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Abstract: Type III CRISPR-Cas systems show the target (tg)RNA-activated indiscriminate DNA
cleavage and synthesis of oligoadenylates (cOA) and a secondary signal that activates downstream
nuclease effectors to exert indiscriminate RNA/DNA cleavage, and both activities are regulated
in a spatiotemporal fashion. In III-B Cmr systems, cognate tgRNAs activate the two Cmr2-based
activities, which are then inactivated via tgRNA cleavage by Cmr4, but how Cmr4 nuclease regulates
the Cmr immunization remains to be experimentally characterized. Here, we conducted mutagenesis
of Cmr4 conserved amino acids in Saccharolobus islandicus, and this revealed that Cmr4α RNase-dead
(dCmr4α) mutation yields cell dormancy/death. We also found that plasmid-borne expression of
dCmr4α in the wild-type strain strongly reduced plasmid transformation efficiency, and deletion
of CRISPR arrays in the host genome reversed the dCmr4α inhibition. Expression of dCmr4α also
strongly inhibited plasmid transformation with Cmr2αHD and Cmr2αPalm mutants, but the inhibition
was diminished in Cmr2αHD,Palm. Since dCmr4α-containing effectors lack spatiotemporal regulation,
this allows an everlasting interaction between crRNA and cellular RNAs to occur. As a result, some
cellular RNAs, which are not effective in mediating immunity due to the presence of spatiotemporal
regulation, trigger autoimmunity of the Cmr-α system in the S. islandicus cells expressing dCmr4α.
Together, these results pinpoint the crucial importance of tgRNA cleavage in autoimmunity avoidance
and in the regulation of immunization of type III systems.

Keywords: CRISPR-Cas system; target RNA cleavage; Cmr4; spatiotemporal regulation of Cmr
systems; autoimmunity; RNA-activated DNase; cOA synthesis; Sulfolobales

1. Introduction

CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-
associated) systems provide adaptive immunity in archaea and bacteria. The immune
system defends against invasive genetic elements in three steps. Upon the first invasion of
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a virus, the system recognizes a DNA sequence from its genome, and cleaves and inserts
the DNA sequence into a CRISPR array as the first new spacer. Then, the system produces
mature CRISPR RNA (crRNA) from transcripts of the CRISPR array, and in the interference
stage, the crRNA and Cas proteins form ribonucleoprotein (RNP) complexes that restrict
the re-occurring virus, specifically in an RNA-guided fashion [1–9]. CRISPR-Cas systems
fall into two classes and at least six different types. Type III CRISPR-Cas systems belong to
the Class 1 group, since they possess an RNP with multiple Cas proteins, and represent the
most complex type.

Currently, six type III subtypes (A to F) are known, of which a few III-B (also called
Cmr) and III-A (belonging to Csm) systems [10,11] have been characterized. These im-
mune systems exhibit three distinct activities [12–14]: (a) tgRNA cleavage occurring with
a 6-nt periodicity [15–19], which is mediated by a conserved Asp residue in the active
center of Cmr4 or Csm3 [17,20,21], the large backbone subunit in each subtype; (b) the
tgRNA-activated DNA cleavage mediated by the HD domain of the Cas10 subunit (Cmr2
or Csm1) [22–26]; and (c) the synthesis of cyclic oligoadenylates (cOAs) upon binding
to tgRNA by the Cas10 Palm domains, and cOAs function as a second messenger to
activate the nuclease activity of CARF domain proteins (the cOA nuclease effectors),
including Csm6/Csx1/Can1/NucC/Card1 to induce cell dormancy to curb the virus
infection [27–36].

All immune activities of CRISPR-Cas systems must be strictly controlled to avoid
autoimmunity (self-targeting), and self-targeting avoidance is particularly important for
type III immune systems since their DNase and cOA effector nucleases are sequence-
independent [22–25,27,28,37–41]. If not controlled properly, both interference activities can
yield cell dormancy or cell death in vivo [32,37].

Currently, self-targeting avoidance in type III CRISPR systems involves three dis-
tinctive controls. The first mechanism provides discrimination at the RNA level. While
mismatches between the 5′-handle of crRNA and the 3′-flanking region of tgRNA activate
the type III effector for DNA cleavage and cOA generation, their complementarity sup-
presses both activities [22–25,27,28,42]. The second mechanism is tgRNA cleavage by the
backbone subunits Cmr4 and Csm3, which inactivate the type III effectors and only allow
the immunization to occur within a brief time period [22–24,27,28]. The last control is the
presence of ring nucleases that degrade cOA signal molecules to terminate the CRISPR
signaling pathway [43–53]. Note that the second mechanism, i.e., the spatiotemporal con-
trol of the type III immunity, was suggested by biochemical experiments but has not been
characterized genetically.

