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A B S T R A C T   

COVID-19 is a life-threatening contagious virus that has spread across the globe rapidly. To reduce the outbreak 
impact of COVID-19 virus illness, continual identification and remote surveillance of patients are essential. 
Medical service delivery based on the Internet of Things (IoT) technology backed up by the fog-cloud paradigm is 
an efficient and time-sensitive solution for remote patient surveillance. Conspicuously, a comprehensive 
framework based on Radio Frequency Identification Device (RFID) and body-wearable sensor technologies 
supported by the fog-cloud platform is proposed for the identification and management of COVID-19 patients. 
The J48 decision tree is used to assess the infection degree of the user based on corresponding symptoms. RFID is 
used to detect Temporal Proximity Interactions (TPI) among users. Using TPI quantification, Temporal Network 
Analysis is used to analyze and track the current stage of the COVID-19 spread. The statistical performance and 
accuracy of the framework are assessed by utilizing synthetically-generated data for 250,000 users. Based on the 
comparative analysis, the proposed framework acquired an enhanced measure of classification accuracy, and 
sensitivity of 96.68% and 94.65% respectively. Moreover, significant improvement has been registered for 
proposed fog-cloud-based data analysis in terms of Temporal Delay efficacy, Precision, and F-measure.   

1. Introduction 

The spread of infectious diseases such as SARS-CoV-2, MERS, West- 
Nile has become one of the critical concerns confronted by the modern 
healthcare industry. Factually, nearly $10,586 per person is spent by the 
USA on healthcare annually, followed by Switzerland ($7317) and 
Norway ($6187).1 Presently, COVID-19 is one of the deadliest and most 
contagious viruses that has spread and affected a significant number of 
people globally. The COVID-19 outbreak has high pandemic potential 
due to an increase in the number of COVID-19 patients and transmission 
from one nation to another [1]. The COVID-19 infection produces a 
severe viral hemorrhagic fever and other symptoms such as respiratory 
discomfort, nausea, anorexia, stomach discomfort, headache, and sore 
throat [2]. The detailed symptoms-based comparison of several over-
lapping diseases is presented in Table 1. The incubation period for 

COVID-19 ranges from 1 to 14 days, averaging 5 days. Moreover, the 
new COVID-19 variants of Delta (B.1.617.2) have an incubation period 
of 4 days, and Omicron (B1.1.1.529) has an incubation period of 2 days 
as per South Africa and UK studies.2 According to the WHO Coronavirus 
report, “globally, as of 1 March 2022, there have been 437,346,293 
confirmed cases of COVID-19, including 5,975,535 deaths”.3 The 
detailed geographical distribution of confirmed cases is depicted in 
Fig. 1. 

Moreover, healthcare workers who treat COVID-19 patients may 
unwittingly get the virus, spreading the infection further. According to 
Ng et al. [3], healthcare staff is hesitant to associate with COVID-19 
patients because of the significant risk of disease. COVID-19 outbreaks 
in China, USA, and India were the most severe in 2020 and 2021. Till 10 
December 2021, the maximal mortality rate is registered for Mexico 
(7.6%), followed by Bulgaria (4.1%), and Hungary (3.1%).4 However, 
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patients with COVID-19 can be treated with adequate information and 
therapy. Fig. 25 depicts the overview of COVID-19 risk index analysis. 
The continual monitoring of the pandemic shifts the focus away from the 
sickness and toward predicting and preventing the virus's spread. As a 
result, antiviral medications, vaccinations, and IT-based methodologies 
are required to decrease the virus's detrimental impacts [4]. Henceforth, 
it becomes indispensable to explore novel technologies of IoT-Fog-Cloud 
computing to provision individualistic medical-care delivery in real- 
time. 

1.1. IoT-fog-cloud computing healthcare 

Remote identification and prolonged monitoring of patients with 
infectious disorders have become increasingly vital [5]. Existing 
healthcare systems cannot effectively handle and monitor such illnesses 
while maintaining a low-cost [6,7]. Conspicuously, a comprehensive 
and effective framework is indispensable to deliver time-sensitive 
medical service-delivery utilizing Information and Communication 
Technology (ICT) [8,9]. Collecting medical data from patients in a time- 
sensitive manner, demand for massive storage, and enhanced computing 
for data analysis are some critical hurdles in the global healthcare sys-
tem [10,11]. Recent breakthroughs in wireless distributed sensing net-
works such as the Internet of Things (IoT) and fog-cloud computing have 

made it feasible to construct an intelligent medical framework that al-
lows for smooth remote monitoring of patients [12,13]. Fig. 3 depicts an 
overview of the layered architecture of IoT-Fog-Cloud computing for 
smart healthcare. Using collaborative IoT-Fog-Cloud technology not 
only minimizes the number of health personnel needed but also reduces 
the cost of health-oriented service delivery [14,15]. Additionally, the 
incorporation of Artificial Intelligence (AI) technologies for the devel-
opment of vaccinations for the COVID-19 has significantly boosted the 
healthcare industry. AI-inspired machine learning approaches, 
including Random Forest (RF), Recursive Feature Selection (RFE), and 
Support Vector Machine (SVM) have been incorporated for identifying 
antigens from protein sequences. Moreover, Deep Convolutional Neural 
Networks (DCNN) have proven to be an effective tool for the binding 
prediction of peptides [2]. Furthermore, supervised neural network- 
driven frameworks have been used to identify potential T-cell epitopes 
for COVID-19 with 2019-nCoV spike receptor-binding domain [2]. 
Additionally, deep-learning RNN provided simulated sequences to 
determine probable solutions for vaccine design [16]. Fog-Cloud 
computing can provide nearly limitless storage, and analysis of 
massive data gathered from acquired ambient IoT data [1]. In 

