communicate information across brain areas to generate behavior. While the number of
simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise
statistical dependencies still suffer from a number of conceptual and technical challenges that preclude
experimental breakthroughs describing neural information flows. In this review, we examine the evolu-
tion of the field over the years, starting from descriptive statistics to model-based and model-free
approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular
state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estima-
tion perspective. Finally, we discuss directions for future research, including the development of theoret-
ical information flow models and the use of dimensionality reduction techniques to extract relevant
interactions from large-scale recording datasets.
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Fig. 1. Inferring single-neuron interactions from spiking data. (A) On the left caption, the time course of an action potential (or spike) showing the rise (‘Deplorarization”) and
fall (‘‘Repolarization”) of the membrane potential with respect to a background level (‘‘Resting potential”). On the right caption, a depiction of a spike train where the first
action potential is highlighted in red. Below the spike train, its usual modelization as a binary sequence of 0s and 1-s (spikes) is correspondingly displayed. (B) A schematic
depiction of two neurons, n1 and n2, with their respective spike trains, displaying a synaptic connection (in red) between n1 axon’s terminal and n2’s dendrites. (C) Four model
configurations that can explain an estimated pairwise statistical dependence between n1 and n2. On the top caption, a model showing both neurons that are directly
connected by a synapse. On the middle-top caption, a model showing a visual stimulus (highlighted in red) exerting a simultaneous effect on both neurons. On the middle-
bottom and bottom captions, both neurons being mediated by a third neuron (highlighted in red). The three later examples can be referred to as n1 and n2 being independent
conditioned to or, equivalently, d-separated by either a stimulus (middle-top) or other neurons’ activity (middle-bottom and bottom) [122]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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1. Introduction

A central question in neuroscience research is how the interac-
tion of multiple neurons in the central nervous system leads to
cognition. Over years, biology has provided a detailed description
of how neurons interact via synapses in terms of electro-
chemical processes [1]. This interaction is mainly produced by
the propagation of action potentials. An action potential (com-
monly known as a spike) is generated by the abrupt increase and
fall of a neuron’s membrane potential. This change of polarization
usually occurs in the soma of the neuron and travels down the neu-
ron’s axon towards its terminal to produce electro-chemical signals
that are transmitted to the dendrites of synaptically connected
neurons, which in turn generate new action potentials (see
Fig. 1A and B). Spike propagation is the main means of cell-to-
cell communication in the nervous system. Consequently, spikes
are analyzed as the main unit of information conveyed by neurons
while their temporal sequence of occurrences, known as a spike
train, is conceived as the stream of information that travels
through the nerves [2]. The usual mathematical symbolization of
spike trains is via a binary sequence of 0s and 1s, where the neu-
ron’s time-binned activity is mapped to 1 for spike occurrences
and to 0, otherwise 1 (Fig. 1A). In practice, spikes are measured via
extracellular recordings. This type of recordings captures the electri-
cal field generated by the difference in potential between two loca-
tions in the extracellular medium [3]. In particular, when these
recordings are performed at a very fine scale, spike trains from dif-
ferent neurons can be discriminated by sequentially applying high-
1 For instance, time bin lengths of 1 ms may be selected so that a maximum of one
spike falls per bin.
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frequency filtering, spike detection and spike-sorting algorithms on
the recorded signals [4].

Nowadays, current technological advances in neural recording
systems have allowed to record the electrical activity of an ever-
growing number of simultaneous neurons across many species
including humans [5]. With these data, one can formulate the gen-
eral question: Given a subset of simultaneous spike train record-
ings from different brain areas, how can we reconstruct to a
certain precision interactions between the observed neurons to
uncover functionally relevant information flows? Despite the
interest on the topic, computational approaches to this question
are still limited. Indeed, they are diverse in nature, suffer from
technical and conceptual shortcomings and can lead to ambiguous
biological interpretations. In this paper, we review the main contri-
butions to the topic as well as discuss new promising directions for
further development.
2. From cross-correlations to model-based approaches

Since the early birth of simultaneous single-neuron recordings
in the mid 1960s [6], neurophysiologists have attempted to jointly
analyze and interpret spike trains to provide experimental infor-
mation about synaptic connections and other potential sources of
functional interaction among the detected neurons [7–9]. The ini-
tial tools were based on descriptive pairwise statistics such as
cross-correlations between neuron’s spike counts, namely the
number of spikes over the entire spike train, [7] and bivariate his-
tograms of spike times [8], which were both computed across
experimental repetitions (commonly known as trials) from the
same pair of neurons. Yet, already in 1967, Perkel et al. admitted
some of the principal limitations of interpreting neural interactions



2 Note that a binary time series can be alternatively defined as a sequences of
binary variables.

3 It is also known as Granger-Wiener causality to give credit to the earlier related
work by N. Wiener [30].

4 The causality terminology of the GC framework is interpreted here in a fully
statistical sense in contrast to the notion defined by J. Pearl’ [32] that involves
intervening the observed system.
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via cross-correlation, which also apply to a large ensemble of
methods used today [7]. The first limitation is that a pairwise cor-
relation in a neuron pair can be equally explained by a synaptic
connection, a third-neuron mediation or by a shared input like
stimulus information [7] (see Fig. 1C). The second limitation is that
the sequence of trials used for cross-correlation and histogram
estimation cannot be in general assumed independent and identi-
cally distributed [10] and hence, estimation from multiple trials
needs to be performed cautiously. This assumption might be ques-
tionable when trials from different days are pooled together or
when external and uncontrolled variables (e.g., level of arousal,
motivation) have a time-varying effect on subject’s behavioral vari-
ables (e.g., task performance) across trials.