Saccharolobus islandicus (formerly Sulfolobus islandicus) REY15A has been used as a
model crenarchaeon for investigation of molecular mechanisms of CRISPR-Cas systems [54].
The organism codes for three different immunities, a type I-A and two type III-B (Cmr-α
and Cmr-β), all of which are active in antiviral defense [55–57]. The S. islandicus Cmr-α has
been characterized in detail, including the discovery of the transcription-dependent DNA
interference and DNA and RNA dual interference for type III CRISPR-Cas systems [58,59],
the demonstration of RNA-activated ssDNA cleavage and synthesis of cyclic tetraadeny-
lates (cA4) by this IIIB CRISPR-Cas [25,30] and the activation of Csx1 by the cA4 secondary
signal [41,60]. In addition, functions of the Cmr1α and Cmr3α subunits have been char-
acterized in vivo and in vitro [61–63]. Genetic study of the cmr4 genes in the two III-B
immune systems revealed that the Cmr4βD31A mutation was readily constructed [55], but
attempts to generate the corresponding Cmr4αD27A mutant failed consistently. A series
of cmr4α mutants were constructed that carried substitution mutation(s) in the conserved
amino acids, and then characterized. We found that inactivation of the Cmr4α active site
yields self-targeting that is lethal to the crenarchaeal cells, and the lethal toxicity can be
facilitated by either the Cmr-α DNase or cyclase.
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2. Results
2.1. Inactivation of the Cmr4α RNase Induces Cell Dormancy or Cell Death to S. islandicus

In the S. islandicus Cmr-α system, Cmr4α is the large backbone subunit implicated in
tgRNA cleavage [25]. In the P. furiosus Cmr system, Cmr4 functions in the spatiotemporal
regulation of the DNase and cyclase of the Cmr effector complexes [64]. Here, we genetically
characterized the S. islandicus Cmr4 regulation of the type III CRISPR immunity. First,
attempts were made to construct strains carrying alanine substitution for a selected set of
conserved amino acids of Cmr4α. These included H16, D27, K46/K50, W197, E199/Y201,
G244/G245/G250/G252 (denoted as 4G) and K251 (Supplementary Figure S1), among
which D27 is the predicted active site for RNA cleavage in the Cmr-α system [19–21,65].
Since S. islandicus REY15A encodes two III-B CRISPR-Cas systems, Cmr-α and Cmr-β, both
of which are active in mediating antiviral defense [12,55,56], S. islandicus strains lacking
all Cmr-β genes (∆Cmr-β, Supplementary Table S1) were used as the genetic host for the
functional analysis of Cmr4, to eliminate any possible interference from the Cmr-β system.

Genome editing plasmids (pGE-4αH16A, -D26A, -K46A/K50A, -W197A, -E199A/Y201A,
-4GA and -K251A) were designed and constructed for each of these Cmr4α substitutions
(Supplementary Table S1). Each pGE plasmid was then introduced into ∆Cmr-β cells by
electroporation in order to generate these Cmr4α mutants by following an endogenous
CRISPR gene-editing procedure (Supplementary Figure S2) [66]. We found that all ex-
cept pGE-4α-D27A gave a high transformation efficiency, whereas the latter exhibited a
ca. 50-fold lower rate of transformation. Genotypes of transformants were checked by
PCR amplification of the cmr4α gene and sequencing of the resulting PCR products. We
found that designed Cmr4α mutants were obtained for all pGE plasmids showing a high
transformation rate, including for H16A, D27A, K46A/K50A, W197A, E199A/Y201A, 4GA
and K251A substitutions; for pGE-4α-D27A, the rates of transformation with the plasmid
were low, and colonies of all tested transformants carried the wild-type cmr4α gene. This
indicated that the conserved D27 could function as the active site of the Cmr4α nuclease,
as shown for the P. furiosus Cmr4 [20], and furthermore, inactivation of the tgRNA cleavage
activity could induce cell dormancy or cell death in the crenarchaeal cells.

2.2. The dCmr4α-Induced Cell Death Is Strictly Dependent on the Activities of Cmr2α

To test whether the observed Cmr4α-D27A toxicity could be attributed to the mutated
protein itself, we deleted the Cmr-α locus in the genetic background of ∆Cmr-β, yielding
the ∆α∆β strain. Then, the mutant and the original strain (∆Cmr-β) were transformed with
pCmr4α or pCmr4α-D27A (Supplementary Table S2), where the former expresses the wild-
type Cmr4α, and the latter, a predicted nuclease-dead derivative, dCmr4α (Cmr4α-D27A).
We found that transformation of ∆α∆β with both plasmids gave very similar efficiencies
of transformation, indicating that the Cmr4α-D27A protein is not itself toxic. However,
transformation of ∆Cmr-β with pCmr4α-D27A showed about 100-fold lower efficiency
of transformation relative to pCmr4α (Figure 1A). Since the only difference between the
two strains is that ∆Cmr-β has retained the Cmr-α module, these results indicated that
the plasmid-borne expression of dCmr4α in S. islandicus induced cell lethality in archaeal
cells carrying an active Cmr-α system. This phenomenon was termed dCmr4α-induced
cell dormancy or cell death (dCmr4-ICD).

Previous investigations into the two Cmr2-based activities using an interference plas-
mid assay (Supplementary Figure S3) in S. islandicus revealed that only the Palm mutation
impaired the Cmr-α immunization, whereas mutation of the HD domain impaired the Cmr-
α ssDNase but did not influence the transformation rate of interference plasmids [25,30].
This raised the question of whether and how the Cmr-α ssDNase contributes to the Cmr-α
immunization. Here, we attempted to develop an in vivo assay based on dCmr4-ICD to
investigate the immune response of the Cmr-α DNase and cyclase.



