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Many patients with cancer suffer from anemia, depression, and an impaired quality

of life (QoL). These patients often also show decreased plasma tryptophan levels

and increased kynurenine concentrations in parallel with elevated concentrations of

Th1 type immune activation marker neopterin. In the course of anti-tumor immune

response, the pro-inflammatory cytokine interferon gamma (IFN-γ) induces both, the

enzyme indoleamine 2,3-dioxygenase (IDO) to degrade tryptophan and the enzyme

GTP-cyclohydrolase I to form neopterin. High neopterin concentrations as well as an

increased kynurenine to tryptophan ratio (Kyn/Trp) in the blood of cancer patients are

predictive for a worse outcome. Inflammation-mediated tryptophan catabolism along

the kynurenine pathway is related to fatigue and anemia as well as to depression and

a decreased QoL in patients with solid tumors. In fact, enhanced tryptophan breakdown

might greatly contribute to the development of anemia, fatigue, and depression in

cancer patients. IDO activation and stimulation of the kynurenine pathway exert immune

regulatory mechanisms, which may impair anti-tumor immune responses. In addition,

tumor cells can degrade tryptophan to weaken immune responses directed against

them. High IDO expression in the tumor tissue is associated with a poor prognosis

of patients. The efficiency of IDO-inhibitors to inhibit cancer progression is currently

tested in combination with established chemotherapies and with immune checkpoint

inhibitors. Inflammation-mediated tryptophan catabolism and its possible influence on

the development and persistence of anemia, fatigue, and depression in cancer patients

are discussed.
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INTRODUCTION

Cancer is a leading cause of death and disability worldwide with an increasing prevalence.
Patients with malignant diseases often have sustained systemic immune activation, which is
linked to tumor progression and a poor clinical outcome (1, 2). Initially, immune activation is
an important mechanism to prevent carcinogenesis. However, this mechanism does not seem to
work properly in patients with advanced cancer. Tumor cells are able to escape immune-mediated
elimination by leukocytes due to loss of antigenicity and/or immunogenicity but also
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by creating an immunosuppressive microenvironment and by
blocking anti-tumor immune response (3). Tryptophan (Trp)
metabolism appears to play an important role within the tumor
microenvironment (4).

In fact, enhanced Trp breakdown, reflected by decreased Trp
and elevated kynurenine (Kyn) concentrations in the peripheral
blood, is often observed in cancer patients and related to tumor
progression, poor clinical outcome (Table 1) and an impaired
quality of life (QoL) (58, 85). Trp breakdown in patients with
malignancies is primarily mediated by increased tryptophan
2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 1
(IDO1) activities (86). The latter is primarily activated by pro-
inflammatory cytokines of the T helper 1 (Th1) type immune
response, particularly interferon gamma (IFN-γ) (87). IFN-γ
also stimulates the formation of reactive oxygen species (ROS)
as well as the expression of GTP-cyclohydrolase I (GCH-1) in
target cells. In human monocytes/macrophages, this enzyme
subsequently degrades GTP to form the pteridine neopterin,
which has been established as a clinically useful marker for Th1
driven immune activation (88).

Higher neopterin concentrations mostly coincide with
increased IDO-activation as reflected by a higher Kyn/Trp
ratio (24, 46, 89, 90) and are related to tumor progression
and an increased mortality rate (1, 91) in patients with
malignant diseases.

Trp is essential for the growth and proliferation of all kinds
of cells; therefore, local inflammation-induced Trp depletion is
initially a defense mechanism of the immune system to limit
growth of microbes but also of proliferating malignant cells
(92). However, tumor cells seem to develop countermeasures
via degradation of Trp, allowing them to escape this defense
mechanism. Moreover, stimulation of IDO1 and Trp breakdown
also impacts on Trp availability for immune cells over time
and leads to the accumulation of Trp metabolites such as the
kynurenines, which can directly modulate anti-tumor immune
responses (93).

Apart from an activated immune system and enhanced Trp
breakdown, patients with malignancies frequently suffer from
anemia (94). Anemia is a main contributor to sustained fatigue
(95), which is the most frequently reported symptom in cancer
patients (96), affecting up to 78% (97). Actually, activities of daily
living are mostly affected by cancer related fatigue (CRF) (98).
Another common comorbidity is depression, affecting ∼20%
of cancer patients (99–101). All these comorbidities have been
related to immune activation and the associated Trp breakdown.

This review discusses the current knowledge on and
consequences of immune activation and Trp breakdown for the
development and persistence of anemia, fatigue, and depression
in cancer patients. Moreover, it gives an overview of possible
therapeutic options for the treatment of comorbidities. At the
beginning, a brief depiction of Trp metabolism and its relations
to immune activation will be given.

TRYPTOPHAN METABOLISM

Trp is an essential amino acid that is required for protein
biosynthesis. Therefore, it is essential for the growth and
proliferation of cells. Trp must be supplied by diet or obtained

from protein degradation, since it cannot be synthesized by
human cells. The required daily amount for adults lies between
175 and 250mg. Yet, the average daily intake for many
individuals lies between 900 and 1,000mg (102, 103). Thus,
decreased Trp concentrations are suggested to be primarily
caused by enhanced Trp breakdown.

Trp is also an important precursor for several bioactive
metabolites including tryptamine, serotonin, melatonin,
kynurenine (Kyn) and quinolinic acid (QUIN) and
kynurenic acid (KYNA) as well as for the coenzyme NAD+.
These metabolites are mainly generated by two different
biochemical pathways.

First, Trp can be catabolized by the enzyme tryptophan 5-
hydroxylase (TPH) to 5-hydroxytryptophan (5-HTP) (Figure 1).
5-HTP is converted into 5-methoxytryptophan (5-MTP) by
the hydroxyindole-O-methyltransferase (HIOMT) (104) and
subsequently decarboxylated to 5-hydroxytryptamine (5-HT) by
the vitamin B6 dependent aromatic-L-amino-acid decarboxylase
(AADC) (105). 5-HT, better known as serotonin, is an important
neurotransmitter that modulates numerous neuropsychological
processes including mood, anxiety, anger, reward, and cognition
(106). It is also involved in important processes outside the
central nervous system (CNS), including regulatory functions
in the gastrointestinal (GI) tract as well as cardiovascular and
pulmonary system. Actually, over 90% of the total body serotonin
is synthesized in the GI tract (107).