By the of the 20th century, several works started to address the
above-mentioned concerns. On one hand, the authors in [10] were
able to develop a robust method to isolate the residual component
of the cross-correlation that only accounted for the effect of the
stimulus on each neuron’s activity. On the other, it was showed
that cross-correlations could confound distinct sources of potential
covariation that included genuine time synchrony as well as
externally-driven covariations of independent neural responses
[11]. In this situation, heuristic rules [11] and quantitative meth-
ods [12] were proposed to help resolve potential ambiguities and
improve the interpretation of experimental outcomes.

While some cross-correlation limitations may be tackled by ad
hoc methods [10,12,13], a more general framework is necessary to
simultaneously account for all the confounding sources of covari-
ability [14]. In this context, by the end of the last century, several
works started to regard spike train sequences in the frequency
domain and made used of Fourier methods and spectral measures
of association (e.g. coherence) to characterize distinct sources of
influence in single-neuron interactions [15–17]. For instance, this
approach led to identifying common inputs in pairwise interac-
tions [18] and to the development of partial directed coherence
[19,20], a measure of interaction that incorporates directionality
and controls for the effect of other observed neurons. In parallel,
in the early 2000s, statistical models emerged as a powerful tool
to model the influence of covariates such as the stimulus, and
the own or other neurons’ previous spiking history [21]. Specifi-
cally, model-based approaches are grounded on minimal genera-
tive assumptions, i.e., how the observed variables are generated,
and typically fit the model parameters using maximum-
likelihood estimation [22], i.e., choosing those values that maxi-
mize the conditional probability of the observed variables given
the parameters. A well-known example in neuroscience is the gen-
eralized linear model (GLM), which statistically describes spike
trains as an inhomogeneous Poisson point processes whose time-
varying intensity (also known as Poisson rate) results from a
non-linear function of filters, each processing a different variable
influencing the neuron’s activity, such as the stimulus, the spike
train own past activity and the spike trains from other neurons
[21]. The use of GLMs has been widely applied to study neural
interactions in a number of simultaneous studies [23–26]. For
instance, it was showed how retinal cell interactions were more
prominent between neighboring cells and how these interactions
improved the decoding of visual stimuli [23].

The GLM detailed description of the neurons’ spiking activity
comes at the expense of a potentially large number of model
parameters. This usually can produce poor performance in general-
ising the results across different experimental sessions. Several
studies have overcome this issue by introducing prior knowledge
about the observed data. This includes invoking analytical assump-
tions on the coupling time-varying functions [23] or modelling
interaction sparsity using Bayesian inference [27]. Yet, the applica-
tion of Bayesian inference in this context has its own limitations.
Indeed, modelling neural interactions as Bayesian networks with-
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out adequate constraints [28] may be computationally unfeasible.
Another critical issue is the fact that GLM assumes parameter
invariance during repeated experimental trials as we will discuss
in the next section.
3. The Granger causality framework: main concept and model-
free generalizations

In most applications, a GLM assumes that the underlying Pois-
son process is stationary within and across trials [21]. Hence, it fits
a single coupling filter for each neuron pair across repeated exper-
imental trials, which might obscure the functional relevance of
trial-dependent interactions. In particular, trial-to-trial fluctua-
tions can occasionally alter the number of spikes of some driver
neurons, producing a larger effect on target neurons during specific
trials [29]. We will devote this section to a framework that allows
to infer single-trial causal dependencies. We will first state its main
concept, we will then define and discuss its generalized
information-theoretic formulas and we will conclude by reviewing
some applications in neuroscience.

3.1. Main concept

In order to analyze single-trial dependencies, an established
approach is to model spike trains as binary time series2 and resort
to the Granger causality3 (GC) framework [30,31]. Granger’s causal-
ity is a concept that originated in econometrics in the 1950s whose
core idea is the following: a time series X causes4 Y if X contains
information that helps predict the future of Y better than any infor-
mation already present in the past of Y , and, if available, in the past
of other observed variables Z [31].