Int. J. Mol. Sci. 2022, 23, 8515 4 of 16Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. The dCmr4α-induced cell death is dependent on the activities of Cmr2α. (A) Deletion of 
the cmr-α module abolished the Cmr4α-D27A toxicity. pCmr4α and pCmr4α-D27A were 
transformed into ∆βE233S1 and ∆α∆βE233S1, respectively, and the transformation efficiency was 
calculated. (B) Cmr4α-D27A toxicity in ∆βE233 and the cmr2α mutant strains. pCmr4α and 
pCmr4α-D27A were transformed into ΔβE233(WT) and the cmr2α mutants, respectively, and the 
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Figure 1. The dCmr4α-induced cell death is dependent on the activities of Cmr2α. (A) Deletion of the
cmr-α module abolished the Cmr4α-D27A toxicity. pCmr4α and pCmr4α-D27A were transformed
into ∆βE233S1 and ∆α∆βE233S1, respectively, and the transformation efficiency was calculated.
(B) Cmr4α-D27A toxicity in ∆βE233 and the cmr2α mutant strains. pCmr4α and pCmr4α-D27A were
transformed into ∆βE233(WT) and the cmr2α mutants, respectively, and the transformation efficiency
was calculated.

Three cmr2α mutants were constructed with S. islandicus ∆β, giving Cmr2αHD, Cmr2αPalm

and Cmr2αHD,Palm, which individually carry an inactive HD domain (H14A, D15A) and
an inactive Palm2 domain (D667A, D668A), as well as a combination of both mutated
domains. All three mutants were then transformed with pCmr4α-D27A. We found that
transformation efficiency with pCmr4α−∆27A was greatly reduced in the wild-type strain
and two Cmr2α single-domain mutants (100–1000 folds), whereas transformation rates
of the mutant carrying double domain mutations were very similar with both expression
plasmids (Figure 1B). These results indicated that in the presence of dCmr4α, the Cmr-α
DNase activity can also mediate immune responses in the archaeal cells.

In addition, the successful transformation of Cmr2αHD,Palm with pGE-4α-D27A ren-
dered it possible to test whether the mutated Cmr proteins could be assembled into a
ribonucleoprotein effector complex. The triple mutant was employed for purification of the
Cmr-α effector complex, and a large protein complex was obtained. SDS-PAGE analysis
of the purified effector complexes revealed that the mutated Cmr-α retained its integrity,
since the stoichiometry of its subunits was comparable to that of the wild type (Supple-
mentary Figure S4A). This RNP was designated as Cmr-α-2αHD,Palm4αD27A and tested for
tgRNA cleavage, RNA-activated DNA cleavage and cOA synthesis. As would be expected,
the mutated effector lacked all three activities (Supplementary Figure S4B–D). Hence, we
concluded that the dCmr4α toxicity relies on the Cmr2α activities in the effector complex,
and each Cmr2α activity, i.e., either the RNA-activated ssDNase or the RNA-activated cOA
synthesis, is capable of mediating the dCmr4-ICD in S. islandicus cells. In addition, this also
experimentally demonstrated that D27 is the active site of the Cmr4α nuclease, and the
backbone RNA cleavage activity is very important for the regulation of the Cmr-α system
immunity in S. islandicus.

2.3. The Cmr2α-Based Activities Are Not Equally Efficient in Mediating the Antiviral Defense

It is noteworthy that, while the interference plasmid assay could not reveal the immune
responses of the Cmr2α DNase in S. islandicus [25], the transformation of pCmr4α-D27A
could do so. An apparent difference between the two experimental setups was that upon
activation, the Cmr-α_d4α effector complexes formed with dCmr4α would be constantly
active, whereas the wild-type Cmr-α is only active in a brief time window due to the
spatiotemporal regulation. In this scenario, it would be interesting to test whether the
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immune responses of the Cmr-α DNase could be revealed by elevating the CTR levels, to
enlarge the time window of the active Cmr-α DNase.

We chose to design self-targeting assays to study this question. SiRe_1125 and
SiRe_1581 were selected as target genes (Figure 2A) to reveal the influence of tgRNA
levels on the Cmr-α immunization. SiRe_1125 codes for Alba, a chromatin protein [67] that
also functions as an RNA chaperon [68], and SiRe_1581 encodes a reverse gyrase (RG1) that
protects damaged DNA sites in vivo [69]. In previous studies, RNA seq data and qPCR
analysis showed that the two genes are expressed at the level of >300-fold difference [70,71].
Cmr-α-targeting protospacers were identified in the template strand of the coding region
of each gene, with which oligos were designed for the generation of spacer fragments.
Insertion of the spacer fragments into pSe-Rp yielded pAC-alba and pAC-RG1 individually
(Supplementary Table S2).
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Figure 2. The Cmr2α-based activities are not equally efficient in mediating the antiviral defense. Self-
targeting activity in the cmr2α mutant strains. (A) Outline of designed target sites for testing Cmr-α
immunity in S. islandicus. (B) The control plasmid pSeSD1 and the self-targeting plasmids pAC-alba
and pAC-RG1 were transformed into ∆βE233(WT) and the cmr2α mutant strains, respectively, and
the transformation efficiency was calculated. (C) The control plasmid pSeSD1 and the self-targeting
plasmid pS10i were transformed into ∆βE233(WT) and the cmr2α mutant strains, respectively, and
the transformation efficiency was calculated. Alba encodes a crenarchaeal chromatin protein; RG1
codes for a reverse gyrase topoisomerase.