Although only 1% of the available Trp is converted by
the Trp/5-HT pathway in healthy individuals, decreased Trp
availability is associated with decreased serotonin concentrations
and consequently with neuropsychologic disorders (105).
In the pineal gland, aryl alkylamine N-acetyltransferase
(AANAT) converts 5-HT into N-acetyl-5-hydroxytryptamine,
which is further catabolyzed by the HIOMT to N-acetyl-5-
methoxytryptamine (5-MT), better known as melatonin (108).
Melatonin is primarily secreted at night and regulates the
circadian rhythm under normal light/dark conditions (109).
Finally, Trp can be directly decarboxylated by the AADC
to tryptamine, which is an important neuromodulator of
serotonin (110).

The second and quantitatively most important pathway
is the decay to Kyn (Figure 2). Approximately 90% of the
available Trp is oxidized to N-formylkynurenine by either
tryptophan 2,3-dioxygenase (TDO; EC 1.13.11.11), indoleamine
2,3-dioxygenase 1 (IDO1; EC 1.13.11.52), or indoleamine
2,3-dioxygenase 2 (IDO2; 1.13.11.-). N-formylkynurenine
is then subsequently hydrolyzed to Kyn by kynurenine
formamidase. Kyn is further catalyzed by one of the four

kynurenine aminotransferases (KATs) to KYNA. It can
also be hydroxylated to 3-hydroxykynurenine (3-HK) by
kynurenine 3-monooxygenase (KMO) and then converted
to 3-hydroxyanthralinic acid (3-HAA) by the kynureninase
(KYNU). Another important enzyme of the Kyn pathway,
namely 3-hydroxyanthranilic acid dioxygenase (HAD), converts
3-HAA into 2-amino-3-carboxymuconate semialdehyde, which
decays non-enzymatically into QUIN. Finally, phosphoribosyl
transferase (QPRT) converts QUIN into nicotinamide, which is
an important component of NAD+ and NADP+ being necessary
for energy production (111).
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TABLE 1 | Altered tryptophan metabolism in different cancer types and its relations to disease severity, progression, and survival.

Cancer type Tryptophan metabolism within tumor tissues Tryptophan metabolism in the peripheral blood

Findings References Findings References

Acute myeloid leukemia Up-regulation of IDO1 expression upon IFN-γ

stimulation was related to an impaired overall

survival

Folgiero et al. (5) Increased Kyn levels were associated with a

shorter overall survival

Mabuchi et al. (6)

Increased IDO1 mRNA expression was

correlated with an impaired overall survival

Fukuno et al. (7) Kyn/Trp ratio was increased and associated

with a shorter overall survival

Corm et al. (8)

Increased IDO1 mRNA expression was related

to an impaired overall survival and relapse-free

survival

Chamuleau et al. (9)

Increased IDO1 expression inhibited T-cell

proliferation

Tang et al. (10)

Breast cancer High IDO1 expression was associated with

TNM stage, histological grade, lymph node

metastasis, progression-free survival, and

overall survival

Wei et al. (11) Trp levels predict tumor progression and were

associated with overall survival

Eniu et al. (12)

Up-regulation of IDO1, TDO2, and KMO

expression was found

Heng et al. (13) Low Trp levels and an increased Kyn/Trp ratio

were found

Lyon et al. (14)

IDO1 expression increased with higher tumor

stages

Isla Larrain et al. (15) Increased Kyn/Trp ratio was associated with

higher tumor grade and elevated neopterin

levels

Girgin et al. (16)

Increased IDO1 expression promotes tumor

progression and is associated with an impaired

overall survival

Chen et al. (17)

Higher IDO1 expression was associated with

an impaired overall survival in estrogen receptor

positive group

Soliman et al. (18)

Higher IDO1 expression was predictive for a

better overall survival

Jacquemier et al. (19)

IDO1 expression was increased and correlated

with tumor stages and lymph node metastasis

Yu et al. (20)

Colorectal cancer Increased IDO1 expression upon IFN-γ

stimulation correlated with metastasis rate and

an impaired overall survival

Ferdinande et al. (21) Kyn/Trp ratio was increased and related to high

neopterin levels and lymph node metastasis

Engin et al. (22)

Increased IDO1 expression was associated

with an impaired overall survival

Gao et al. (23) Reduced Trp levels and an increased Kyn/Trp

ratio was related to high neopterin levels and

an impaired QoL

Huang et al. (24)

Increased IDO1 expression upon IFN-γ

stimulation correlated with reduced T-cell

infiltration, higher metastasis rate and an

impaired overall survival

Brandacher et al. (25)

Gastrointestinal tumors Increased IDO1 expression in esophageal

cancer tissues was associated with

differentiation grade, TNM stage, lymph node

metastasis, and an impaired overall survival

Jia et al. (26) Trp levels were decreased and associated with

elevated neopterin levels

Iwagaki et al. (27)

High IDO1 expression was a negative

prognostic factor

Laimer et al. (28)

Increased IDO1 expression in esophageal

cancer cells was related to disease progression

and an impaired overall survival

Zhang et al. (29)

Glioma Up-regulation of IDO1, IDO2, and KMO

expression upon IFN-γ stimulation was found

Adams et al. (30) High Kyn/Trp ratio was correlated with an

impaired overall survival

Zhai et al. (31)

Increased IDO1 expression was correlated with

an impaired overall survival

Mitsuka et al. (32) Low Trp, KYNA and QUIN levels, and a high

Kyn/Trp ratio were found

Adams et al. (30)

Downregulation of IDO1 expression was

associated with a better overall survival

Wainwright et al. (33)

Gynecological cancer Marginal IDO expression in patients in early

stage cervical cancer predicted a favorable

outcome

Heeren et al. (34) Increased Kyn/Trp ratio correlated with

advanced disease, poor response to therapy,

and an impaired overall survival

Gostner et al. (35)

(Continued)
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TABLE 1 | Continued

Cancer type Tryptophan metabolism within tumor tissues Tryptophan metabolism in the peripheral blood

Findings References Findings References

Increased IDO expression in endometrial

carcinoma cells correlated with reduced T-cell

infiltration and an impaired disease-specific

survival

de Jong et al. (36) Kyn/Trp ratio was increased and related to

lymph node metastasis, FIGO stage, tumor

size, parametrial invasion, and poor

disease-specific survival in patients with

cervical cancer

Ferns et al. (37)

Increased IDO expression in cervical cancer

cells was associated with higher tumor stage,

lymph node metastasis, and an impaired

overall survival

Inaba et al. (38) Kyn/Trp ratio was increased in patients with

ovarian cancer and associated with higher

FIGO stages

Sperner-Unterweger

et al. (39)

High IDO1 expression in ovarian carcinoma

cells correlated with reduced T-cell infiltration

and an impaired overall survival

Inaba et al. (40) Kyn/Trp ratio was increased de Jong et al. (41)

High IDO1 expression in endometrial cancer

tissues was related to reduced T-cell infiltration,

lymph node-metastasis, and poor

progression-free survival

Ino et al. (42) Increased QUIN levels and reduced KYNA

levels were found in patients with primary

ovarian cancer

Fotopoulou et al.