3.2. Model-free generalizations: directed information

In its original form, GC was conceived to be applied to multivari-
ate linear autoregressive Gaussianmodels (MVAR) in both temporal
[31] and frequency domains [33,34] but the basic idea can be gen-
eralized to arbitrary join probability distributions governing the
observed variables. When an estimation method uniquely relies
on the joint probability distribution of the observed variables, it is
usually referred to as ‘‘model-free” in the neuroscience literature
as opposed to ‘‘model-based” approaches relying on a predefined
statistical model. Crucially, because spike trains are naturally mod-
eled as Poisson and not Gaussian processes [21], model-free meth-
ods aremore suitably than the GC-MVAR to capture the specificities
of spiking activity. In fact, a model-free generalization of the GC
concept can be found in the information-theoretic concept of direc-
ted information. The directed information (DI) is a functional that
was originally developed in [35–37] to study the maximum achiev-
able transmission rates in communication channels with feedback
but can also be used to measure causal statistical dependencies
between sequences of random variables. Formally, the DI can be
defined as the sum of conditional mutual information terms [38],
which makes it applicable to arbitrary statistical models and to
both discrete and continuous variables.

In the following, we will provide the mathematical definition of
DI. Let X;Y and Z be three arbitrary variables. The conditional
mutual information between X and Y conditioned on Z is defined as
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IðX;YjZÞ ¼ EXYZ log
PY jX;Z
PYjZ

� �
; ð1Þ

where EXYZ denotes the expectation over the joint probability distri-
bution PXYZ . Let us now be more specific and assume that the arbi-
trary variables above are sequences of random variables. In
particular, let us consider two T-length sequences XT and YT defined
as XT ¼ ðX1; . . . ;YTÞ and YT ¼ ðY1; . . . ;YTÞ. To introduce the DI, we
will make use of the mutual information formula for sequences of
variables [38]. The mutual information between XT and YT can be
decomposed via the chain rule in the sum of T conditional mutual
information terms:

IðXT ;YTÞ ¼
XT
t¼1

IðYt ;X
T jYt�1Þ; ð2Þ

where the notation As
0
s stands for the sequence As

0
s ¼ ðAs; . . . ;As0 Þ,

sP s, for which the subscript is dropped when s ¼ 1 [38]. In con-
trast to (2), the DI between XT and YT is defined as

IðXT ! YTÞ ¼
XT
t¼1

IðYt;X
t jYt�1Þ; ð3Þ

where, in each summand of (3), the XT appearing in the second
argument of (2) has been replaced by Xt , thus accounting only for
the dependency of each Yt on up to the tth element of XT . While
the mutual information is symmetric, the DI is not, and hence the
later yields in general a different value when computed in reverse
direction, i.e., from YT to XT ; IðYT ! XTÞ– IðXT ! YTÞ. Although (3)
holds for general statistical models, under certain conditions of sta-
tionarity and ergodicity it is more convenient to recall its temporal
normalized version, known as the DI rate:

1
T
IðXT ! YTÞ: ð4Þ

In addition to causal inference, the DI has an operational mean-
ing in different information-theoretic and statistical domains rang-
ing from data compression to channel coding or hypothesis testing
[39]. Importantly, the DI is the fundamental limit of communica-
tion (that is, the maximum achievable transmission rate) over a
certain type of noisy channels when noiseless feedback is present
at the transmitter [40,41]. Hence, the DI is not only a convenient
measure of causal dependence between data sequences but it is
also the theoretical answer to problems involving communication
models.

Over the last decade, a number of consistent DI rate estimators
have appeared in the literature [29,42,43]. For instance, in [29] the
authors defined an estimator to infer causal relationships in neural
spike trains by assuming a Poisson statistical model and fitting its
parameters with GLM over long single trials. Then, the required
conditional probabilities of XT and YT were obtained from the
model to be plugged into the DI rate formula (4). In the most gen-
eral case, however, no information about the underlying model is
presumed and the joint probability distribution of XT and YT needs
to be estimated in a non-parametric form. Under this condition,
novel DI rate estimators were defined in [42], where the estimator
relied on a sequential and universal probability estimation algo-
rithm named context tree weighting (CTW, [44]), and in [43],
where the authors analyzed the performance limits of the
probability maximum-likelihood estimator. Importantly, in all
the above cases, the estimation procedure becomes computation-
ally feasible when the sequences XT and YT are assumed to be gen-
erated according to jointly stationary and ergodic Markov
processes [45].
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3.3. Model-free generalizations: transfer entropy

Consistent with the GC concept, another information-theoretic
functional was independently proposed under the name of transfer
entropy (TE), aimed to measure causal dependencies between ran-
dom processes in dynamical systems [46]. Unlike the DI, the TE
only applies to pairs of stationary processes, Xt and Yt , that jointly
satisfy the Markov property, i.e.,

PYtþ1 jXt ;Yt ¼ PYtþ1 jXt
t�Kþ1 ;Y

t
t�Jþ1

ð5Þ

for any t P maxðJ;KÞ, where J and K are the order of each process,
respectively. Given (5), the TE between processes Xt and Yt is
defined as

TEðX ! YÞ ¼ IðYtþ1;X
t
t�Kþ1jYt

t�Jþ1Þ; ð6Þ
for any t P maxðJ;KÞ [47]. Under the usual assumptions of DI rate
estimators (stationarity, ergodicity and the Markov property), it
can be easily checked that the DI rate converges to the TE in the
limit of the sequence length T [48]. Furthermore, when these condi-
tions hold in Gaussian models, it can be shown that both DI and TE
coincide with the MVAR version of GC [49]. Similarly to MVARmod-
els, the DI, the TE and other GC-derived measures can also be
extended via conditioning to measure conditional causal dependen-
cies in multivariate models. Examples of such multivariate exten-
sions have been theoretically proposed for the DI [50,51], for the
TE [52,53] as well as for other GC-derived measures [54].