These plasmids, pAC-alba, pAC-topR1 and the expression vector pSeSD, were then
introduced into ∆Cmr-β, Cmr2αHD, Cmr2αPalm and Cmr2αHD,Palm individually by elec-
troporation. Their transformation efficiency was calculated, and the results are shown in
Figure 2B. We found that: (a) transformation of ∆Cmr-β with the two pAC plasmids yielded
very similar transformation rates, which were ca. 1000-fold lower than the transformation
with pSeSD, a reference plasmid, and these results indicated that the self-targeting activity
by the wild-type Cmr-α effector is lethal to the archaeal cells at both expression levels; (b)
in the Cmr2αHD mutant that retained the cA4 signaling pathway, the mutated immune
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system (Cmr-α-2αHD) still retained the Cmr-α self-targeting activity; (c) the Palm mutation
rendered the system (Cmr-α-2αPalm) inefficient in mediating self-targeting with the tgRNA
at the level of the reverse gyrase 1 (RG1) gene expression; and (d) inactivation of both
Cmr2 activities completely abrogated the self-targeting activity. In comparison, evaluation
of the Cmr-α immunity in the three Cmr2α mutants using an interference plasmid assay
(Supplementary Figure S3B) showed that only the Palm domain alone, i.e., Cmr2αHD,
reduced the plasmid transformation rate (Figure 2C), as previously reported [25]. Taken
together, we conclude that, upon activation, both Cmr2α domains are capable of exerting
immunization. Further, the CRISPR signaling pathway provides a more powerful immune
mechanism, relative to that from the HD domain-based ssDNA cleavage, in the S. islandicus
Cmr-α system.

2.4. The dCmr4 Self-Targeting Is Dependent on the Presence of Genomic CRISPR Loci

Nevertheless, how the dCmr4α mutation could induce dCmr4-ICD in S. islandicus
in the absence of any identifiable tgRNA remained an intriguing question. Previously, it
was shown that type III systems can tolerate a number of mismatches between crRNAs
and their targets in mediating immune responses [72]. We reasoned that the magnitude
of this tolerance would be greatly amplified in the dCmr4 mutant, which would turn
ineffective self-targeting events in the wild-type Cmr-α strain into effective ones in the
dCmr4α mutation. There are two CRISPR loci in S. islandicus producing > 200 different
species of crRNA, and these crRNAs could show a limited sequence homology to certain
species of cellular RNAs. In this scenario, the occurrence of dCmr4-ICD in this archaeon
would require the presence of the genomic CRISPR arrays.

The assumption was then tested by construction of the ∆CRISPR mutant lacking any
spacer and transformation of the mutant strain with pCmr4α and pCmr4α-D27A. We
found that dCmr4α showed little influence on plasmid transformation efficiency (pCmr4α
vs. pCmr4α-D27A), indicating that dCmr4-ICD relies on the production of crRNAs and,
presumably, their subsequent interactions with cellular RNAs.

2.5. dCmr4α-Induced Self-Targeting Is Still Subject to the NTR Protection

In all known type III CRISPR-Cas systems, NTR protection provides an important
mechanism for self-targeting avoidance, as in all known type III immune systems. The
occurrence of dCmr4-ICD in S. islandicus prompted us to test whether NTR could still
silence the immunization of the dCmr4α-containing RNP. For this purpose, a new strain
and a new set of plasmids were constructed, including the ∆CRISPR∆lacS strain, which was
constructed by removing the lacS gene from ∆CRISPR, and two plasmids, pAC-SS1-Cmr4α
and pAC-SS1-Cmr4α-D27A, which carry an artificial CRISPR array with an SS1 spacer in
addition to the cmr4α gene (Supplementary Tables S1 and S2). In previous studies, the 5′-
GAAAG-3′ sequence in the lacS transcript was found to effectively prevent self-targeting in
this model, allowing only the tgRNA cleavage to occur [58,62]. These host strains were then
transformed with pAC-SS1-Cmr4α and pAC-SS1-Cmr4α-D27A to test the NTR protection
of dCmr4-ICD. We found that, when plasmid-borne expression yielded both dCmr4α and
SS1 crRNA (the latter matching the corresponding NTR in the lacS mRNA), the prolonged
interaction between SS1 crRNA and the NTR failed to induce dCmr4-ICD (Figure 3). This
indicated that the activation of this III-B effector strictly requires the mismatches between
the 5′-repat handle of crRNAs and the 3′-flanking motif of the tgRNAs, reinforcing the fact
that the basic principle of tgRNA activation always operates, even for effectors with an
everlasting immunity.
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Figure 3. Contribution of CRISPR array and target sequence to the Cmr4α-D27A toxicity. Transfor-
mation efficiency was determined for pCmr4α and pCmr4α-D27A plasmids individually with three
different host strains: ∆βE233(WT), ∆CRISPR∆β and ∆CRISPR∆lacS∆β(∆array).