conjunction with the IoT-Fog-Cloud, Artificial Intelligent techniques of 
Deep and Machine learning can be used effectively for patient surveil-
lance and assessment in real-time [17]. IoT comprises several compact 
and lightweight body sensors connected to the patient's body (Wireless 
Body Area Network (WBAN)) and captures important physiological at-
tributes enlisted in Table 3 that may be utilized for long-term chronic 
illness monitoring [18]. Sensors generate enormous amounts of data to 
be stored and analyzed in a time-sensitive manner [19]. Moreover, Fog- 
Cloud computing offers enormous processing power, scalability, and 
storage [20]. Conspicuously, by combining IoT-Fog-Cloud computing, 
RFID, and AI techniques, an effective medical care framework for 
monitoring and detecting COVID-19 can be implemented [21]. 
Furthermore, doctors, healthcare organizations, and government 
agencies can exchange physiological data generated by IoT via fog-cloud 
computing [22]. The most challenging aspect of healthcare is continual 
surveillance of infectious illness and real-time intervention. Proximity 
contacts between infected and uninfected patients must be stopped to 
limit the spread of the disease [23]. Radio Frequency Identification 
(RFID) technology is utilized to detect the temporal interactions be-
tween patients and users [24]. To save millions of lives, dedicated and 
scalable resources are necessary to interpret massive sensor data from a 
widely impacted population in a single geographical region [25]. 

1.2. Major contribution 

The current research aims to present a fog-cloud-based framework 

Table 1 
Symptoms-based analysis (1 high, 11 very high, 111 very high, 0 low).  

Symptoms West 
Nile 

Japanese virus COVID-19 

Fever 111 111 (high 
fever) 

111 

Head ache 111 111 111 
Confusion/disorientation 111 111 111 
Loss of memory 0 11 11 
Muscle and joint pain 11 11 111 (severe) 
Coma 111 111 111 
Nausea or vomiting 111 111 111 
Paralysis 111 111 111 
Tremors 111 111 0 
Drowsiness 111 111 111 (extreme 

tiredness) 
Neck stiffness 1/0 1/0 1 
Unconsciousness 1/0 11 11 
Seizures 0 11 11 
Aversion of bright light 0 0 1 
Problem with speech or 

hearing 
0 1/− 11  

Fig. 1. COVID-19 confirmed cases over geographical distribution by WHO (as on 10 December 2021).  

5 Source: http://www.ezekielemanuel.com/. 
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for efficiently forecasting and tracking COVID-19 outbreaks in a time- 
sensitive manner by utilizing the data acquisition efficiency of IoT 
sensors and data processing platform efficacy of Fog-Cloud computing. 
Based on the aforementioned aspects, the major contributions of the 
current research are detailed ahead.  

1. A fog-cloud-based scalable and effective monitoring framework is 
proposed for COVID-19 outbreak assessment in real-time.  

2. The presented framework has been proposed by incorporating IoT 
and RFID technology over the fog-cloud computing paradigm to 
gather and analyze healthcare data.  

3. J48 decision tree has been utilized to categorize patients into 
different groups. The proposed algorithm is executed regularly to 
keep track of alterations in the user group.  

4. RFID technology has been used to acquire user interactions. The 
proposed framework generates an alarm message to an uninfected 
user for preventing contact with the infected user.  

5. Temporal Network Analysis (TNA)-based graphical structure has 
been presented to indicate the interactions between infected and 
uninfected users. TNA metrics identify affected users or locations 
implicated in the disease's propagation. 

6. Proposed framework's performance is assessed by extensive experi-
mental testing on the Amazon EC2 cloud. 

Table 2 provides the details of the nomenclature used in the current 
article. 

1.3. Paper organization 

Section 2 explores related research on COVID-19 infection and the 

Fig. 2. COVID-19 risk index analysis.  

Fig. 3. Layered architecture of IoT-fog-cloud computing.  

Table 2 
Nomenclature used.  

S. no. Abbreviation Description 

1 WBAN Wireless Body Area Network 
2 AWS Amazon web services 
3 UID Unique Identification number 
4 IoT Internet of Things 
5 TNA Temporal Network Analysis 
6 SEIR Susceptible, Exposed, Infectious, Recovered 
7 TPI Temporal proximity interaction 
8 GPS Geographic positioning system 
9 COVID-19 Coronavirus disease  

Table 3 
Physiological attributes for COVID-19.  

S. no. Parameter Description 

1 FCN Mobile number (family member) 
2 Age Age of user 
3 Name Name of user 
4 Mobno Mobile number (personal) 
5 Gender Male or female or transgender 
6 Address Social address  

M. Bhatia et al.                                                                                                                                                                                                                                 
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utility of IoT-Fog-Cloud technologies to detect and monitor COVID-19 
patients. Section 3 proposes a comprehensive framework for moni-
toring and detecting COVID-19. Section 4 discusses the proposed RFID- 
based COVID-19 outbreak control mechanism. The experimental find-
ings of the presented framework are presented in Section 5. Finally, 
Section 6 concludes the paper with future research directions. 

2. Related work 

The current section reviews some of the vital contributions by the 
researchers in the current domain of study that indicate the utility of IoT 
in the prevention of COVID-19 disease. Moreover, a sub-section has been 
formulated to review intelligent healthcare analysis using the IoT-Fog- 
Cloud computing platform. 

Table 4 
State-of-the-art comparison (1 available, 0 not available).  

References Anjali et al.  
[26] 

Shorfuzzaman et al.  
[27] 

Firouzi et al.  
[28] 

Rajasekar et al.  
[29] 

Lin et al.  
[30] 

Al et al.  
[31] 

Dwivedi et al.  
[32] 

Proposed 

Sensing technology  1  1  1  1  1  1  1  1 
Fog computing  0  1  1  0  1  0  0  1 
Quantification  1  1  1  1  1  0  1  1 
Data repository  1  1  1  1  0  0  1  1 
Predictive behavior  0  0  1  0  1  0  0  1 
Temporal analysis  0  0  0  0  0  1  1  1 
Data visualization  0  0  0  0  0  0  0  1 
COVID-19 

classification  
0  0  0  0  0  0  0  1 

Security  0  0  0  0  0  1  0  1 
Reliability  0  0  0  0  0  0  0  1 
Stability  0  0  1  0  0  0  0  1  

Table 5 
COVID-19 symptoms, 0 indicates no or below threshold; 1 indicates yes or above threshold.  

