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Abstract

E2f5 is a member of the E2f family of transcription factors that play essential roles during

many cellular processes. E2f5 was initially characterized as a transcriptional repressor in

cell proliferation studies through its interaction with the Retinoblastoma (Rb) protein for

inhibition of target gene transcription. However, the precise roles of E2f5 during embryonic

and post-embryonic development remain incompletely investigated. Here, we report that

zebrafish E2f5 plays critical roles during spermatogenesis and multiciliated cell (MCC) dif-

ferentiation. Zebrafish e2f5 mutants develop exclusively as infertile males. In the mutants,

spermatogenesis is arrested at the zygotene stage due to homologous recombination

(HR) defects, which finally leads to germ cell apoptosis. Inhibition of cell apoptosis in e2f5;

tp53 double mutants rescued ovarian development, although oocytes generated from the

double mutants were still abnormal, characterized by aberrant distribution of nucleoli.

Using transcriptome analysis, we identified dmc1, which encodes an essential meiotic

recombination protein, as the major target gene of E2f5 during spermatogenesis. E2f5 can

bind to the promoter of dmc1 to promote HR, and overexpression of dmc1 significantly

increased the fertilization rate of e2f5 mutant males. Besides gametogenesis defects, e2f5

mutants failed to develop MCCs in the nose and pronephric ducts during early embryonic

stages, but these cells recovered later due to redundancy with E2f4. Moreover, we demon-

strate that ion transporting principal cells in the pronephric ducts, which remain intercalated

with the MCCs, do not contain motile cilia in wild-type embryos, while they generate single

motile cilia in the absence of E2f5 activity. In line with this, we further show that E2f5 acti-

vates the Notch pathway gene jagged2b (jag2b) to inhibit the acquisition of MCC fate as

well as motile cilia differentiation by the neighboring principal cells. Taken together, our

data suggest that E2f5 can function as a versatile transcriptional activator and identify
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novel roles of the protein in spermatogenesis as well as MCC differentiation during zebra-

fish development.

Author summary

E2f family of transcription factors play essential roles during many cellular processes by

activating or inhibiting target gene expression. E2F5 is recognized as a transcriptional

repressor during cell-cycle progression. However, the role of E2f5 during embryonic

development has not been fully investigated. Here, we show that E2f5 is required both for

spermatogenesis and multiciliated cell differentiation in zebrafish. Specifically, E2f5 regu-

lates homologous recombination, a central event in meiosis, by transactivating the expres-

sion of dmc1. Loss of E2f5 leads to spermatogenesis defects due to meiosis arrest. In

addition, E2f5 plays an essential role during the differentiation of multiciliated cells and

ion transporting principal cells in the pronephric ducts (embryonic zebrafish kidney). We

showed that principal cells were devoid of cilia in the proximal straight tubule of proneph-

ric ducts, while ectopic cilia developed in these cells due to lateral inhibition defects in the

absence of E2f5 protein. Our data suggest that E2f5 functions as a versatile transcriptional

activator during vertebrate development.

Introduction

E2f transcription factor family members are essential for cell proliferation, differentiation, apo-

ptosis as well as many other cellular processes [1]. The roles of E2f proteins in cell-cycle control

have been studied in great detail. In this context, interaction between Rb and E2f family mem-

bers inhibits the transcription of E2f target genes at the G1 phase. Subsequently, phosphoryla-

tion of Rb by cyclin/cyclin-dependent kinases releases E2fs, which allows activation of their

target genes and promotes G1 to S transition [2]. Consequently, unrestrained E2f activity due

to inactivation of Rb, occurs in many types of cancers [2, 3].

Currently, eight different E2f proteins (E2f1-E2f8) have been identified, which can be gen-

erally classified into three categories according to their roles during cell cycle progression:

transcription activators (E2f1, E2f2 and E2f3a), repressors (E2f3b, E2f4 and E2f5) and inhibi-

tors (E2f6, E2f7 and E2f8) [4]. E2f1-3 are categorized as classic activators due to their tran-

scriptional activity when binding to the promoter of target genes during cell-cycle entry. E2f4

and E2f5 function as transcription repressors through interactions with pocket proteins p107,

p130, and Rb to inhibit target gene transcription during early G1 phase [4, 5]. Nevertheless,

such classification is largely based on in vitro experiments probing their roles during the cell-

cycle, which could be oversimplified, and may not necessarily reflect the complicated activities

of E2f proteins in vivo [2].

Although being recognized as transcriptional repressors during cell cycle regulation, our

current appreciation of the roles of E2f4 and E2f5 during embryonic development suggests

alternative mechanisms of function. Mouse E2f4-/- mutants display defects in multiple tissues,

and most die within the first week after birth due to increased susceptibility to opportunistic

infections resulting from defects in the generation of MCCs within the airways [6–8]. E2f4 is

also required for the development of MCCs within the male reproductive system as condi-

tional knockout of E2f4 in E2f5+/- mice caused defects in the efferent ducts of the testes, where

sperm are concentrated and transported into the epididymis [9]. By contrast, the role of E2f5
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during embryonic development is relatively less well investigated. E2f5-/- mice have a short-

ened lifespan and develop hydrocephalus due to excessive cerebrospinal fluid (CSF) produc-

tion [10]. Interestingly, mouse embryonic fibroblasts (MEFs) derived from both E2f4-/- and

E2f5-/- mice display normal cell-cycle kinetics [6, 10]. All of these data suggest that the role of

E2f4 and E2f5 during embryonic development is context-dependent, as opposed to these pro-

teins functioning as general repressors in cell-cycle regulation.