3.4. Estimation remarks

When estimating model-free GC-derived measures, both the
outer expectations and the inner (conditional) probability distribu-
tions appearing in (1) are approximated by leveraging a sufficiently
large number of temporal samples from the observed time series.
Therefore, in this type of estimations, there is a trade-off between
the assumptions of stationarity and ergodicity usually holding at
short segment lengths and the estimation power requiring lengthy
time series. These constraints do not apply in other reviewed
methods such as cross-correlation in which samples are obtained
from the number of trials over which a certain quantity is aver-
aged. Critically, in neuroscience studies, one may argue that the
use of temporal samples (instead of trials) may compromise the
inference of the exact times at which spike-train interactions
occur. However, over the last years, a few works have shown that
interaction times can also be revealed in this framework via
delayed versions of the original measures [55] and ad hoc statisti-
cal tests (e.g., see Supplementary information in [56]). Finally, the
statistical power of model-free GC-derived measures can be
assessed by performing nonparametric significance testing of the
estimated quantities using methods such as permutation tests
[57].

3.5. Application to neuroscience studies

Since the early 2000s, a number of data-driven methods derived
within the GC framework have been applied to pairs of simultane-
ously recorded neurons in order to investigate how information
flows between brain areas are associated to cognitive functions.

Because GC was originally aimed to analyze continuous-value
time series, the classic MVAR formulation of GC [58] is not a priori
suitable to deal with binary spike trains. However, some works cir-
cumvented this issue by developing variants of the original
method. For instance, in experimental studies about visual infor-
mation processing [59,60], a non-parametric version of the original
GC estimation in the frequency domain [61] was applied to spike
trains, thus bypassing the point-process modelling [21]. This
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approach was specifically tested with recordings from visual areas,
while monkeys were exposed to visual stimuli [59,60]. In this
application, Hirabayashi et al. highlighted the temporal recurrence
of feedforward and feedback interactions in the same pair of neu-
rons during stimulus presentation [59]. An alternative approach
was due to Kim et al. who kept the point process modelling of spike
trains [21] and proposed a Poisson-log likelihood version of the
original GC measure [58].

The application of the DI to simultaneous single-neuron datasets
became specially popular after its adequacy to handle spiking data
was demonstrated in [29]. Specifically, in [29], the proposed DI rate
estimator was applied to recordings from the primary motor cortex
(M1) of a monkey while it performed arm movement tasks accord-
ing to visual targets. The outcomes of the analysis supported the
existence of electrical propagation waves above 10 Hz, which are
known to encode information about visual targets in reaching tasks
[62]. In addition, a variant of the DI rate estimator introduced in
[29] was proposed in [63], which showed an accurate estimation
of the conduction delays between neurons in different brain areas
during motor tasks performed by rodents and nonhuman primates.
On the other hand, time-delayed versions of the CTW-based esti-
mator were elaborated in [56,64] to infer task-driven directional
interactions between the thalamus and the somatosensory area 1
(S1) in monkeys performing a tactile detection task [56], and across
cortical somatosensory, premotor andmotor areas in monkeys per-
forming a tactile dissemination task [64]. Finally, an extension of
the CTW algorithm for non-necessarily finite-order Markov pro-
cesses [65] was used to estimate the DI rate between neural spike
trains from the buccal ganglion of Aplysia [66].
5 The XOR operator satisfies 0� 0 ¼ 0;0� 1 ¼ 1;1� 0 ¼ 1;1� 1 ¼ 0.
4. GC limitations: estimation and interpretation

Over the last couple of decades, the GC framework has become
one of the main statistical method in neuroscience to analyze neu-
ral interactions from a variety of recording modalities including
spike trains. Despite its growing popularity, its practical applica-
tion has also raised some concerns [67–69], about the computa-
tional reliability of the estimated outcomes and their biological
interpretation. In this section, we will review two sources of criti-
cism about GC-derived measures: those concerning their estima-
tion, and those related to the information flow interpretation of
their outcomes.

4.1. Estimation challenges

The original formulation of the GC concept relying on linear
Gaussian statistics has been refined in the frequency domain to
resolve some of its initial technical limitations such as the bias
and high variance of the interactions estimates [58,61]. However,
some additional challenges prevail such as the validity of the lin-
earity and stationarity assumptions, or the effect of temporal sam-
pling [69,70,71], which may impair its application to spike train
data. In fact, the use of model-free generalizations like the DI or
TE resolves the linearity assumption, but it is still susceptible to
problems such as the estimation bias or the lack of stationarity
in data recordings. Nevertheless, recent works have showed pro-
mise in dealing with these later issues. For instance, Schamberg
et al. showed that the above reviewed DI estimators are biased
when the Markov order of the receiving process YT is different
from the order of the joint processes ðXT ;YTÞ [45]. In addition, they
outlined sufficient conditions under which the equal-order Marko-
vian assumption is met and provided a bound for the estimation
bias in those cases when such conditions may not be satisfied. To
address the non-stationarity problem, Sheikhattar et al. developed
a window-based adaptive model that makes uses of point-process
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modelling and leverages the sparsity of spiking data [72]. They
applied this technique to simultaneous recordings from ferrets to
describe time-varying top-down and bottom-up interactions
between primary auditory area (A1) and prefrontal cortex (PFC)
during a tone detection task.