2.6. Function of Cmr4α Conserved Amino Acids in the Cmr-α Immune System

To investigate the functional roles of the conserved amino acids in Cmr4α, all con-
structed mutants, including H16A, K46A/K50A, W197A, E199A/Y201A, 4GA and K251A
substitutions, were analyzed by two genetic assays developed for S. islandicus (Supplemen-
tary Figure S3): the mini-CRISPR and reporter-gene-based RNA interference assay and the
interference plasmid assay.

The RNA interference assay was conducted as follows. The cmr4α mutants were
transformed with two plasmids: (1) a mini-CRISPR plasmid (pAC-SS1) expressing a crRNA
that is complementary to a fragment of lacS mRNA and (2) the corresponding reference
plasmid pSe-Rp. The resulting transformants were grown in SCVy medium, and the cell
mass was collected by centrifugation and used for the preparation of cell-free extracts. The
β-glycosidase activity in each transformant was then determined using the ONPG method.
The rationale is that crRNAs produced from pAC-SS1 guide the wild-type or mutated Cmr-
α effector to specifically identify the target in the lacS mRNA, mediating RNA degradation.
Therefore, the β-glycosidase activity is reversely correlated with the RNA interference
activity of the Cmr-α complex in S. islandicus cells. We found that, in the presence of
pAC-SS1, strains expressing the wild type as well as the H16A and D83A substitutions of
Cmr4α retained about 20% of the reporter gene activity, relative to the transformants of
pSe-Rp, the reference plasmid. However, five cmr4α mutants (i.e., K46A/K50A, W197A,
E199A/Y201A, 4GA and K251A) showed a β-glycosidase activity comparable to that of
their pSe-Rp transformants (Figure 4A). These results indicated that these Cmr4α mutations
have essentially abolished the RNA interference of the Cmr-α system.

For the interference plasmid assay, these cmr4α mutant strains were transformed
with two plasmids: pSeSD1, a reference plasmid and pS10i, the interference plasmid that
contains a transcribed target complementary to endogenous spacer 10 of CRISPR locus 2
and can be silenced by Cmr-α interference, thereby reducing the transformation rate [59].
The resulting data showed that these mutants fell into three groups (Figure 4B). (a) The first
group included cmr4α mutants of K46A/K50A, W197A, E199A/Y201A, 4GA and K251A,
which showed similar transformation efficiency with the reference plasmid pSeSD1 and
the interference plasmid pS10i, indicative of deficiency in plasmid silencing. (b) The ∆β

strain and the Cmr4αH16A mutant showed about 1000-fold lower efficiency in plasmid
transformation with pS10i, relative to pSeSD1, suggesting that the H16A substitution does
not influence the plasmid silencing capability. (c) The Cmr4αD83A mutant showed a 10-
fold difference in plasmid transformation with pSeSD vs. pS10i, indicating that the D83A
substitution impairs DNA interference in the Cmr-α system.
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Figure 4. Function of Cmr4α conserved amino acids in the Cmr-α immune system. (A) In vivo RNA
interference activity in the cmr4α mutant strains determined by artificial mini-CRISPR-based reporter
gene assay. The chromosomal lacS gene was used as the reporter gene. pSe-Rp: reference plasmid;
pAC-SS1: an artificial mini-CRISPR plasmid carrying S1 spacer of the lacS gene. (B) Invading plasmid
silencing activity of the cmr4α mutant strains. pSeSD1: the reference plasmid; pS10i: an invading
plasmid carrying a target sequence of spacer 10 in CRISPR locus 2 in S. islandicus REY15A; ∆β:
the wild-type strain; other strains: mutants carrying the specified point mutation of Cmr4α; 4GA:
G244AG245AG250AG252A substitutions.

To investigate whether the loss of RNA and DNA interference could be a result of
the lack of effector complex assembly capability in the Cmr4α mutants, we attempted
to purify Cmr-α complexes from all constructed Cmr4α mutant strains using His-tag-
Cmr6α copurification, as previously described [25,62]. Native Cmr-α complexes were
obtained from the Cmr4αH16A and Cmr4αD83A substitution strains (Supplementary Figure
S2) but not from any of other cmr4α mutants, indicating that K46/K50, W197, E199/Y201,
G244/G245/G250/G252 and K251 of Cmr4α have an essential role in assembly of the
Cmr-α effector complex and/or in the maintenance of its integrity.

The mutated Cmr-α effector complexes carrying Cmr4αH16A or Cmr4αD83A (named
Cmr-α_4αH16A and Cmr-α_4αD83A) were analyzed for their crRNA content. The RNA
component was extracted from the purified effector complexes by RNA extraction, radio-
labeled and separated by denaturing PAGE, and this revealed that they also carried crRNAs
of two different sizes, as in the wild-type Cmr-α. Nevertheless, the relative content of
the two crRNA species was different. While the wild-type Cmr-α possessed ca. 72% of
40-nt crRNA versus ca. 28% of 46-nt crRNA, the crRNA composition in Cmr-α_4αH16A