(43)

Increased IDO1 expression in ovarian cancer

cells was correlated with impaired survival in

patients with serous-type ovarian cancer

Okamoto et al. (44)

and Takao et al. (45)

Elevated Trp levels and a decreased Kyn/Trp

ratio was found and associated with elevated

neopterin levels

Schroecksnadel

et al. (46)

High IDO1 expression in endometrial

carcinoma cells was related to an impaired

progression-free and overall survival

Ino et al. (47)

Hepatocellular

carcinoma

Increased IDO1 expression was associated

with T-cell infiltration and an impaired overall

survival

Li et al. (48)

Increased KMO expression was correlated with

an impaired overall survival and an increased

time to recurrence

Jin et al. (49)

Increased IDO1 expression upon IFN-γ

stimulation correlates with metastasis rate and

an impaired overall survival

Pan et al. (50)

Increased IDO1 expression in tumor infiltrating

cells was associated with an increased

progression-free survival

Ishio et al. (51)

Kidney cancer Up-regulation of IDO1 expression upon IFN-γ

stimulation was found

Trott et al. (52) Kyn/Trp ratio was increased and associated

with a poorer progression-free survival

Lucarelli et al. (53)

High IDO1 mRNA levels were associated with

an increased overall survival

Riesenberg et al. (54)

and Yuan et al. (55)

Lung cancer IDO1 expression was increased and correlated

with TNM stage and lymph node-metastasis

Tang et al. (56) Low Trp levels and a high Kyn/Trp ratio were

associated with an increased lung cancer risk

in the EPIC study;

In the International Lung cancer cohort

consortium (5,364 smoking-matched case-

control pairs) the highest quintiles of

kynurenine, Kyn/Trp, quinolinic acid and

neopterin were associated with a 20–30%

higher risk and tryptophan with a 15% lower

risk of lung cancer

Chuang et al. (57)

Huang et al. (58)

Enhanced Kyn production and increased TDO2

expression by cancer-associated fibroblasts

was found

Hsu et al. (59) Post-induction chemotherapy increased

Kyn/Trp ratio was associated with an impaired

progression-free and overall survival

Creelan et al. (60)

No associations between IDO1 expression and

clinicopathological parameters were found

Karanikas et al. (61) Low Trp levels and a high Kyn/Trp ratio were

found and associated with high neopterin

levels, low hemoglobin levels, fatigue, and QoL

Kurz et al. (62)

Increased IDO1 expression by infiltrating tumor

cells was related to an impaired overall survival

Astigiano et al. (63) Low Trp levels and a high Kyn/Trp ratio were

found and associated with elevated neopterin

levels

Engin et al. (64)

(Continued)
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TABLE 1 | Continued

Cancer type Tryptophan metabolism within tumor tissues Tryptophan metabolism in the peripheral blood

Findings References Findings References

Low Trp levels and a higher Kyn/Trp ratio were

found and related to tumor progression

Suzuki et al. (65)

Lymphoma High IDO1 expression in tumor infiltrating

immune cells was related to an increased

overall survival

Nam et al. (66) High Kyn levels and Kyn/Trp ratio were found

and associated with tumor progression and a

shorter overall survival in patients with adult

T-cell leukemia/lymphoma

Masaki et al. (67)

Up-regulation of IDO1 in non-Hodgkin

lymphoma tissues was related to tumor

progression, higher serum LDH and an

impaired overall survival

Liu et al. (68) High Kyn levels correlated with an impaired

overall survival

Yoshikawa et al. (69)

IDO1 expression was increased in stroma cells

of Hodgkin lymphoma and correlated with an

impaired overall survival

Choe et al. (70) Low Trp levels and high Kyn levels were found

and related to a shorter overall survival in

patients with adult T-cell leukemia/lymphoma

Giusti et al. (71)

High IDO1 expression in non-Hodgkin

lymphoma tissues was related to a lower

remission rates and an impaired overall survival

Ninomiya et al. (72)

IDO1 mRNA expression was increased in adult

T-cell leukemia/lymphoma cells

Hoshi et al. (73)

Melanoma Increased IDO1 expression in nodal metastases

was associated with an impaired overall survival

Pelak et al. (74) Low Trp levels and a high Kyn/Trp ratio were

found and associated with high neopterin levels

and an impaired overall survival

Weinlich et al. (75)

Increased IDO1 expression in nodal metastases

was associated with clinical recurrence

Ryan et al. (76) Patients who developed major depression

during IFN-α therapy had a significantly higher

Kyn/Trp ratio

Capuron et al. (77)

Increased IDO1 expression in sentinel lymph

nodes correlated with an impaired

progression-free and overall survival

Speeckaert et al. (78)

Increased IDO1 expression in nodal

metastases was associated with a poor survival

Brody et al. (79)

Osteosarcoma High IDO1 expression correlated with an

impaired metastasis-free and overall survival

Urakawa et al. (80)

Pancreatic cancer Increased IDO1 expression upon IFN-γ

stimulation correlated with lymph node

metastasis and an impaired overall survival

Zhang et al. (81) Higher HAA/HK ratio was associated with a

reduced pancreatic cancer risk

Huang et al. (82)

Prostate cancer IDO1 expression was increased and correlated

with serum Kyn/Trp ratio

Feder-Mengus et al.