Primary symptoms Measure Secondary symptoms Measure Advanced symptoms Measure 

Sore throat 0/1 Chest pain 0/1 Delirium 0/1 
Fever 0/1 Diarrhea 0/1 Kidney disease 0/1 
Low immunity level 0/1 Weakness 0/1 Seizure 0/1 
Severe headache 0/1 Skin rash 0/1 Lever disease 0/1 
Muscle pain 0/1 Vomiting 0/1 Loss of consciousness 0/1 
Oxygen level 0/1 Watery eyes 0/1 Internal bleeding 0/1 
Heart rate 0/1 Gastrointestinal 0/1 External bleeding 0/1  

Table 6 
COVID-19 interaction parameter for closed proximity users.  

S. no. Parameter Description 

1 UID target UID of target patient 
2 Category target Category of target patient as infected or uninfected 
3 End time End time of interaction 
4 Start time Start time of interaction 
5 Category source Category of source patient as infected or uninfected 
6 UID source UID of source patient  

Table 7 
Monitoring assessment time of COVID-19-patients.  

S. no. Class Monitoring time-delay 

1 Highly infected (H) 3 
2 Infected (I) 9 
3 Exposed (E) 13 
4 Susceptible (S) 13–25 
5 Recovered (R) 25–50  

Table 8 
Procedure 1: updated class assessment for COVID-19 patient.  

Procedure 1: estimate accurate class of patient 

Input: Patient UID and corresponding COVID-19 symptoms 
Step 1: Assess the primary symptoms via WBAN and Patient UID 
Step 2: If Patient UID Exist 
Then Update the record with recent data 
Else Create a new record with acquired patient UID and primary symptoms 
End if 
Step 3: Enter the secondary and advanced parameters for COVID-19 virus as per 

scheduled time 
Step 4: Execute J48 decision tress methodology to estimate the revised class of 

patient 
Step 5: If revised class = old class 
Then Notify Next assessment time of patient 
Step 6: Update the database record 
Step 7: Else Update evaluation period; 
Update patient class is database; 
Generate alert signal to doctor; 
Notify next evaluation of patient 
Step 8: End if 
Output: Updated Class of the patient based on recent symptoms  

Table 9 
Procedure 2: TNA graph creation and updation.  

Procedure 2: TNA graph updation 

Input: COVID-19 proximity interaction details 
Step 1: For every user do 
Step 2: Read Source UID, target UID, class source, class target; 
Step 3: Read Start time and end time of the proximity interaction 
Step 4: If source UID and target UID already exist 
Then Create an edge between source UID and target UID 
Step 5: If revised class = old class 
Then Notify Next assessment time of patient 
Step 6: Else Create a new source and target node; 
Label the nodes with the infection class; 
Color the nodes with respective infection class; 
Create an edge between source UID and target UID 
Step 7: End if 
Step 8: End for 
Output: Updated TNA Graph  

M. Bhatia et al.                                                                                                                                                                                                                                 
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2.1. IoT-based COVID-19 monitoring 

IoT technology has been considerably used by researchers for 
monitoring COVID-19 patients. Rahman et al. [25] proposed an edge 
computing-based IoT network for effective data management during the 
COVID-19 pandemic. Specifically, the authors formulated a software- 
defined networking layer for real-time data assessment from a remote 
location. Moreover, the authors demonstrated the integration of IoT and 
Industry 4.0 in the current era of COVID-19. Shariq et al. [33] presented 

a RFID security technique for IoT-healthcare data of COVID-19 patients. 
The authors registered a minimal computation overhead compared to 
the related approaches and concluded that the proposed technique is 
more resistant to several IoT data attacks and vulnerabilities. Chen et al. 
[2] surveyed that AI has made significant advances in COVID-19 disease 

Table 10 
COVID-19 symptoms probabilistic measures.  

Primary symptoms Probabilistic value Secondary symptoms Probabilistic value Advanced symptoms Probabilistic value 

Sore throat  0.59 Chest pain 0/1 Delirium 0/1 
Fever  0.75 Diarrhea 0/1 Kidney disease 0/1 
Low immunity level  0.61 Weakness 0/1 Seizure 0/1 
Severe headache  0.85 Skin rash 0/1 Lever disease 0/1 
Muscle pain  0.45 Vomiting 0/1 Consciousness loss 0/1 
Oxygen level  0.85 Watery eyes 0/1 Internal bleeding 0/1 
Heart rate  0.35 Gastrointestinal 0/1 External bleeding 0/1  

Table 11 
Procedure 3: COVID-19 dataset generation.  

Procedure 3: dataset generation 

Input: Data instances for COVID-19 symptoms 
Step 1: Let n = 1, where n is the number of cases 
Step 2: For n < required cases + 1 do 
Step 3: Assigns measures to primary symptoms using probabilistic measures; 
Assigns measures to secondary symptoms using probabilistic measures; 
Assigns measures to advanced symptoms using probabilistic measures; 
Step 4: Combine the values for Coivd-19 from Step-3 
Step 5: If the new case exist, then discard the current case 
Step 6: Else Add the new case; 
n = n + 1; 
Step 7: End if 
Step 8: End for 
Output: Database Repository for COVID-19 Infection Class  

Table 12 
Procedure 4: obtaining 250,000 COVID-19 patient instances.  