and Cmr-α_4αD83A was 95% vs. 5% and 98% vs. 2%, respectively (Figure 5B). Since the
46-nt and 40-nt crRNA is bound by two distinct Cmr-α effector complexes containing four
and three copies of Cmr4α, respectively (Figure 5A) [73], these data suggested that alanine
substitution of H16 and D83 impaired the incorporation of a fourth subunit of Cmr4α
into the effector complex. Indeed, an RNA cleavage assay showed that both mutated
complexes efficiently cleaved tgRNA but generated much less 17-nt product than the wild
type (Figure 5C). Analysis of the RNA-activated DNA cleavage activity of the mutated
complexes revealed that their RNA-activated ssDNase was strongly impaired (Figure 5D),
but the two mutations showed different effects on the cOA synthesis, since similar amounts
of cOA were synthesized by Cmr-α_4αH16A and the wild-type effector, whereas D83A
strongly impaired the cOA production (Figure 5E). These results indicated that H16 and
D83 play different roles in the activation of the Cmr-α immunity by a cognate tgRNA.
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Figure 5. crRNA distribution pattern and activities of Cmr-α_4αH16A and Cmr-α_4αD83A.
(A) Schematic map of the shorter (carrying a 40-nt crRNA and three Cmr4 subunits) and the longer
(carrying a 46-nt crRNA and four Cmr4 subunits) Cmr-α complexes and their RNA cleavage products.
Asterisk symbol at each RNA end indicates radio-labeling. (B) crRNA distributions of WT (wild-type
Cmr-α), 4αH16A and 4αD83A represent the Cmr-α effectors carrying the indicated Cmr4α mutation
(i.e., Cmr-α_4αH16A and Cmr-α_4αD83A). Activities of the three Cmr-α complexes: tgRNA cleavage
(C), ssDNA cleavage (D) and cOA synthesis (E). Cleavage assay was conducted for the time periods
indicated in the figures; smaller fragments in panel C and D panels represent cleavage products.
The sizes of RNA cleavage products in 6-nt periodicity are indicated. None: substrate only, no Cmr
complex was added; duplex: duplex of crRNA and substrate; cOA: cyclic oligoadenylates.

3. Discussion

It is widely accepted that Csm3/Cmr4 proteins function in the spatiotemporal regula-
tion of the RNA-activated ssDNase and cOA synthesis hosted by Cas10 (Csm1 or Cmr2).
However, genetic analysis of several csm3 genes indicated that bacterial cells are viable
upon the inactivation of the backbone nuclease, including the S. epidermidis Csm [39],
the S. thermophilus Csm [17] and the Lactobacillus delbrueckii subsp. bulgaricus Csm [26].
Here, we show that generation of a nuclease-dead Cmr4α (dCmr4α) mutant by amino acid
substitution at the active site induces cell dormancy or cell death in S. islandicus, which is
in good agreement with the model. We have further revealed that the dCmr4α-induced
cell death is CRISPR-array-dependent, and the autoimmunity can occur in the absence of
any known tgRNA in S. islandicus. This paradoxical phenomenon can be explained by the
possibility that Cmr-α_4αD27A could have broadened its tgRNA range compared to the
wild-type effector complex, probably by tolerating more mismatches between crRNA and
tgRNA. In this scenario, cellular RNAs, which could interact with crRNAs due to their
sequence complementarity but were incapable of triggering self-targeting in the wild-type
Cmr-α system, would then elicit the immunization in the presence of dCmr4α. This could
account for the robust self-targeting observed in the Cmr4αD27A mutagenesis and dCmr4α
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expression experiments in this study. The finding that deletion of the chromosomal CRISPR
array abrogates dCmr4-ICD events further supports the assumption.

When tgRNA cleavage activity was discovered in 2009, it was proposed that the activ-
ity could silence targeted viral genes to block the viral life cycle [15]. Indeed, the backbone
cleavage can reduce the mRNA level of target genes in vivo and result in loss of function of
a number of targeted genes in Sulfolobales [7,58,69,74–76]. In addition, the S. thermophilus
Csm can prevent infection of E. coli cells by an ssRNA virus [17]. However, characteriza-
tion of the Staphylococcus epidermidis Csm system revealed that csm3 is not required for
anti-plasmid immunity in Staphylococcus aureus [77]. Subsequently, type III CRISPR-Cas
systems were found to mediate tgRNA-activated indiscriminate DNA cleavage and cOA
synthesis activity, whereas the tgRNA cleavage and release function in the deactivation of
the Cas10 activities to avoid self-immunity [22–25,27,28]. In this model, Csm3 and Cmr4
proteins function as a terminator to the tgRNA-activated indiscriminate DNA cleavage and
cOA synthesis activity. If the active site conserved in Cmr4 and Csm3 proteins constitutes
the only RNase activity controlling tgRNA turnover in the ternary effector complexes,
inactivation by substitution mutation would yield an everlasting immune activity, yielding
robust self-targeting. Indeed, this is exactly what we have observed for the S. islandicus
Cmr-α system in this study, and these data provide strong genetic evidence to support the
model of the spatiotemporal regulation of type III immune machineries.