(83)

High Kyn levels were associated with an

impaired cancer-related survival

Pichler et al. (2)

Thyroid carcinoma IDO1 expression was increased and associated

with tumor aggressiveness

Moretti et al. (84)

TDO, IDO1, and IDO2 are heme-containing enzymes and
catalyze the first and rate-limiting step in Trp breakdown. TDO
is mainly expressed in the liver and oxidizes excess Trp, thereby
generating ATP and especially NAD+. In mammals, NAD+ is
synthesized from Trp via the Preiss-Handler pathway in liver
and kidney (112). Actually, the Trp concentration in the diet
has been shown to influence the liver NAD+ levels (113). TDO
expression is stimulated by its substrate Trp (114) as well as
by heme (115) and corticosteroids (116). NAD+ inhibits TDO
expression, thus forming a negative feedback loop (117). IDO1
can be expressed by many different cells, including antigen-
presenting cells (APCs) like monocyte-derived macrophages,
dendritic cells (DCs) and fibroblasts. Its expression is mainly
induced by inflammatory stimuli such as IFN-γ, tumor necrosis
factor alpha (TNF-α), IL-1, and IL-2 secreted by Th1 type cells,

inflammatory cytokines of innate immune cells as well as TGF-β ,
IL-10, and adenosine secreted by regulatory T cells (Treg) (118).
IDO1 expression is further stimulated by its own product Kyn
via the aryl hydrocarbon receptor (AhR) (119–121) as well as
by the cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)
(122). Contrary to this, IDO1 expression is inhibited by the anti-
inflammatory cytokines IL-4 and IL-13 (123, 124). Little is known
about the physiological functions of the recently detected IDO2.
It is primarily expressed in the liver, kidney, brain, placenta, and
APCs including DCs and B cells; yet, IDO2 is significantly less
active when compared to IDO1 (125). Similar to IDO1, IDO2
expression is stimulated by AhR activation (120). Interestingly,
IDO2 negatively regulates IDO1 activity by competing for heme-
binding (126). IFN-γ also stimulates KMO, KYNU and HAD
activity (127).
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FIGURE 1 | Tryptophan pathway to serotonin and melatonin: This figure illustrates tryptophan breakdown to serotonin via the intermediate product

5-hydroxytryptophan (5-HTP) and the further conversion to melatonin via the intermediate product 5-acetyl-5-hydroxytryptamine.

TRYPTOPHAN BREAKDOWN VIA THE
KYNURENINE PATHWAY MODULATES
IMMUNE RESPONSE

An immunologicaly privileged milieu with a decreased reactivity
to allogeneic (non-self) antigens is found in certain parts of
the human body (e.g., brain, eye, testis, placenta). This immune
tolerance prevents fetal rejection and immune responses against
immunogenic sperms. An enhanced expression of TDO, IDO1,
and IDO2, with a subsequent accumulation of Trp metabolites,
is found in several parts of the human body including the
placenta (128, 129), maternal and embryonic tissues in early
conceptions (130, 131) as well as in the epididymis (132–134).
Therefore, these enzymes are suggested to play an important
role in immune tolerance. Immune tolerizing effects are also
observed in the local tumor microenvironment. An enhanced
Trp catabolism via Kyn pathway seems to be involved in immune
paralysis against tumor cells. This may be primarily mediated by
increased IDO1 expression and subsequent accumulation of Trp
metabolites, since IDO1 is either expressed by many tumor cells
themselves (see Table 1) or by tumor associated cells such as DCs
or endothelial cells (ECs) (118).

Nearly all metabolites of the Kyn pathway affect immune
activity via several mechanisms (Figure 2). Trp depletion

slows down protein biosynthesis in immune cells and induces
cell cycle arrest of T cells via eIF-2-alpha kinase GCN2,
thus making them highly susceptible to Fas-ligand-mediated
apoptosis (135, 136). Activation of GCN2 further promotes
the generation of regulatory phenotypes (Treg) in naive CD4+

T cells (137). Activation of AhR by its endogenous ligand
Kyn results in reduced T helper 17 (Th17) cell differentiation,
while promoting the generation of Treg cells (138, 139).
Treg cells, in turn, induce IDO1 expression in DCs, thus
expanding their own population and forming a positive
regulatory feedback loop (137). Th17 cells upregulate KMO
expression, which reduces the availability of Kyn for AhR
activation and consequently results in a reduced Th17 formation
in the sense of a negative regulatory feedback loop (140).
Finally, several metabolites of Trp breakdown such as Kyn,
3-HK, 3-HAA, QUIN, and picolinic acid were demonstrated
to suppress the proliferation of CD4+ lymphocytes, CD8+

lymphocytes, and natural killer (NK) cells. Furthermore, they
induce apoptosis of these cells probably mediated by oxygen
free radicals (141–144), while 3-HAA induces apoptosis of
monocytes/macrophages (145). However, apoptosis primarily
occurs in Th1 cells and not in Th2 cells, thereby forming
a negative feedback loop and preventing an excessive Th1
activation (141). In addition, the final product of the Kyn
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FIGURE 2 | Tryptophan breakdown via the kynurenine pathway and its interactions with the immune system: This figure illustrates tryptophan breakdown via the

kynurenine pathway. The orange boxes indicate the effects of immune mediators on the kynurenine pathway and the yellow boxes indicate the effects of tryptophan

metabolites on the immune system.
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pathway NAD+ also induces apoptosis in CD4+ and CD8+

lymphocytes (146).
Apart from immune modulating properties, Kyn metabolites

may also help tumors to “optimize their microenvironment”:
Formation of QUIN by glioma cells was described to promote
resistance to oxidative stress (147). Additionally, tumor cells
might enhance their own IDO activity via an autocrine
AhR-IL-6-STAT3 signaling loop (148), thereby suppressing
T-cell proliferation. Upregulation of the tryptophanyl-tRNA
synthetase WARS may protect Trp-degrading cancer cells from
excessive intracellular Trp depletion via IFNγ and/or GCN2-
signaling (149).

On the other hand, 5-MTP, which is produced by
mesenchymal cells such as fibroblasts via 5-HTP, inhibits
migration of cancer cells, tumor growth and cancer metastasis.
This effect is probably mediated by 5-MTP derived inhibition
of COX-2, which is constitutively overexpressed in cancer cells
and promotes carcinogenesis (150). Therefore, reduced 5-MTP
formation due to decreased Trp availability can contribute to
tumor growth and cancer metastasis.

IMMUNE TOLERANCE RELATED TO
INDOLEAMINE 2,3-DIOXYGENASE 1
ACTIVATION IN CANCER PATIENTS

IDO1 expression is a counter-regulatory mechanism to slow
down potentially harmful over-activated immune responses.
However, when the immune system attempts to fight a tumor,
this counter-regulation is highly undesirable (151). In the
majority of studies, an upregulation of IDO1 expression was
associated with a poor clinical outcome (Table 1). Only in a small
number of tumor entities, increased IDO1 activity was associated
with a favorable prognosis (19, 54). The apparent inflammation-
induced IDO1 expression in these patients probably indicates a
stronger innate anti-tumor immune response.