Procedure 4: massive dataset generation 

Input: TPI information of 2,50,000 users 
Step 1: Let n = 1, where n is the number of cases 
Step 2: For n < required cases + 1 do 
Step 3: Select a random record from COVID-19 class; 
Read the instance for TPI data; 
Create a new user by accumulating data from TPI and symptoms; 
Assign new UID to patient 
Step 4: if UID is existing then discard the record 
Step 5: Else Add the new user 
Step 6: End if 
Step 7: End for 
Output: Database Repository for COVID-19 Infection Class  

Table 13 
10-Fold cross validation for J48 decision-tree; number of data 
instance: 250,000.  

Attributes Output (in %) 

Accurate classification  95.26 
Inaccurate classification  4.74 
Mean absolute error  2.36 
Root mean squared error  3.45 
Root relative squared error  3.28 
Kappa statistic  85.36 
Relative absolute error  4.65  

Table 14 
Performance assessment: class-wise categorization using J48 technique.  

Class True 
positive 
rate 

False 
positive 
rate 

Precision ROC 
area 

F- 
measure 

Recall 

H  92.36  1.23  98.56  89.36  98.25  93.25 
I  92.45  2.32  96.25  95.23  95.25  94.25 
E  93.56  4.25  94.36  94.25  94.36  96.25 
S  95.36  1.23  95.65  96.25  93.25  95.22 
R  97.36  1.26  96.25  94.25  94.25  95.02 
U  98.36  1.25  95.25  93.25  95.87  96.02 
Mean  97.25  0.56  94.36  94.56  96.33  95.54  

Table 15 
WEKA 3.6 confusion matrix.  

Classified class → E I S U R H 

Actual class 
E 3958 NA NA 5244 NA  
I 2848 NA NA NA NA 575 
S NA NA 2547 NA NA  
U NA NA 1042 4272 4574 110 
R 2659 NA 3569 638 788  
H NA 2548 NA NA NA 757  

Table 16 
Performance analysis.  

Parameters Random tree 
(%) 

REP tree 
(%) 

Naive Bayes 
(%) 

J48 
(%) 

Accuracy  92.99  94.12  93.14  96.78 
Sensitivity  90.12  91.45  90.98  96.45 
Specificity  91.98  90.45  95.15  94.78 
F-measure  92.15  91.45  93.15  95.15 
Mean absolute error 

(MAE)  
4.45  5.17  6.34  3.15 

Root mean square error 
(RMSE)  

3.19  2.32  2.45  1.24  

Table 17 
Result summation.  

S. no. Attribute Results 

1 Average path length  53,659 
2 Average weighted degree  12,235 
3 Number of strongly connected components  201,326 
4 Network diameter  201 
5 Number of weakly connected components  300,215 
6 Average degree  25,125  

M. Bhatia et al.                                                                                                                                                                                                                                 
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detection and diagnosis, virology and pathogenesis, treatment, and 
vaccine development. Moreover, the authors have discussed some of the 
vital issues faced by AI against COVID-19 prediction. De et al. [1] pro-
posed an intelligent framework in which wearable sensors are used to 
monitor patients with coronavirus illness. The presented technique has 
been successfully implemented in a Brazilian critical care unit for 
COVID-19 patients. Chen et al. [11] presented a Disease Diagnosis and 
Treatment Recommendation System (DDTRS) to optimize the use of 
current medical technology and the extensive medical knowledge of 
experienced clinicians. Moreover, a Density-Peaked Clustering Analysis 
(DPCA) technique for disease-symptom clustering has been developed. 
Liu et al. [15] developed a new region-to-boundary deep learning 
model. It begins with the creation of two branches of a U-shaped 
network that creates the target probabilities. Mukati et al. [34] pre-
sented survey research for the exploration of COVID-19 management 

techniques using IoT technology. Authors have proposed several tech-
niques for identifying and tracking COVID-19 patients using IoT devices 
and WBAN. The authors concluded that the IoT technology backed up by 
Fog-Cloud could overcome the limitations faced by the healthcare pro-
fessional for the management of COVID-19 data. Poongodi et al. [35] 
proposed a robust and smart healthcare system for enhancing COVID-19 
management using IoT technology. The proposed architecture depicted 
enhanced accuracy compared to the state-of-the-art computing tech-
niques for statistical parameters. Mukherjee et al. [36] presented an 
interesting approach for predictive analytics for the COVID-19 disease 
classification using the enhanced KNN technique. The proposed model is 
based on the mathematical formulation for depicting the prediction 
procedure. The presented approach registered better performance based 
on the comparative analysis with state-of-the-art classification tech-
niques. Jung et al. [14] proposed a software-defined networking model 

Fig. 4. Layered architecture of proposed model.  

M. Bhatia et al.                                                                                                                                                                                                                                 
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for monitoring and tracking information of the COVID-19 patient in real- 
time using an IoT platform. IoT nodes were used as public nodes for 
engaging information providers to improve the overall quality of the 
data. The performance of the proposed model is analyzed in terms of 
scalability and reliability based on the comparative analysis with state- 
of-the-art techniques. Moreover, the authors registered a reduced la-
tency delay for the presented technique. Jahmunah et al. [18] conducted 
a state-of-the-art literature review for contact tracing methods of 
COVID-19 patients in a time-sensitive manner. Moreover, an intelligent 
tool has been proposed for tracking purposes, comprising of mobile- 
phone-based applications and IoT devices to analyze the COVID-19 
spread. Enhanced performance was registered for the proposed model 
compared to the related approach. 