In the current literature, it appears the extent of diversification in the control of Cas10
activities by the backbone nuclease Cmr4/Csm3 is large. First, three bacterial Csm systems
have been characterized for the tolerance of a nuclease-dead Csm3 (dCsm3) mutation, and
the mutant has been obtained for all three systems [24,26,39]. Expression of the dCsm3
mutant of the S. epidermidis Csm system in S. aureus still yields viable cells in the presence of
a cognate tgRNA [39,77]. In addition, mutated Csm_dCms3 effector complexes have been
purified, and biochemical characterization showed they all lack backbone RNA cleavage
activity and show enhanced RNA-activated ssDNA cleavage activity [24,26,77]. These
results are consistent with genetic analysis of the ∆Cmr4β mutation of the S. islandicus
Cmr-β system [55] but are in contrast to the P. furiosus Cmr [64] and S. islandicus Cmr-α
systems (this work). In the two latter systems, ∆Cmr4 mutation cannot be obtained when
the archaeal cells carry an active type III immune system. Interestingly, in the S. islandicus
Cmr-β system, its Cas10 protein, Cmr2β, possesses RNA-activated RNase that cleaves
cellular RNAs at the UA site [55], as for the S. solfataricus Cmr system [19,78], and this
RNase activity could then render the S. islandicus ∆Cmr4β cells viable, since the activity can
eventually destroy all tgRNAs. However, how the Cas10 activities in other type III immune
systems, e.g., the Csm-dCsm3 effector complexes, are terminated remains elusive. Never-
theless, the Streptococcus thermophilus Csm effector exhibits significant disparity between
the backbone cleavage and Cas10 deactivation [24,27], and this is in contrast to the prompt
disassociation of the cleavage product after backbone cleavage and quick deactivation
of the cOA synthesis observed for a type III-D Csm effector from S. solfataricus [29]. In
addition, prompt disassociation of the cleavage product has also been observed for DNA
cleavage by the S. islandicus Cmr-α effector [25]. Hence, type III-A systems could have
evolved new mechanisms for Cas10 deactivation during evolution.

Our genetic analysis has revealed several conserved motifs in SisCmr4α that are es-
sential for the formation of the Cmr-α complex, including K46/K50, W197, E199/Y201,
G244/G245/G250/G252 (4G) and K251. Alanine substitution of these amino acids abol-
ished both in vivo RNA interference activity and plasmid interference activity, which is
consistent with the failure of the attempts to purify the corresponding native effector com-
plexes in these cmr4α mutants. These results are in good agreement with the predicted
functions of these conserved amino acid residues, as: (a) K46 and K50 are predicted to bind
crRNA by interaction with the backbone phosphates [79]; (b) W197, E199, and Y201 are
located in a thumb-like structure, which intercalates between duplexed crRNA and tgRNA
and places the scissile site of tgRNA close to the active site [73,79]; (c) the C-terminal G-rich
loop has been implicated in the formation of an inner surface of the Cmr4 filament, which is
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supposed to bind to crRNA [80]; and (d) the conserved basic residue K251 is located in the
G-rich loop, which forms a salt bridge with the D83 residue of the adjacent Cmr4 subunit as
predicted by the structural analysis of Pyrococcus furiosus Cmr4 (the corresponding residues
are K279 and D86 in PfuCmr4) [21].

Taken together, we have genetically demonstrated that both Cmr DNase and cyclase
activities exert immune responses, and tgRNA cleavage by Cmr4 functions in preventing
autoimmunity of III-B CRISPR-Cas systems. We have also revealed that NTRs, which could
be produced from transcription of the opposite strand of the CRISPR array [81], are very
powerful in turning off the immune responses of III-B CRISPR-Cas systems, providing an
additional level of autoimmunity avoidance.

4. Materials and Methods
4.1. Strains, Growth Conditions and Transformation of Saccharolobus

All Saccharolobus strains were derived from the S. islandicus E233 [82], a spontaneous
pyrEF deletion mutant isolated from the original isolate S. islandicus REY15A [83,84]. The
cmr4α and cmr2α mutant strains (Supplementary Table S1) were generated by the CRISPR-
based genome-editing procedure, [66] using ∆Cmr-β as the host (Supplementary Table S1).
S. islandicus strains were grown at 78 ◦C in SCV medium (basic salts plus 0.2% sucrose,
0.2% casamino acids and 1% vitamin solution) or SCVy (SCV plus 0.0025% yeast extract),
with uracil supplemented to 20 µg/mL if required, as described previously [82]. Saccha-
rolobus competent cells were prepared and transformed by electroporation, as previously
described [82].

4.2. Construction of Plasmids

The genome editing plasmids (Supplementary Table S2) were constructed as described
previously [66]. Taking the pGE-4α-D27A construction as an example: the spacer fragment
was generated by annealing 4α-D27A-SpF and 4α-D27A-SpR (Supplementary Table S3),
and insertion of the spacer fragment into BspMI-digested pSe-Rp gave pAC-4α-D27A; the
donor DNA containing the 4α-D27A mutant allele was obtained by splicing and overlap
extension PCR (SOE PCR [85]) using primers 4α-D27A-SOER and 4α-D27A-SOEF as two
overlapping primers and 4α-D27A-SalIF and 4α-D27A-NotIR as two flanking primers
(Supplementary Table S3); and insertion of the donor DNA into pAC-4α-D27A yielded
pGE-4α-D27A.