It is suggested that IDO1 takes different positions in the three
phases of cancer immunoediting: elimination, equilibrium, and
escape (118). In the first phase (elimination), most tumor cells
are recognized, and destroyed by the immune system. Low-level
IDO1 production in the tumor microenvironment contributes
to this tumor defense by inhibiting tumor proliferation (152).
During the second phase (equilibrium), heterogeneity, and
genetic instability progress in tumor cells that survived the
elimination phase, thus enabling tumor cells to resist the immune
response (153). In the last phase (escape), the tumor cells
themselves as well as the tolerogenic immune cells produce large
quantities of IDO1 (154), which results in immune tolerance
described above (155, 156).

Due to these findings, inhibition of IDO1 as a therapeutic
approach in cancer treatment has gained increasing attention
in immuno-oncology. A recent study found that limitation
of programmed cell death protein 1 (PD-1) inhibition might
be due to an immunosuppressive tumor microenvironment
based on IDO1 activation within macrophages (157). This
suggests that IDO inhibition can be a potential therapeutic
target in cancer patients, specifically in those who do not

respond to immune checkpoint inhibitors. By now, clinical
trials testing IDO1 inhibitors in combination with other
chemotherapeutic or immunotherapeutic agents seem more
promising than administration of IDO1 inhibitors alone. So
far, five IDO1 inhibitors were studied as potential therapeutic
options in cancer patients: indoximod [IDO pathway modulator;
1-methyl-D-tryptophan (1-MT)], epacadostat (selective IDO1
inhibitor; INCB024360), navoximod (GDC-0919), BMS-986205,
and IDO1-targeting vaccines. All these IDO1 inhibitors were
shown to be safe and well-tolerated (158–161). Epacadostat is the
clinically most advanced IDO1 inhibitor and has been shown to
inhibit tumor growth in mice models (162).

In human patients, epacadostat monotherapy was not
effective (163, 164), while combined administration with PD-
1 or cytotoxin T-lymphocyte-associated protein 4 (CTLA-4)
inhibitors showed promising clinical activity in phase I/II
studies (165–168). Unfortunately, a recent trial with combined
administration of epacadostat with pembrolizumab found no
superiority over pembrolizumab alone (169). Despite this
setback, several ongoing trials investigate the effect of other (also
structurally new) IDO1 inhibitors in combination with different
immunotherapies (162).

INDOLEAMINE 2,3-DIOXYGENASE 2,
TRYPTOPHAN 2,3-DIOXYGENASE, AND
KYNURENINE 3-MONOOXYGENASE IN
TUMOR IMMUNE TOLERANCE

Until now, IDO2 has been investigated far less than IDO1.
Although IDO2 is expressed by cancer cells, it does not contribute
to the accumulation of Trp metabolites to the same extent
as IDO1 (170, 171). However, it was recently implicated that
IDO2 affects B cell-mediated autoimmunity (172), and also
contributes to carcinogenesis in models of pancreatic cancers
(173). Interestingly, IDO2-deficiency was predictive for disease-
free survival in patients receiving adjuvant radiotherapy (173).

Recent studies revealed that TDO may also be involved
in tumor immune-escape. It was demonstrated that TDO is
expressed in various tumors including glial tumors (174), breast
cancers (175), lung cancers (59), colorectal carcinomas (176),
melanomas, bladder carcinomas, and hepatocellular carcinomas
(177). In glial tumors, TDO activity suppressed the anti-tumor
immune responses via increased Kyn production (174). TDOwas
shown to be a promising therapeutic target to improve immune
response to cancer cells (178). A recent study by Schramme
et al. demonstrated that TDO inhibition increases the antitumor
efficacy of immune checkpoint inhibitors (179).

Also, KMO activity may be involved in tumor immune
tolerance. Recent studies have shown that its overexpression
is related to rapid cancer progression and a poor prognosis
(49, 180). Similar to inflammatory-induced IDO1 expression,
KMO expression is induced by inflammatory stimuli (181, 182).
Interestingly enough, the non-steroidal anti-inflammatory drug
diclofenac is capable of binding human KMO, thereby inhibiting
its activity (183). Since there is evidence that diclofenac also
exerts anti-cancer effects (184), a possible explanation might be
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its interaction with Trp metabolism. Diclofenac inhibits COX-2
related IDO1 expression and KMO expression, thus reducing the
accumulation of Trp catabolites.

FATIGUE AND DEPRESSION ARE
RELATED TO IMMUNE ACTIVATION IN
CANCER PATIENTS

Cancer related fatigue (CRF) is a complex multi-dimensional
phenomenon that affects physical, cognitive and emotional
activity, and behavior (185). It is associated with the cancer
and its comorbidities themselves and often deteriorates during
treatment (186). Actually, persisting fatigue limits the adherence
of patients to cancer therapy (187). Chronic inflammation is
proposed to be a leading cause of CRF. Higher inflammatory
markers including IL-6, TNF-α, CRP, and neopterin were shown
to correlate with fatigue in cancer patients prior to treatment,
during treatment and also after treatment (62, 188–190).

Patients with lung cancer and moderate or severe fatigue
are presented with lower Trp and hemoglobin concentrations,
but with higher inflammatory markers (62). They furthermore
assessed their QoL worse, and decreased QoL was associated
with higher inflammatorymarkers and lower Trp concentrations.
These results in 50 patients with lung cancer are well in
line with earlier data showing significant correlations between
fatigue/decreased QoL and immune-mediated Trp degradation
in patients with different malignant diseases (85) as well as
in patients with HIV-infection (191). Interestingly, correlations
between inflammatory markers and decreased QoL were only
seen in patients without antidepressant therapy in both HIV-
infected and lung cancer patients. Also, in patients with colorectal
cancer increased neopterin and decreased Trp levels correlated
significantly with a decreased survival; QoL was worse in patients
with low Trp (192).

A recent study in patients with solid tumors excluded
patients with known depression or antidepressant treatment
or established infection (90). Again, an association between
immune activation and the QoL of patients as well as their
depression susceptibility became evident. Fatigue was present in
a high percentage of patients and was significantly associated
with a decreased QoL, with decreased Trp and hemoglobin
values (90). As low Trp or increased Kyn/Trp concentrations
were associated with fatigue and decreased QoL, respectively,
in several studies, this data indicates that immune activation
and immune-mediated Trp degradation might contribute to the
development of fatigue. Also, Kim and co-workers suggested a
key role of inflammation-induced IDO-activation in CRF (193).