4.2. Interpretation issues

One of the fundamental criticism about the GC statistical frame-
work in general, and about GC-derived measures in particular, is
the interpretation of the inference outcomes as characterizing
information flows between neurons. Importantly, a review of the
recent literature [67,69,73,71] readily reveals that some of the con-
troversy mainly arises due to the different notions of information
flow that researchers adopt in their studies. Hence, we might start
asking the conceptual question: what do we understand by infor-
mation flow?

To begin with, if measuring information flow means detecting
the exchange of information between neuron A and neuron B
through their synaptic connections, then the GC framework (and
also the GLM) alone is in general insufficient to address this ques-
tion. This is because the GC concept and its information-theoretic
generalizations are aimed to infer statistical dependencies between
observed variables and, therefore, its application to spike train data
characterizes single-neuron interactions only at a phenomenologi-
cal level. As such, GC-derived measures are susceptible to latent
confounding effects arising from limited spatial sampling such as
the influence of unobserved neurons. Indeed, given the thousands
of neurons that may have an effect on a single postsynaptic neuron,
the GC estimates are in general not able to discriminate between
anatomically direct or indirect connections. Instead, if we wish to
make detailed inferences about synaptic connections or other
sources of interactions, mechanistic approaches are required. An
example of such approaches is dynamic causal modeling (DCM)
[74], a widely established framework to analzye coarser neural data
modalities like functional magnetic resonance (fMRI) or electroen-
cephalography (EEG) [75]. Specifically, DCM assumes an underlying
causal model with biophysically plausible properties and estimates
its parameters via Bayesian inference [74].

Alternatively, we can assume, in a weaker sense, that informa-
tion flow across or within brain regions is mapped into certain
meaningful causal dependencies between neuron’s spike trains.
By meaningful, we may understand that these dependencies map
either anatomically direct or indirect neural interactions that are
consistent with the processing of external stimuli or internally
built actions (‘‘information”) along a functional pathway (‘‘flow”).
Under this definition, we may include the biological interpretation
employed in most of the studies reviewed in Section 3.5. Since GC-
derived measures estimate causal dependencies, they can be used
in this context but its application needs to be made with caution.
Indeed, one of the main highlighted issues [76,77,67] is the fact
that GC-derived measures only capture pairwise dependencies
and hence, they conflate different sources of dependency when
certain information is shared by more than two variables. This
can be illustrated by a simple example given in [67]. Consider
two sequences XT and YT , where XT is a sequence of independent
and identically distributed Bernoulli variables with parameter
p ¼ 1=2, and YT is defined as follows:

Y1 �Bernð1=2Þ ð7Þ
Yt ¼Xt�1 � Yt�1; 2 6 t 6 T; ð8Þ
where � stands for the XOR operator between binary values 5. If we
compute the DI between XT and YT using the binary logarithm, we
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find that each term IðYt ;X
t jYt�1Þ ¼ 1 bit, for 1 6 t 6 T , and thus, the

DI rate (4) equals 1bit, and as a non-zero quantity, it measures that
YT causally depends on XT . However, a closer look at the model
shows that the second argument of the conditional mutual informa-
tion in (3), i.e, the truncated sequence Xt , cannot predict alone the
variable Yt for any t P 2. Hence, the estimated causal dependence
is not uncovering a genuine information flow from XT to YT because,
in this example, it is the combination of the past of YT and XT which
contributes to the present of YT .

At the core of the above example, it lies the following theoretical
fact: a straightforward application of the conditional mutual infor-
mation fails in general to describe dependencies between random
variables beyond pairwise interactions [77,67] (e.g., in the above
example there is a third-order dependence between Yt ;X

t and
Yt�1). This is indeed a critical problem in the field since a certain
type of higher-than-two order interactions called synergistic have
been found in several neuroscience studies [78–80]. To integrate
these additional sources of interaction in the analysis, one can
resort to the partial information decomposition (PID) framework
proposed in [76]. Briefly, the PID decomposes the mutual informa-
tion that a set of variables A1;A2; . . . ;An has about a variable B, i.e.,
IðB;A1;A2; . . . ;AnÞ, into the information that the variables Ai provide
individually (unique information), redundantly (shared informa-
tion) or only jointly (synergistic information) about B.