2.2. Smart healthcare analysis 

Sood and Mahajan [37] proposed an IoT-based algorithm to predict 
the Chikungunya virus outbreak. Authors presented a symptom-based 
Zika and West Nile virus investigation. Specifically, authors used a 
real-time application system to deliver a fuzzy approach for detecting 
sick persons and sending an alarm message to healthcare practitioners. 
Bhatia and Sood [38] introduced an intelligent IoT-inspired platform for 
efficiently analyzing healthcare conditions. The authors presented a 3- 
level ANN model to assess, and monitor healthcare vitals during regu-
lar exercises. Vani and Neeralagi [39] proposed a fuzzy logic-based 
remote monitoring system that would produce an alarm if any acute 
illness was discovered. The authors collected data from individuals with 
chronic conditions using IoT wearable sensor devices, which are for-
warded to the fog layer for processing. The authors focused on context- 
sensitive data to diagnose chronic conditions. Verma and Sood [40] 
proposed a novel paradigm for monitoring and analyzing patient health 
state. The presented approach is used to forecast illness severity. For the 
severity analysis, the authors focused on student health. The authors 
used the UCI repository for data collection and classification algorithms 
to predict health vulnerability in the application. Bhatia et al. [41] 
presented a system for analyzing health status and probabilistic fore-
casting vulnerability in real-time. To test the applicability of the pro-
posed framework, the authors used IoT sensors-based simulation for 14 
days. Sood and Mahajan [42] suggested a unique remote control method 

for detecting and preventing Mosquito-Borne Diseases (MBD). The au-
thors focused on diagnosing MBD-infected users at an early stage. Data is 
extracted and collected using an automated keyword extraction tech-
nique and an IoT-based device. Information is stored and processed in 
fog-cloud storage. To distinguish between contagious and non-viral 
users, a decision tree is utilized. Sareen et al. [43] suggested an IoT 
and cloud technology paradigm for monitoring and regulating Ebola 
virus patients based on RFID methods. The data was processed using 
temporal network analysis. Compared to state-of-the-art models, 
experimental findings revealed improved accuracy for evaluating the 
Ebola epidemic. Tuli et al. [44] presented Healthfog, a fog-based intel-
ligent healthcare system that uses deep learning to diagnose cardio-
vascular problems. The suggested approach efficiently handles patient 
health data derived from various sensor devices and delivers healthcare 
services. It is combined with deep learning to create real-time predictive 
healthcare software. FogBus framework was proposed to test the system 
in a fog computing environment. The suggested system's efficiency is 
assessed in terms of power consumption and testing efficiency. Based on 
the comprehensive literature review, a comparative analysis has been 
presented in Table 4 to depict the novel aspects of the proposed 
approach. 

3. Proposed model 

Fig. 4 depicts the layered approach for detecting and monitoring 
COVID-19 outspread. The presented strategy primarily focuses on cloud 
computing-based continuous remote monitoring of infected patients in 
real-time. 

3.1. Data accumulation layer 

The data accumulation layer collects personal information, vital 
physiological symptoms, and social contact information. Each user must 
initially register with the system by inputting mobile phone numbers 
and other personal information. Each user is assigned a unique identifier 
(UID) used for future conversations. WBAN captures primary symptoms 
(such as body temperature, and blood pressure) and sends them to a 
mobile phone via Bluetooth. The acquired data is transferred in real- 
time to a fog-node server over WiFi or a 4G/5G network. At the same 
time, users can utilize the mobile application's interface to enter sec-
ondary and advanced symptoms. Once the user has registered corre-
sponding symptoms, the data is transferred to the cloud. For data 
generated by WBAN, a scalable storage solution is presented that can 
manage large amounts of data efficiently. Table 5 lists the characteristics 
of COVID-19 symptoms and the replies given by different users. ‘1’ or ‘0’ 
represents the values associated with specific instances. Primary, sec-
ondary, and advanced symptoms are the three types of symptoms. 
Secondary symptoms may appear in any user, depending on the medical 
state. A coronavirus replicates in the body and causes progressive 
symptoms that aggravate a virus-infected patient's health, necessitating 
rapid hospitalization and treatment. Healthcare staff and uninfected 
users must take steps to avoid coming into close contact with a user who 
has advanced symptoms. RFID connected to the user's body captures 
physical and social contacts between various users. A user's mobile 
phone with an RFID reader detects the RFID tag and sends the infor-
mation to the fog node. The aggregated data is uploaded to the cloud via 
an Android application for in-depth analysis. Table 6 depicts the prox-
imity interaction qualities of several individuals utilized to develop and 
update the TNA graph. 3 categories of information from the patient are 
collected in the data collection component: (1) COVID-19 symptoms; (2) 
Physiological Attributes; and (3) Proximity interactions. The patient's 
physiological attributes must be kept private. The presented system uses 
a secret key-based information sharing technique to keep personal in-
formation confidential. 

Fig. 5. Life cycle of COVID-19 infection disease.  
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3.2. Data Classification Layer 

Data Classification Layer is used to classify the user as category U 
(uninfected), category S (susceptible), category E (exposed), category I 
(infectious), category H (highly infectious), or category R (recovered) 
based on COVID-19 attributes data. A decision tree-based technique is 
utilized to categorize a specific COVID-19 characteristic for predefined 
output categories. The J48 decision tree is generated using the data- 
mining program Weka 3.6, which has a variety of machine learning 
algorithms for data mining applications. Each user is classified as 
infected under category S if he has no illness, low-level immunity, and a 
cough or sore throat. The infected patient's category E symptoms include 
a slight fever, cough, and sore throat. The degree of infection in the 
patient's body is minimal during the initial period. Suppose the patient 
has a high fever, sore throat, and secondary symptoms such as head-
aches or body discomfort. In that case, the patient is infectious, and the 
infection category is I. The patient has acquired a significant infection to 
spread to other vulnerable people in I category. Infected individuals in 
category H have severe symptoms, and those seen in category I. Finally, 
after the parasite or infection has been removed by the patient's immune 
system and the patient is no longer contagious, the patient is considered 
recovered (R). If the user does not have any of the above symptoms, he is 
uninfected. Fig. 5 depicts the life cycle of COVID-19 as it progresses 
through several phases. 