Cmr4α overexpression plasmid pCmr4α was constructed as follows. The cmr4α gene
was amplified with the primers Cmr4α-fwd and Cmr4α-rev (Supplementary Table S3)
and inserted into pSeSD1 at the NdeI and SalI sites. Construction of pCmr4α_D27A was
conducted by generation of the cmr4α mutant gene by SOE-PCR, with the primers 4α-
D27A-SOER and 4α-D27A-SOEF as overlapping primers and Cmr4α-fwd and Cmr4α-rev
as flanking primers (Supplementary Table S3). The resulting gene fragment was then
inserted into the NdeI and SalI sites of the expression vector to give pCmr4α_D27A.

CRISPR plasmids pAC-Alba and pAC-RG1 (Supplementary Table S2) were con-
structed as described for pAC-SS1 [58]. The spacer fragment was generated by annealing
of Si_1125-up and Si_1125-dw (for the alba gene coding for the chromatin protein Alba)
and Si_1581-up and Si_1581-dw (for the RG1 gene encoding a reverse gyrase enzyme)
individually (Supplementary Table S3), and the resulting mini-CRISPR arrays were then
individually inserted into the BspMI-digested pSe-Rp to yield the CRISPR plasmids.

All the oligonucleotides were synthesized by Tsingke (Wuhan, China) and the se-
quences of all plasmid constructs were verified by DNA sequencing (Tsingke, Wuhan,
China).

4.3. Determination of β-Glycosidase Activity

S. islandicus strains were grown in SCVy medium to an A600 (absorbance at 600 nm) of
about 0.3. The cell mass was then collected by centrifugation for each culture for which cel-
lular extracts were prepared. Protein content in the cellular extracts was determined using
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BCA Protein Assay Reagent (Thermo Scientific), whereas the β-glycosidase activity was
determined using the ONPG (ρ-nitrophenyl-β-D-galactopyranoside) method, as described
previously [86].

4.4. Purification of Cmr-α Ribonucleoprotein Complex

S. islandicus strains (∆Cmr-β and cmr4α mutants) were transformed with pAC-cmr6α-
10His plasmid, giving transformants for Cmr-α complex purification [25]. The transfor-
mants were grown in SCVy medium, and a total of 10–12 L of culture was prepared for each
strain. When the A600 of the cultures reached 0.7–0.8, cells were collected by centrifugation.
A cell pellet was re-suspended in Buffer A (20 mM HEPES pH 7.5, 20 mM imidazole,
250 mM NaCl) and disrupted using a French press, followed by centrifuging at 12000 rpm
for 30 min. The resulting supernatant was loaded onto a 1 mL HisTrap HP column (GE
Healthcare), pre-equilibrated with Buffer A. After washing with 15 mL of Buffer A, protein
bound to the column was eluted with linear gradient of imidazole (20–500 mM) generated
by mixing Buffer A and Buffer B (20 mM HEPES pH 7.5, 500 mM imidazole, 250 mM NaCl).
Sample fractions were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE),
and those containing Cmr-α effector complexes were pooled together, concentrated and
further purified by size exclusion chromatography (SEC) in Buffer C (20 mM Tris-HCl
pH 8.0, 500 mM NaCl) with a Superdex 200 Hiload column (GE Healthcare, Chicago, IL,
USA). All SEC fractions were analyzed by SDS-PAGE, and those containing the complete
set of Cmr-α subunits were pooled together, concentrated and stored at −20 ◦C until use.

4.5. Labeling of DNA and RNA Substrates

DNA and RNA substrates used in cleavage assays were 5′ labeled with γ32P-ATP using
T4 polynucleotide kinase (Thermo Fisher Scientific, Waltham, MA, USA). All substrates
were purified by recovering the corresponding bands from a denaturing PAGE gel. DNA
and RNA oligonucleotides (Supplementary Table S4) to be used as substrate for cleavage
assays were purchased from IDT, USA.

4.6. Nucleic Acids Cleavage Assays

RNA/DNA cleavage assays were conducted as previously described [87]. Briefly,
reaction mixtures were set up as 10 µL of mixture containing 20 mM MES (pH 6.0), 10 mM
MnCl2, 5 mM DTT, 50 nM substrate (RNA or DNA) and 50 nM effector complex. Incubation
was for the time periods indicated in each assay, and the reaction was then stopped by
addition of 2× loading dye (New England Biolabs, Ipswich, MA, USA) and set immediately
on ice. Before loading, samples were heated for 5 min at 95 ◦C, and cleavage products
were separated on denaturing polyacrylamide gels (18% polyacrylamide, 40% urea) and
visualized by phosphor imaging.

4.7. cOA Synthesis Assay

The synthesis of cOA was conducted as described previously [87]. In short, the reaction
mixture (10 µL in total) contained 20 mM MES (pH 6.0), 10 mM MnCl2, 5 mM DTT, 100 µM
ATP, 200 nM SS1-46 RNA, about 1 nM α32P-ATP and 50 nM effector complex. The reaction
was performed at 70 ◦C and stopped at the indicated time point by the addition of 2× RNA
loading dye (New England Biolabs). The cOA products were analyzed on a denaturing 24%
(29:1 acrylamide: bis-acrylamide) polyacrylamide gel and visualized by phosphor imaging.

Supplementary Materials: The information can be downloaded at: https://www.mdpi.com/article/
10.3390/ijms23158515/s1. References [25,58,59,62,66,88–90] are cited in the supplementary materials.
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