More recently, a more conceptual limitation of GC-derived mea-
sures is gaining attention in the literature. In our second informa-
tion flow interpretation, we required that causal dependencies
were part of a functional path that processed information content.
In practice, if this information content is measurable we can make
the requirement more specific and ask the estimated interactions
to be statistically associated to an information message (an exter-
nal stimulus, internal command, etc.), as it is considered in theoret-
ical communication models [81]. In other words, causal
dependencies need to be about a message [82]. Surprisingly
enough, the effect of stimulus on estimated neural interactions
has been to date largely neglected or uniquely considered as a
source of covariation [21]. However, there is a growing consensus
that the relationship between the stimulus (or any internal vari-
able) and the estimated interactions is a necessary condition to
support the information flow interpretation [64,56,83,84,82]. For
instance, the use of GC-derived measures to analyze single-trial
and time-varying neural interactions in monkeys performing per-
ceptual decision-making tasks have showed the modulatory effect
of stimulus information and internal percepts into inter-area inter-
actions [64,56].
5. New directions

In the following, we will overview two trends that have made
recent progress in tackling some of the GC framework challenges
discussed in Section 4. The first is motivated by current technology
developments: it assesses whether we can benefit from large scale
recordings and dimensionality reduction techniques to estimate
functionally relevant neural interactions that are obscure to pair-
wise statistics. The second concerns the development of theoretical
models and measures aimed to integrate the message statistics in
order to improve the information flow interpretation.

5.1. Inferring multivariate interactions via dimensionality reduction

Over the last years, neural recording advances have made pos-
sible to record up to thousands of neurons simultaneously [85]
keeping a pace that is growing at an exponential rate [5]. As a con-
sequence, researchers have started to regard data analysis as a
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multi-dimensional problem with one of the key dimensions being
the number of simultaneously recorded neurons. In this context,
the classical notion of single-neuron activity has been replaced
by that of population activity, which has been correlated with sen-
sory stimuli, behavioral variables and between ensembles of
simultaneous spike trains from different brain areas [86].

A key aspect of this approach is the use of dimensionality reduc-
tion techniques to extract robust and interpretable information
frommultivariate recording sets [87,88]. Examples of applied tech-
niques are principal component analysis (PCA), factor analysis (FA)
or tensor decomposition analysis [89–91], among others. Rather
than spike trains, these techniques are typically applied over
sequences of firing rates, obtained as the normalized number of
spikes in a certain time window, which allows for multivariate
Gaussian modelling. Using this framework, most studies have ana-
lyzed how distinct information features about stimuli [92,93] or
motor actions [94,95] were encoded into lower-dimensional popu-
lation activity subspaces, i.e. firing-rate subspaces that were of
lower rank than the number of recorded neurons. In contrast, less
work has been devoted to reformulate the study of spike-train
dependencies at a population level and complement the above-
reviewed approaches (GLM, GC). Yet, there are some interesting
directions pointed in the recent literature [94,96]. For instance, in
the context of a motor task performed by macaque monkeys, Kauf-
man et al. investigated the communication mechanisms under
which some information (muscle-related) lying in motor cortical
areas flowed to the spinal cord and muscles, while some other
(preparatory-related) largely stayed in the cortex [94]. Their anal-
ysis showed that the same population of neurons could project dif-
ferent sources of information (muscle or preparatory) into distinct
activity subspaces, and these subspaces allowed to selectively
route the appropriate information source (in this case, muscle-
related) towards target regions such as the spinal cord and the
muscles. Using similar methods, Semedo et al. more recently stud-
ied the structure of population interactions between the primary
visual (V1) and the secondary visual (V2) brain areas in anesthe-
sized macaque monkeys [96]. Their results concluded that V1
makes use of different population subspaces for intra-area and
inter-areal interactions, respectively. In particular, they showed
that the V1-V2 interaction subspace (named communication sub-
space) lying in V1 is of lower dimension and disjoint with respect
to the V1 subspace capturing intra-area interactions (see Fig. 2).
As a consequence, V2 population activity is related to a small sub-
set of V1 population activity patterns, which differ from the most
prevalent patterns shared by V1 neurons. These findings support
the hypothesis introduced in [94] that neural population subspaces
constitute a mechanism to route information across brain areas.
Even though dimensionality reduction is a powerful ensemble of
tools to deal with high-dimensional datasets, its current applica-
tion to neuroscience has some limitations when it comes to infer-
ring results in terms of information flow. To name a few, the lack of
directionality or explicit stimulus variables in the models, and the
special focus on PCA-related methods relying on Gaussian assump-
tions and variance maximization. In particular, to overcome the
later issue, nonparametric generalizations of PCA such as projec-
tion pursuit [97] could be applied to ensembles of non-Gaussian
firing rates for which functions other than the variance (e.g., skew-
ness [98], entropy [99]) are optimized in order to unravel interest-
ing lower-dimensional projections. Finally, dimensionality
reduction techniques could be applied in non-linear models via
the use of embedding methods [100].