It is of importance that treatment with corticosteroids or anti-
inflammatory drugs like celecoxib reduces fatigue in patients with
advanced cancer (194, 195), suggesting that anti-inflammatory
therapy improves fatigue by interfering with immune activation.
A causal relationship between fatigue and immune activation has
also been proposed in patients with other autoimmune diseases
and infection (196) and treatment with TNF-α antagonists
significantly reduces fatigue in patients with rheumatoid arthritis
and psoriasis (197, 198).

Fatigue is one of the main symptoms of depression,
which is another common comorbidity in subjects suffering
from malignancies, affecting ∼20% of the patients (99–101).
Depression is probably not only due to emotional distress but also
due to immunological mechanisms, whichmight negatively affect
the QoL and increase all-cause mortality (199–201). Enhanced
Trp breakdown as a consequence of immune activation has been
proposed to play a crucial role in the development of depression
in cancer patients (202–204).

Recently, correlations between inflammation markers
(neopterin and CRP) and depression scores in a population
of patients with solid tumors were reported, and particularly
in male patients, lower Trp levels were associated with higher
depression scores and stronger fatigue (90).

This clinical data fit well with results from animal
experiments: Depressive-like behavior related to immune
activation was demonstrated to be associated with an
upregulation of IDO1 (205–207) as well as KMO (208–
210). Peripheral administration of lipopolysaccharide activated
IDO, resulting in a distinct depressive-like behavioral syndrome
(205). Interestingly, IDO inhibition prevented the development
of depressive-like behavior (211), while Kyn administration
dose dependently induced depressive-like behavior. Also the
anti-inflammatory cytokine IL-10 was able to normalize IDO1
expression, thus relieving depressive-like behavior in mice (212).

Depression is also related to enhanced Trp breakdown and
immune activation in patients with HIV-infection (191, 213), as
well as in patients receiving immunotherapy [e.g., IL-2 or INF-α;
(77, 214)].

Immune activation probably affects the development of CRF
and depression also by other mechanisms: Pro-inflammatory
cytokines, for one thing, directly affect basal ganglia and
dopamine function and, for another, activate sensory nerves.
This results in production of pro-inflammatory cytokines and
prostaglandins by microglia in the CNS, which then affect the
functionality of neurons, thereby contributing to fatigue (215).
Immune activation furthermore influences the biosynthesis of
the catecholamines dopamine, epinephrine and norepinephrine
and the neurotransmitter serotonin (216).

INFLAMMATORY-INDUCED TRYPTOPHAN
BREAKDOWN CONTRIBUTES TO THE
DEVELOPMENT OF CANCER RELATED
FATIGUE AND DEPRESSION

There are several pathophysiological mechanisms, which might
explain how Trp metabolites cause CRF or neurobehavioral
symptoms related to CRF such as depression.

Trp is a crucial amino acid in brain homeostasis and a
precursor for serotonin and melatonin synthesis. It can cross
the blood-brain barrier; therefore, reduced Trp availability
may contribute to serotonin dysregulation and neurobehavioral
manifestations (217, 218). However, also the accumulation of
downstream metabolites of the Kyn pathway is suggested to
trigger neurobehavioral symptoms (204, 205).
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QUIN, which is primarily produced by
monocytes/macrophages and microglia, generates free radicals,
causes structural changes, and is a selective agonist at the
glutamate receptor sensitive to N-methyl-D-aspartate (NMDA
receptor) (219). Its accumulation results in excitotoxicity,
neuronal cell death and disturbs glutamatergic transmission
(220). QUIN cannot cross the blood brain barrier, which is why
only QUIN synthesized by microglia or monocytes/macrophages
migrated to the CNS influences neuroimmunology (221). On
the contrary, KYNA is considered as a neuroprotective Trp
metabolite, because it acts as antagonist at the NMDA and other
glutamate receptors (222). Previous studies have demonstrated
that KYNA can protect against QUIN related neuronal damage
(223). This balance between neurotoxic and neuroprotective
effects is expressed by the QUIN/KYNA ratio and related to the
grade of pathway activity, but also immune activation (224). It
was shown that depressed patients have a higher QUIN/KYNA
ratio compared to healthy controls, thus moving the balance
toward the neurodegenerative effects (225). The imbalance of
neurotoxic and neuroprotective Trp metabolites is suggested
to play a major role in the development of neuropsychiatric
symptoms including CRF and depression (226). 3-HK also exerts
neurotoxic effects by causing lipid peroxidation (227).

Although immune system activation frequently coincides with
fatigue or depression in cancer patients, it has to be kept in
mind, that fatigue or depression also can develop isolatedly in
patients with other predisposing conditions (like anxiety or little
social support). Probably the development of neuropsychiatric
disturbances and depression is alleviated in the presence of an
activated immune system and accelerated Trp breakdown, but it
must not necessarily lead to depressedmood.Maybe the handling
of bad news is impaired if Trp and thus serotonin availability
is low.

Additionally, also other factors, like psychosocial aspects
including demographical factors (age, gender, culture/ethnicity
and social support), behavior/well-being (composed of
stress/distress—including spiritual, anxiety, sleep disturbance,
coping style, and pain) but also functional status (performance
status, physical activity level, physical functioning, and
productivity/work) contribute to the development, severity, and
duration of CRF and depression. Moreover, an imbalance in the
autonomic nervous system, disturbances in the hypothalamic-
pituitary-adrenal axis and circadian rhythm as well as hypoxia
or anemia are key players in the pathophysiology of CRF and
depression (228, 229). These factors might in fact enforce vicious
circles, such as e.g., psychosocial stress triggers oxidative stress
and inflammation, and thus tumor progression (201).