3.3. COVID-19 patient surveillance 

Users infected with COVID-19 must be monitored for at least 21 days 
in cooperation with the appropriate health agency. It refers to the sys-
tem's regular inspection of individual users' treatment and symptoms to 
keep a comprehensive history of progress reports for each patient. The 
patient is monitored at various periods depending on the infected cat-
egories as determined by a J48 decision tree. The severely infected in-
dividuals are monitored every 2 h since they have significant symptoms 
regularly. However, a qualified doctor can adjust the monitoring period 
if necessary. The monitoring time intervals for different types of infected 
individuals are shown in Table 7. Patients who have been affected are 
constantly watched and evaluated until they have fully recovered from 
the virus. The technology generates alert messages to be delivered to 
affected patients' cell phones. Depending on the GPS position of the 
patient's mobile phone, alert messages are also sent to local hospitals or 
healthcare services. As stated in Procedure 1 (Table 8), the proposed 
system executed the classification procedure regularly to evaluate the 
patient's category. If the patient's category is modified, the system 
generates alarm messages delivered to the user and the nearest hospital. 

In addition, the patient's record is updated. 

3.4. Novel COVID-19 outbreak prevention 

One of the critical elements in the presented methodology is to stop 
the COVID-19 outbreak from spreading. The proposed framework em-
ploys Temporal Network Analysis (TNA) to represent each user as a 
node, with edges established between users who have temporal prox-
imity interactions (TPIs). The nodes are colored differently to signify 
different types of infection among users. TNA is a valuable tool for 
describing the status of pandemics. The evolution of pandemic propa-
gation can be determined using TNA graphs, and infected users mainly 
responsible for the disease's transmission can be recognized. TNA graph 
is created with Gephi 0.9.1. Gephi is a free and open-source program for 
viewing and studying graphs of temporal networks. To display graphs in 
real-time and speed up research, Gephi employs a 3D render engine. As 
illustrated in Fig. 6, infected individuals and respective relationships 
with other vulnerable or uninfected users may be efficiently portrayed 
using the technology. 

4. RFID-based COVID-19 outbreak prevention 

Some infections, such as COVID-19, can spread in various ways. 
COVID-19 disease is spread mainly through the air by droplets. In 
airborne transmission, pathogens are transmitted by coughing and 
inhaling infected users. The infections can travel up to a given distance 
in the air, depending on the environmental circumstances, and an un-
infected user can inhale them. When droplets from an infected user come 
into contact with uninfected users, TPIs become extremely important for 
viral propagation. Identifying close-range proximity or interaction be-
tween infected and uninfected users is critical in the proposed archi-
tecture, which is utilized to restrict the spread of the COVID-19 
pandemic. The government and healthcare institutions will manage the 
pandemic sooner if a clear image of the network structure shows the 
interactions between infected and uninfected people. The use of an RFID 
to identify high-resolution proximity between infected and uninfected 
users is proposed. When two RFID tags are close to one other, they ex-
change radio waves, making RFID one of the most promising technol-
ogies in the field of automated item identification. RFID devices have 
advanced to the point where they are compact, lightweight, and have 
long battery life, making them optimal for social network analysis. RFID 
tags are placed on the chests of users in a specific geographic region 
monitored for a COVID-19 outbreak to identify contacts only when 
people come close to each other. The RFID tag worn by another user is 
detected using a mobile phone equipped with an RFID reader. When an 

Fig. 6. TNA visualization (a) region 1; (b) region 2; (c) region 3.  
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uninfected user with a mobile phone comes into contact with an infected 
person wearing an RFID tag, the phone detects the tag and recognizes 
the infected user's presence. The distance between them should be 
within 1–2 m. The threshold determines the sensation range of specific 
TPIs within which COVID-19 can be transmitted. The mobile phone's 
contact information is transferred to the cloud for storage, processing, 
and continual monitoring through a 4G/5G internet connection. The 
system will automatically produce and send an alert message to an un-
infected user's mobile phone. The goal is to avoid coming into contact 
with an infected patient to prevent the epidemic from spreading. The 
proximity detection is done regularly, and each RFID tag sends contact 
information to another user's phone every few seconds. A 20-second 
window is specified during which the closeness may be evaluated with 
a 99% confidence level. Fig. 7 depicts an architecture of infected and 
non-infected user interactions. 

4.1. Temporal network graph 

An edge connecting two nodes (users) in the TNA graph appears or 
disappears based on whether they are near one other at a given time. 
This type of graph, based on user interactions, exhibits a continual 
change in the structure that corresponds to dynamic user activity. 
Recent technology advancements, such as RFID and mobile devices, 
have made it easier to collect data about human-to-human interactions 
in real-time. When the classification component detects a user's cate-
gory, a TNA graph is built and updated regularly when new TPI data is 
received from other users. Procedure 2 (Table 9) is used to produce or 
update the TNA graph in real-time utilizing TPI data supplied by the 
RFID. Some key implications may be derived from the TNA graph that 
will aid healthcare organizations in controlling the COVID-19 outbreak. 

4.2. TNA metrics 

A crucial stage in the presented methodology is identifying signifi-
cant users (nodes) who are responsible for COVID-19's propagation. 
Furthermore, an infected user with high proximity to other users can 
swiftly disseminate COVID-19 to vast groups of people. Henceforth, the 
current section defines some of the key metrics derived from TNA 
graphs. 