5.2. Introducing the message variable in information flow models

The message, that is, the source random variable that needs to
be transmitted over a network from an origin to a destination, is



Fig. 2. New directions: Inferring population interactions from multivariate datasets. Extracted from [96] (Fig.3 and Fig. 4) with permission. (A) Graphical depiction of linear
regression between a population of V1 (primary visual brain area) neurons and one V2 (secondary visual brain area) neuron. Each circle represents the activity recorded
simultaneously in V1 (three neurons) and V2 (one neuron) during an observation sample. The position of the circle represents the V1 population activity and its shading
represents the activity of the V2 neuron. The activity of the V2 neuron increases along the regression dimension (red line). (B) Low-dimensional population interaction. The
regression dimensions (shown as multiple-color straight lines) for different V2 neurons span a 2-dimensional subspace (the gray plane) of the V1 population space. Thus, two
predictive dimensions are sufficient to capture the inter-area interactions between V1 and V2. All dimensions that are not predictive of V2, and therefore lie outside of this
subspace, are called private dimensions. (C) Top: The number of predictive dimensions of V2 (red circles) in V1 needed to achieve full predictive performance (i.e., using all V1
neurons, red triangle) is two dimensions. Bottom: In contrast, the number of predictive dimensions of V1 (blue circles) in V1 needed to achieve full predictive performance
(i.e., using all V1 neurons, blue triangle) is six dimensions. Error bars shows the standard error of the mean across different datasets. Adapted by permission from Elsevier Ltd.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. New directions: Information flow models with message variables and the need to address higher-than-two order dependencies. A depiction of the butterfly network
introduced in [102] and used as an example of application in [82], in which higher-than-two dependencies arise among the observed variables. In this case, two binary
messages M1 and M2 modeled as independent Bernoulli variables with parameter p ¼ 1=2 are transmitted from a source neuron (n1) to two destination neurons (n6 and n7)
travelling through intermediate nodes (illustrated with the corresponding message displayed on each travelled edge). Along the transmission, all neurons relay their
incoming information except n4, which performs the XOR operation of their incoming messages. For instance, in this network a third-order dependence may arise between
the output activity of n2 (neuron uniquely conveying M2 information), n3 (neuron uniquely conveying M1) and n4 (neuron uniquely conveying M1 �M2). In contrast, it can be
checked that all pairs among these 3 variables are marginally (pairwise) independent.
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a key component in all theoretized communication models
[81,101,102], Hence, when aiming to interpret spike trains depen-
dencies as information flow, we may ask: What is the information
source that these dependencies convey? To address this question,
recent works [82,84] have attempted to develop novel models
and measures that infer the existence of information flow (or infor-
mation transfer) by analyzing the interplay between recorded neu-
ral activity and the message variable (e.g., sensory stimulus) that is
expected to flow.

From a theoretical perspective and largely inspired by informa-
tion theory models [81,102], Venkatesh et al. have proposed a for-
mal definition of information flow that explicitly includes the
message as a model variable [82]. This definition is formulated in
the framework of computational systems, which are defined as
time-indexed directed graphs where node ‘‘transmissions” are
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modeled as random variables associated to their outgoing edges,
where ‘‘computations” over each transmission are performed at
each arriving node, and where there exists a subset of nodes (‘‘in-
put nodes”) whose transmissions depend on the message variable
at time t ¼ 0. Then, information about the message flows on an
edge as long as the mutual information between the corresponding
edge random variable and the (discrete-valued) message condi-
tioned on a set of additional edge variables has a positive value.
The author’s definition is time-dependent since it assumes varying
statistics over different observation time points and can be natu-
rally extended to characterize information paths between pairs of
nodes. Importantly, this approach specifically deals with the exis-
tence of the high-order dependencies reviewed in Section 4.2,
which might arise between the observed edge variables and the
message (see Fig. 3 for an exemplary network where this type of



Table 1
Published applications to real spike-train data with open-access online data or software. V1: Primary visual area; V2: Secondary visual area. MT: Middle temporal area; LIP:
Lateral intraparietal area; FEF: Frontal eye fields; A1: Primary auditory area; PFC: Prefontal cortex area; VPL: Ventral posterolateral nucleus of the thalamus; S1: Primary
somatosensory area; PMd: Premotor cortex; M1: Primary motor area.

Method Simultaneous dataset Online data/software Year

Cross-correlation
[13]

V1 and V2 area neurons from anesthesized macaque monkeys during visual
stimulation

doi.org/10.6080/K0B27SHN 2015

GLM [23] In-vitro ganglion cells from macaque monkeys during visual stimulation github.com/pillowlab/neuroGLM 2008
GLM [24] MT and LIP area neurons from macaque monkeys performing a visual task github.com/jcbyts/mtlipglm 2017
GLM [25] Rat hippocampus during exploration of an open square field github.com/NII-Kobayashi/GLMCC 2019
GLM [26] LIP and FEF area neurons from macaque monkeys performing a visual task doi.org/10.5061/dryad.gb5mkkwk7 2020
GC [72] A1 and PFC area neurons from ferrets performing an auditory task github.com/Arsha89/AGC_Analysis 2018
GC-DI [56] VPL and S1 area neurons from macaque monkeys performing a somatosensory

task
github.com/AdTau/DI-Inference 2019

Dim. reduction [94] PMd and M1 area neurons from macaque monkeys performing a motor task github.com/ripple-neuro 2014
Dim. reduction [96] V1 and V2 area neurons from anesthesized macaque monkeys during visual

stimulation
https://github.com/joao-semedo/communication-
subspace

2019
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dependencies are present). Consistent with their definition, the
authors provide an information flow inference method consisting
of a set of conditional mutual information tests between the stim-
ulus message and the recorded neural activity variables. Although
the method might be in practice computationally costly and sus-
ceptible to common problems such as the effect of hidden vari-
ables, the overall proposal constitutes a valuable effort with
theoretical and practical implications (see [82, Section VII]).