INHIBITION OF TRYPTOPHAN
BREAKDOWN FOR TREATMENT OF
FATIGUE AND DEPRESSION

Experiments in mice demonstrated that the IDO pathway
modulator indoximod inhibits depressive-like behavior
(consecutive to bacterial infection) without altering the
infectious immune response (211, 230). Moreover, the specific
IDO1 inhibitor epacadostat was shown to reverse chronic

social defeat in mice (231). Another interesting compound,
which might target IDO, is the antibiotic minocycline,
which was demonstrated to reduce IDO activation and thus
prevent depressive-like behavior in animal studies (232–234).
Minocycline was also able to decrease IDO expression and
the formation of pro-inflammatory cytokines in LPS-treated
monocytic human microglial cells (235–237), suggesting that
IDO inhibition might be responsible for the anti-depressive
effects of minocycline. Also, in humans a large and statistically
significant antidepressant effect of minocycline has been
observed when comparing to placebo [see review and meta-
analysis by Rosenblat and McIntyre (238)]. Due to the good
tolerability, future larger RCTs investigating the potential
of minocycline (238), but also of other anti-inflammatory
treatments (239) are considered. Contrary to these findings,
a recent study with mice showed no improvement of cancer-
related behavioral symptoms when inhibiting IDO1 (either by
an unspecific or a specific IDO inhibitor). Mice treated with
1-MT even had slightly more treatment-associated burrowing
deficits. Genetic deletion of IDO on the other hand had no
effect on the behavior of mice, but was associated with a worse
tumor outcome (240). In consideration of these conflicting data,
more studies investigating effects of IDO inhibition in cancer
are needed. Clinical trials targeting TDO revealed antidepressant
effects as well as amelioration of neurodegeneration following
TDO inhibition, and seem to be a promising therapeutic target
in cancer patients, especially with neurobehavioral symptoms
(241, 242).

Inhibition of KMO also seems to be a possible therapeutic
approach in the treatment of fatigue and depression by
shifting Kyn metabolism toward the enhanced production
of neuroprotective KYNA while decreasing production of
neurotoxic QUIN. A recent mice trial revealed that KMO gene
deletion substantially reduces 3-HK and QUIN concentrations
while elevating KYNA concentrations (243). It was further shown
to ameliorate neurodegeneration in patients with Alzheimer’s and
Parkinson’s diseases (242). Therefore, KMO inhibition may be
a promising therapeutic target in inflammation-related fatigue
or depression by reducing generation of the neurotoxic Trp
metabolites 3-HK and QUIN.

Another recent study showed decreased IDO1 and KMO
expression in the murine brain as well as decreased IDO1 and
IDO2 expression in human peripheral blood mononuclear cells
as a consequence of antidepressant treatment (244, 245). This, in
turn, demonstrates that reduction of psychosocial stress can also
reduce inflammation-related factors.

NUTRITION, MICROBIOME, AND
PHYSICAL ACTIVITY AND ITS
ASSOCIATION WITH TRYPTOPHAN
BREAKDOWN, FATIGUE, AND
DEPRESSION

Monoaminergic antidepressants and also omega-3 fatty acids
were demonstrated to reduce neurotoxic effects related to
Trp breakdown (246). Omega-3 fatty acids contribute to the
beneficial effects of the Mediterranean diet, which is regarded
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as anti-inflammatory diet (247). High adherence to this diet is
linked to a lower risk of developing cancer and to a reduced
cancer mortality in observational studies (248). A “Western”
diet rich in refined sugars and long chain fatty acids and
with low fiber content on the other hand enforces a type 1
pro-inflammatory state (249). Mouse experiments furthermore
showed that Western diet exposure exacerbated hippocampal
and hypothalamic proinflammatory cytokine expression and
brain IDO activation after immune stimulation with LPS (250).
Inflammation-induced Trp degradation in humans might then
further intensify subdued psychosocial factors such as mood,
negative thoughts and lack of energy or simply make patients
more susceptible to them.

In fact, diet and the gut microbiome may influence
inflammation and Trp metabolism by several ways (251):
Microbiota metabolize phytochemicals (e.g., in vegetables) to
indoles, which activate AhR as ligands, while other microbial-
derived metabolites such as the short chain fatty acids butyrate,
propionate, and acetate importantly mediate the crosstalk
between host-microbiota and thereby have immune modulating
effects (251). Actually Trp metabolic pathways are regarded as
key biochemical pathways influencing the microbiota-neural-
immune axis by translating information on the nutritional,
inflammatory, microbial, and emotional state of the organism
to the immune system (252–254) and by modulating intestinal
immune response (251).

A recent review by Weber et al. proposed that preclinical and
several clinical studies argued for the use of a ketogenic diet
(KD) in combination with standard therapies in patients with
cancer (255): KD had the potential to enhance the antitumor
effects of classic chemo- and radiotherapy and to increase the
QoL of patients (255). However, the heterogeneity between
studies investigating these effects and low adherence to diet
limit the current evidence (256). Interestingly, KD was shown to
positively influence the Kyn pathway in rats (257). Increased β-
hydroxybutyrate concentrations and an increased production of
the neuroprotective KYNA were found in rat brain structures as
a consequence of KD (258, 259). Also, a recent study in children
revealed that Kyn levels significantly decreased and KYNA levels
significantly increased 3 months after starting a KD (260).

Significant differences regarding Trp metabolism were
reported between a low-glycemic load dietary pattern
(characterized by whole grains, legumes, fruits, and vegetables)
and a diet high in refined grains and added sugars on
inflammation and energy metabolism pathways (261). In
line with results of this study, a Mediterranean diet and other
plant-based diets have been proposed to reduce fatigue in cancer
survivors (262).

As cancer cells are very vulnerable to nutrient deprivation
(especially glucose), fasting or fasting-mimicking diets (FMDs)
might be another effective strategy to generate environments that
can reduce the capability of cancer cells to adapt and survive
and thus improve the effects of cancer therapies (263). Further
studies investigating the effects of FMDs on Trp catabolism in
the tumormicroenvironmentmight therefore provide interesting
new insights for future treatment approaches.

Besides, treatment with probiotics might be beneficial for
cancer patients: In colorectal cancer survivors, probiotics

(Lactobacillus acidophilus and rhamnosus) improved CRF,
irritable bowel syndromes and QoL significantly in a double-
blind placebo-controlled study (264); furthermore, probiotics
and also melatonin supplementation appear to alleviate side
effects of radiation therapy (265). Probiotic supplementation
with Lactobacillus plantarum in combination with SSRI
treatment improved cognitive performance and decreased Kyn
concentrations in patients with major depression [compared
to SSRI treatment alone, (266)]. Supplementation with a
multispecies probiotic had a beneficial effect on Trp metabolism
in trained athletes (267) and influenced Trp degradation and
gut bacteria composition in patients with Alzheimer’s disease
(268). Additionally, highly adaptive lactobacilli where shown
to produce the AhR ligand indole-3-aldehyde, which enabled
IL-22 transcription for the fine tuning of host mucosal reactivity
(269). Conclusively, these studies indicate that beneficial effects
of probiotics on fatigue or depression might be due to alterations
of Trp metabolism or anti-inflammatory effects [see review by
(270)]. However, evidence is limited due to the heterogeneity
of clinical trials. Therefore, further well-designed longitudinal
placebo-controlled studies are desperately needed (271, 272).