Definition 1. Temporal route length: the temporal route length of a 
COVID-19 reflects how quickly it may spread from one infected user to 
another on the network. COVID-19 transmission is speeded up when the 
temporal route length is minimal. It is the average temporal distance 
between all pairs of nodes. Mathematically, 

Temporal Length =
1

M(M − 1)
∑

ji
sji,

where M represents the node collection and sji indicates the shortest path 
from node j to i. Conspicuously, the global efficacy of temporal graph 
can be estimated as 

Global Efficacy
1

M(M − 1)
1∑

ji

1
sji   

Definition 2. Coefficient of temporal correlation (CTC): it represents 
the criticality of how likely it is for COVID-19-infected people to develop 
clusters in any given region. It will aid government authorities in 
isolating and prohibiting all forms of travel from that region. The pro-
posed framework employs the temporal correlation coefficient value to 
determine the likelihood of cluster formation. Mathematically, 

CTC =
1
M

∑

j
Dj =

1
M
∑

j

1
N − 1

∑n− 1

n=1
Dj(tn, tn+1),

where Dj(tn, tn+1)is the topographic overlapping of the adjacent nodes 
for patient j in the temporal window of (tn, tn+1) and described mathe-
matically as 

Dj(tn, tn+1) =

∑
ibji

(
tn − bji(tn+1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[∑
ibjitn

][∑
ibji

(
tn+1

]√

Definition 3. Temporal centrality: temporal centrality is a powerful 
statistic for determining how involved every infected user is in spreading 
the pandemic. A user who is infected and has a large number of neigh-
bors will contribute more to the outbreak's spread. The proportion of the 
temporal shortest path going through a node j's temporal centrality is 
defined as follows: 

Temporal Centrality =
∑

i∈U

∑

k∈U,k¬i

ϕik(j)
ϕik

,

where ϕik represents the temporally shortest distance from patient i to 
patient k, and ϕik (j) is the total number of paths via patient j. 

Definition 4. Temporal eccentricity: when a user is not in direct 
contact with a COVID-19-infected patient, they may know another 
infected patient. Any patient's centrality specifies how near that user is 
to other infected or uninfected patients. The inverse of the average 

Fig. 7. Closed proximity.  
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length of the temporal shortest path between patient j and i may be 
calculated as 

Temporal Eccentricity =
M − 1
∑m

i sji  

The entire step-wise procedure of the presented approach has been 
depicted in Fig. 8. 

5. Experimental simulation 

A major effort was made to look for accurate data on COVID-19 
patients based on symptoms on the internet. However, no relevant 
dataset was obtained to test the proposed model. Synthetic data is 
created to conduct tests and evaluate the proposed model's performance. 
The entire experimental simulation is confined to the following sub- 
sections. 

Fig. 8. Step-wise depiction of the presented approach; different phases have been formulated for data acquisition where data is acquired in real-time. The data 
acquired is pre-processed and classified using J48 classifier. Finally, based on the specific class of the patient, temporal graph is formulated for real-time graph-
ical assessment. 
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1. Creation of synthetic data  
2. Temporal Delay Analysis  
3. J48 decision tree classification assessment  
4. Amazon EC2 cloud testing  
5. TNA-based pandemic quantification  
6. Cost-benefit analysis 

5.1. Generating synthetic data 

The presented model cannot be adequately evaluated because data 
on COVID-19 patients' symptoms are not accessible. Synthetic data is 
created so that it includes every potential combination of symptoms. 

Table 10 depicts the odds of each COVID-19 virus symptom that is 
included in every freshly made case while building a synthetic COVID- 
19 virus dataset. Procedure 3 (Table 11) is intended to generate such 
a patient dataset. RFID-generated data concerning proximity contact 
information is also essential for evaluating the monitoring procedure 
adequately. An actual dataset was collected by the Socio-Patterns 
infrastructure that contained student contact information across 5 
days. Each of the 22,500 items in the dataset depicts a proximity 
interaction (TPI) between 2 pupils at 19 s intervals. Each interaction 
comprises information about the source, target, start time, and finish 
time, where source and target are the IDs of the students who come 
within 1–2 m of the start and end times. Procedure 4 (Table 12) is aimed 
to produce synthetic data for 250,000 users by mapping TPI data among 
students at various periods with 22,500 COVID-19 cases generated. TNA 
graph will be created using massive data. 

5.2. Temporal delay analysis 

Temporal delay computes the overall running time of the presented 
model for information sensing, classifying, and temporal data analysis. 
Moreover, the overall calculated time is assessed for estimating the 
delay for optimal delivery of services. Temporal delay is computed as 
follows; 

Temporal Delayoverall = Temporal Delayclassifying+

Temporal DelayMining + Temporal DelayDecision− Making 

The mean results are computed for the variable number of data in-
stances for deployment purposes. Moreover, it is indispensable to 
mention that the temporal analysis is calculated at the fog node (Rasp-
berry Pi). Henceforth, the actual data instances are considered due to 

Fig. 9. Temporal delay.  

Fig. 10. Illustration of J48 classifier tree with estimation of different categories of patients; the box value indicate the number of infected patients in different 
category with respect to total sample size; SS Starting State, ST Intermediary State. 
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memory constraints. The entire execution time for entire datasets is 
shown in Fig. 9. The average data categorization latency for diverse 
datasets is 29.36 s. A delay of 32.16 s occurred during the data mining 
task. Finally, the decision-making took 50.16 s to complete. The total 
execution time for the performance estimation is averaged to 122.63 s 
due to the accumulation of these sub-delays. 

5.3. J48 decision tree-based classification efficacy 

After Procedure 4 has generated 250,000 COVID-19 virus cases, 
distinct classes are formulated using the J48 decision tree in Weka 3.6. 
The J48 decision tree's performance is evaluated using a 10-fold cross- 
validation method. Weka 3.6 is used to test data from 250,000 users. 
Fig. 10 shows the pictorial illustration of the J48 Tree in the Weka tool. 
It can be seen that each user can be categorized as Category U with non- 
infectious. Category E indicates patients with mild fever along with 
cough symptoms. Moreover, if the fever is high along with secondary 
symptoms then the category of the patient is updated to H. Category I 
reflects the additional symptoms as that of category H. Finally, the cured 
patent is assigned the category S or non-infectious. Various statistical 
findings are obtained and shown in Tables 13, 14, and 15. Averagely, the 
decision tree correctly identifies the COVID-19 patients with 95.26% 
accuracy. The accuracy of each category categorized by the J48 decision 
tree is shown in Table 14. True positives (TP), also known as sensitivity, 
refers to the classifier's percentage of COVID-19 cases diagnosed 
correctly. The fraction of COVID-19 cases incorrectly interpreted by the 
classifier is known as false positives (FP). With an average TP rate of 
94.65% and an FP rate of 5.2%, the J48 classification method generates 
a maximal TP rate of 97.48% and a minimal FP rate of 2.36%. Precision 
and recall are 2 characteristics that determine the relevance of the re-
sults. The accuracy and recall of the proposed classification method are 
numerated to 95.68% and 92.45%, respectively. F-Measure and ROC 
area are 2 more statistical measures that reflect classification accuracy. 