At a more practical level, Bim et al. tackled a similar problem
and proposed a directed pairwise correlation measure that deter-
mines whether a causal dependence between two spike trains is
about a certain stimulus feature [84]. In particular, their measure
applies the notions of redundancy and uniqueness from PID theory
[76,77] as follows: it quantifies the information about the stimulus
in the target spike train that is redundant with the information at
the driver spike train and unique with respect to the information
already available in the past activity of the target spike train. Con-
sequently, this measure simultaneously addresses the presence of
some high-order dependencies in the observed data and the
required existence of information content during information
transfer. However, because it strictly applies to pairs of spike
trains, it cannot be a priori generalized to detect the variety of
information flow mechanisms that might be present at a network
level [102] (see also Fig. 3).
6 Yet, there are recent improvements along this line [108].
6. Summary and outlook

We have discussed the problem of modeling and inferring
single-neuron and population interactions to detect neural infor-
mation flows from the pioneering use of cross-correlations [8] to
the most recent methods [72,82,96]. In particular, we have seen
the evolution of model-based and model-free approaches to face
technical estimation problems and allow meaningful biological
interpretations. A special attention has been paid to the specifici-
ties and challenges of a widely established framework such as
Granger causality. Finally, we have outlined new research lines
that attempt to address some of the reviewed challenges.

As seen, this field has always been constrained by the technical
difficulty of isolating the activity of multiple neurons from differ-
ent brain areas simultaneously [103]. Critically, we are living an
epoch of rapid technological advances in neural recordings [104]
and the amount of available data requires improving the perfor-
mance capacity and computing resources of current methods. In
this paper, we have mainly referred to electrophysiological record-
ings (see Table 1 for a summary of applied studies with open-
access data or software). However, it is due mentioning that a
new generation of imaging recording methods relying on fluores-
cence molecule indicators [105] have been able to record the activ-
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ity of more than 10,000 neurons simultaneously [106].
Consequently, these methods hugely increase the single-neuron
recordings’ spatial resolution at the expense of reducing the tem-
poral resolution [107] to detect spike trains 6. In conclusion, similar
techniques like the ones reviewed here can be employed to analyze
single-neuron interactions from imaging data as there are already
examples in the literature [109,110].

Regardless of how neural data is recorded (e.g., electrophysiol-
ogy or imaging techniques), there are different challenges that
need to be tackled in the upcoming years. Below we outlook some
of those from the conceptual and estimation angles, respectively.
Conceptually, prior to following a model-based or model-free
approach, it is critical to understand the limitations of the dataset
at hand and appropriately define the notion of information flow
that will be investigated in the study. Then, according to the
defined notion, it is desirable to choose a proper method (e.g.,
GLM, DI, TE, PCA-based) and validate to a reasonable extent its
assumptions on the data (e.g., trial independence, time series sta-
tionarity) to be able to make statistical inferences and interpreta-
tions [111].

There are still several statistical estimation issues that require
further development such as the problem of non-stationarity data,
the curse of dimensionality when aggregating multiple neurons,
the observation noise, among others. However, recent develop-
ments such as combining data observation with model prior infor-
mation (e.g., network sparsity, lower dimensionality activity)
[72,96], or simultaneously recording single neurons with sur-
rounding aggregated neural activity [3,112] have brought light to
the above problems. An important aspect characterizing some of
the methods reviewed in the paper is whether they use single or
multiple trials to infer interactions associated to information flow.
For instance, multiple trials are needed to evaluate dependencies
between the information message and neural spike trains [82]
because the former is usually variable only across trials. On the
other hand, spike-train interactions should be validated at a
single-trial level due to its possible variable statistics during
repeated trials [56].

Due to the above mentioned limitations, spike-train inference
methods are still far from providing a complete description of
the spatial and temporal mechanisms by which multiple neurons
communicate information between each other. Over the last two
decades, we have experienced the rise and consolidation of GLM
and GC approaches and we believe that we are about to witness
a fruitful evolution of the topic in the next years thanks to novel
theoretical [82] and practical insights [72,84,96]. This will eventu-
ally deepen our understanding on the inference of neural informa-



Adrià Tauste Campo Computational and Structural Biotechnology Journal 18 (2020) 2699–2708
tion flows, widen its application scope and provide a more unified
approach to address biological questions by leveraging its connec-
tion to interactions estimated at larger recording scales [113–115],
to computational models [86,116], or to results obtained from
other related paradigms such as neural population coding [117–
120] or network science [121].
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