Also, a recent review of clinical trials that assessed nutritional
interventions for preventing and treating CRF suggests that
supplementation with probiotics but also ginseng, or ginger
may improve cancer survivors’ energy levels and that nutritional
interventions, alone or in combination with other interventions
should be considered as therapy for fatigue in cancer survivors.
Nevertheless, there is lacking evidence to determine the
optimal diet to improve CRF in cancer patients (262, 273).
Furthermore, also physical activity, psychosocial, mind-body,
and pharmacological treatments have been proven to be
effective (187).

Physical exercise also affects Trp metabolism and thereby
might improve fatigue and depression. As this subject has been
discussed elsewhere recently (274, 275), it will be discussed
only briefly hereafter. Physical activity increases Trp availability
in the brain, which results in an increased 5-HT synthesis
and anti-depressant effects (276). Increased muscle use of
branched-chain amino acids (BCAAs) favors the passing of Trp
through the blood-brain barrier (277). In addition, endurance
exercise increases concentrations of circulating free fatty acids,
which displaces Trp from albumin, thus increasing free Trp
concentrations (278). Additionally, physical activity increases
the expression of kynurenine aminotransferases, which enhance
the conversion of Kyn into KYNA (unable to cross the blood-
brain barrier), thus protecting the brain from stress-induced
changes (279). Interestingly, intense physical exercise induces the
formation of several pro-inflammatory cytokines (280), which in
turn activate IDO1 and Trp breakdown.

IMMUNE ACTIVATION CAUSING
TRYPTOPHAN DEGRADATION AND
(CONSEQUENTLY) ANEMIA

Another common comorbidity in cancer causing fatigue is
anemia (95, 281). Anemic cancer patients have a worse QoL, an
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adverse outcome as well as a reduced rate of local tumor control
compared to non-anemic cancer patients (282, 283).

Anemia is the most common “hematological complication,”
found in ∼40–64% of patients with malignant diseases (94) and
is mostly due to anemia of chronic disease (ACD) (284). ACD
is caused by enhanced formation of pro-inflammatory cytokines,
which can on the one hand directly inhibit erythropoiesis and on
the other hand restrict the availability of iron for erythropoiesis.
The latter is caused by an increased uptake and retention of iron
within the cells of the reticuloendothelial system together with
a suppression of iron absorption in the duodenum. The master
regulator of iron homeostasis, hepcidin, has a decisive role in
these processes. Similarly to Trp breakdown, this is initially a
protective mechanism of the immune system to restrict available
iron from microbes or tumor cells (285, 286).

IFN-γ, one of the main cytokines of Th1 type immune
response, activates IDO and neopterin formation in
hematopoietic stem cells and also exerts an influence on
the proliferation of various stem cell populations (287). The
intravenous injection of neopterin into mice resulted in a
prolonged decrease in the number of erythroid progenitor
cells and increased the number of myeloid progenitor cells
(CFU-GMs) by activating stromal cells (288).

Trpmetabolites like Kyn, on the other hand, increase hepcidin
expression and inhibit erythropoietin (EPO) production by
activating AhR (289). AhR competes with hypoxia-inducible
factor 2α (HIF-2α), the key regulator of EPO production, for
binding with HIF-1β (289, 290). Well in line with this finding,
Kyn/Trp and neopterin were shown earlier to be associated
inversely with hemoglobin concentrations and positively with
hepcidin concentrations in patients with HIV-infection before
antiretroviral therapy (287). Antiretroviral treatment slowed
down immune-mediated Trp catabolism and improved iron
metabolism and anemia (287).

Interestingly, in patients with different malignant diseases,
increased Kyn/Trp and neopterin concentrations also coincided
with lower hemoglobin values (85). Also, recent data confirms
that anemic cancer patients present with higher inflammatory
markers and a higher Kyn/Trp than non-anemic individuals
(90). The same is also true for patients with anemia due to
inflammation (291) and for HIV-infected patients (191).

Also, QUIN was shown to inhibit EPO production (292)
by stimulating the production of nitric oxide (NO) (293) and
inducing HIF-1α degradation (294).

In patients with myelodysplastic syndromes, a fundamental

role for Trp metabolized along the serotonin pathway

in normal erythropoiesis and in the physiopathology
of MDS-related anemia was demonstrated recently:
Decreased blood serotonin levels were related with impaired
erythroid proliferating capacities, and treatment with
fluoxetine, a common antidepressant, was effective in
increasing serotonin levels and the number of erythroid
progenitors (295).

Low serotonin concentrations are also associated with the
development of depression. Vulser et al. actually showed a
considerable association between anemia and depression in

otherwise healthy adults (296). Increased Trp degradation might
therefore be a connection between anemia and depression.

These findings show that impaired Trp availability but also
accumulation of Trp metabolites, may affect erythropoiesis.
In cancer patients, tumor cells produce TDO and IDO1, and
both are equally capable of producing Kyn (174). However,
they may only contribute to local Trp degradation and
do not influence systemic Trp breakdown. On the other
hand, IDO1 activity is also stimulated by the activated
immune system and thereby contributes to systemic Trp
catabolism. Therefore, inflammation-induced IDO1 activation
and consecutive Trp breakdown might influence erythropoiesis.
The most common symptom of anemia is fatigue, which is
why both ACD and inflammation-induced Trp breakdown
may be major contributors to overall-fatigue in patients with
malignant diseases.

CONCLUSION

Inflammation-induced Trp breakdown in cancer patients is
considered to play a key role in the pathophysiology of
tumor immune tolerance. Accumulation of Trp metabolites as
well as impaired Trp availability suppress the tumor immune
response and may also greatly contribute to the development
of comorbidities such as fatigue, depression, or anemia, which
are all common in patients with malignancies. Although anemia
is primarily caused by the enhanced immune response itself,
inflammatory-induced Trp degradation may also be involved
strongly. Studies have shown that inhibition of Trp breakdown
might be a promising therapeutic option in cancer patients to
counteract the immunosuppressive tumor microenvironment.
Especially cancer patients with no response to immune
checkpoint inhibitors might benefit from an additional IDO1
inhibition. Moreover, there is evidence that inhibition of IDO1,
TDO, and KMO or other interventions targeting Trpmetabolism
(like diet or probiotics) may further improve neurobehavioral
manifestations including CRF or depression. Further studies
investigating the effects of IDO1, TDO, or KMO inhibition
on tumor immune response should also take the impact on
neurobehavioral manifestations into consideration.
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