The F-Measure and ROC area of an algorithm with a maximal value is 
accurate. The presented J48 decision tree has F-Measure and ROC area 
of 89.65% and 90.15%, respectively. Conspicuously, the utility of the 
J48 classifier is justified in the proposed approach. 

5.4. Amazon EC2 cloud-based analysis 

The proposed framework's performance was assessed in real-time by 
hosting it on the cloud. Amazon EC2 provides cloud storage for syn-
thetically manufactured COVID-19 cases. General-purpose compute- 
optimized c3.xlarge (Amazon 2016) instances are employed to build up 
an application in the cloud. The performance is assessed using synthetic 
data from 250,000 users. The system was initially loaded with 9999 
requests. After each 6-min, the request was raised by 9999, and the 
system's performance was monitored for a total of 140 min. Fig. 11(a) 
depicts the proposed model's resource usage, which varies depending on 
the number of users. When the number of users reaches 250,000, the 
system quickly reaches saturation since more resources are required to 
handle them. Similarly, Fig. 11(b) shows the reaction time of the pre-
sented model for various numbers of users. Because there are fewer 
entries in the database to execute each function, the system has a fast 
response time for a small number of users. Fig. 11(c) depicts the pre-
sented model's delay time for various users. Fig. 11(d) illustrates the 
performance of the J48 decision tree method in terms of classification 
time. As mentioned earlier, the performance of the classifiers was tested 
on the Amazon EC2 cloud on a simulated dataset of 250,000 users. The 
presented J48 classification algorithm's performance is assessed in terms 
of the confusion matrix, as shown in Table 15. In the proposed frame-
work, correct user classification is a critical step. Weka 3.6 is used to 
evaluate the performance of several categorization methods such as 
Random Tree, Naive Bayes, and REPTree. Classifying an extensive 
dataset of users into distinct illness groups necessitates a high degree of 
efficiency. Table 16 compares the classification performance of the 

Fig. 11. Comparative temporal analysis.  
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various classification models examined in Weka 3.6. The J48 decision 
tree outperforms other classifiers in terms of accuracy. It indicates the 
percentage of infected and non-infected users correctly classified in the 
respective categories. Due to a significant dataset, the J48 decision tree 
has an elevated accuracy with time. The classification process takes 
longer for the large dataset. 

5.5. TNA-based pandemic quantification 

Controlling the pandemic will need a thorough examination of the 
TPI network structure. Vaccination is one of the most widely utilized 
control methods since it can lower the amount of infection in an infected 
patient and prevent it from spreading [45,46]. Furthermore, vaccination 
of the entire population is impossible to prevent pandemics [47]. The 
TNA graph is used to calculate several metrics that can be used to detect 
heavily infected locations or people spreading the disease. In Gephi 
0.9.1, synthetic data of 250,000 users are simulated for outbreak pre-
vention utilizing TNA approaches. Table 17 shows the results of evalu-
ating several temporal metrics. Multiple pandemic metrics derived with 
Gephi 0.9.1 can be identified from the TNA graph. According to the 
results of the experiments, TNA is an efficient and effective tool for 
analyzing the state of the pandemic using specific parameters. 

5.6. Cost computation 

Even in developed nations like USA, Russia, and UK, the cost is 
crucial when evaluating the presented approach's economic feasibility. 
Acquiring cloud services is a fundamentally useful strategy as there is no 
need for maintenance or installation. The upfront cost may be entirely 
erased by employing a pay-per-use payment mechanism that charges the 
customer by rounding up to the nearest hour of usage time. Amazon Web 
Services (AWS) offers 2 use tiers at a relatively low price: on-demand, 
one-year reserved, and three-year reserved. To implement the proposed 
framework, Amazon provides the EC2 service, which allows users to rent 
virtual computers (known as instances) with a choice of hardware re-
quirements. The most basic example is a single-core CPU with 2 GB 
RAM, costing $0.014 per hour in the USA. RFID tags have become much 
less expensive in recent years, ranging from $0.06 to $0.09. Fog-cloud 
computing services and sensor technologies are cost-effective and may 
be carried by any nation's government during an outbreak. 

6. Conclusion 

COVID-19 is a global threat to any country's healthcare system. Using 
Temporal Network Analysis and IoT-fog-cloud technology, a compre-
hensive architecture for predicting and preventing COVID-19 outbreak 
has been proposed in the current research. IoT and RFID acquire bodily 
symptoms and social interactions, respectively. The presented frame-
work is focused on acquiring time-sensitive close-proximity contacts and 
health data to restrict the spread of the disease. The J48 decision tree is 
used to categorize the users into a specific category. TNA is used to 
represent each COVID-19-affected user on the TNA graph. Numerous 
temporal metrics, including Temporal Proximity Index (TPI), are 
calculated to identify infected people or places heavily impacted in the 
pandemic outbreak. The presented framework is validated on the 
Amazon EC2 cloud, as it registered an average classification accuracy, 
and sensitivity of 96.68% and 94.65% respectively. Moreover, signifi-
cant improvement has been registered for proposed fog-cloud-based 
data analysis in terms of Temporal Delay efficacy, Precision, and F- 
measure. For future research exploration, the missing data insertion 
technique will be used for the acquired data instances to increase the 
system's efficiency. 
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