MCCs are a specialized type of post-mitotic cells characterized by differentiation of hun-

dreds of motile cilia that can beat unidirectionally to drive fluid flow over their epithelial sur-

face. In mammals, MCCs are present in multiple organs, such as the spinal cord and brain

ventricles, where they drive the flow of cerebrospinal fluid; the airways epithelia, where they

help clearance of mucus; and in the fallopian tubes, where they are involved in ovum transport

[11, 12]. The Notch signaling pathway is known to play a critical role during determination of

the MCC fate [11]. Inhibition of Notch signaling leads to an expansion of MCC numbers at

the expense of other cell types [13–17] in various tissues where this phenomenon has been

examined. For example, in the zebrafish pronephric duct, the Notch ligand Jag2b is expressed

in developing MCCs. Interaction between Jag2b and Notch1a/Notch3 receptors, a process

called lateral inhibition, orchestrates the segregation of the “salt-and-pepper” pattern of MCCs

and principal cells in the pronephros [13, 18].

Geminin coiled-coil domain-containing protein 1 (Gemc1, aka Gmnc) and Multicilin

(Mci, aka Mcidas) are the known upstream activators of MCC differentiation downstream of

Notch signals [19–22]. Interestingly, both proteins are devoid of an obvious DNA binding

domain, although they both localize to the nucleus. Instead, Gemc1 and Mci associate with

E2f4 and/or E2f5, together with Dp1 to activate gene expression for MCC specification and

differentiation [20, 21, 23, 24]. Intriguingly, besides functioning as a transcription regulator,

cytoplasmic E2f4 has also been shown to participate in the assembly of deuterosomes in the

MCCs—electron-dense ring-like structures that are thought to seed the massive amplification

of centrioles for multiciliation [25, 26].

Homologous recombination (HR) is an essential step during meiosis when homologous chro-

mosomes pair and undergo reciprocal exchange of DNA during the first meiotic division. After

homologous chromosome pairing, meiotic recombination is initiated by the formation of dou-

ble-strand breaks (DSBs) at multiple positions through the actions of several factors including

the topoisomerase-like enzyme Spo11. Later, binding of Dmc1 and Rad51 to the DSBs generates

nucleoprotein filaments and initiates proper strand invasion to form D-loops. The DSBs are

repaired either through a reciprocal exchange of chromosome arms by forming a crossover or

non-crossover where no chromosome exchange happens [27, 28]. Both Rad51 and Dmc1 are

recombinases that are required for strand invasion during meiotic HR, but they have overlapping

and distinct functions. Rad51 regulates HR both in somatic cells and germ cells, whereas Dmc1

is expressed only in meiotic cells [29]. Several pieces of evidence suggest that Rad51 mainly per-

forms an accessory function to promote Dmc1 foci formation during meiosis [30, 31]. Currently,

the role of E2f5 during spermatogenesis, especially in meiosis, has not been reported.

We have generated loss-of-function alleles in zebrafish e2f5 and investigated the role of the

gene during embryogenesis and adult development. Zebrafish e2f5 mutants display sex differ-

entiation defects and develop exclusively as males. Interestingly, all male mutants are infertile

due to meiotic arrest of spermatocytes. We have identified Dmc1 as the major factor account-

ing for HR defects in the mutants, and further show that E2f5 can bind to the promoter of

dmc1, but not rad51. Overexpression of Dmc1 rescued spermatogenesis defects in e2f5
mutants. In addition, we found that E2f5 is not only required for MCC formation, but is also

required cell-nonautonomously to orchestrate the differentiation of neighboring ion trans-

porting principal cells by regulating the expression of jag2b in MCC precursors.
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Results

Mutation of e2f5 results in male infertility in zebrafish

We first analyzed the expression pattern of e2f5 using whole-mount in situ hybridization. e2f5
showed tissue-specific expression at early developmental stages, with high levels of expression

in the olfactory placode, otic vesicle and pronephric ducts at the 10-somite stage (Fig 1A) and

24 hours post-fertilization (hpf) (Fig 1B). At 24hpf, e2f5 was also strongly expressed in the pos-

terior spinal cord (Fig 1B).

To elucidate the function of E2f5, we generated three zebrafish e2f5 alleles, all of which con-

tained frameshift mutations predicted to cause premature termination during translation and

a complete loss-of-function condition (Fig 1C). Surprisingly, animals homozygous for all three

mutant alleles are viable. However, all homozygous e2f5 mutants develop exclusively as males.

Of a total of 723 adults from crosses between heterozygote mutants, we identified 245 wild-

type, 330 heterozygote and 148 homozygous mutants, implying a slightly decreased survival

Fig 1. Mutation of e2f5 leads to male infertility. (A-B) Whole-mount in situ hybridization showing expression of e2f5 at 10-somite stage (10s) and 24 hpf. OP,

olfactory placode; OV, otic vesicle; PD, pronephric duct. (C) Genomic structure and sequences of wild- type (wt) and three e2f5 mutant alleles. The underlined

sequence in wt indicates PAM sequence of sgRNA target. (D) Phenotypes of male and female wild-type and e2f5 heterozygotes. Only fish exhibiting the male

phenotype were present among homozygous mutants. (E) Bar graph showing the percentage of fertilization rates of wild-type, e2f5 homozygote and e2f5
homozygotes carrying Tg(β-actin:gfp-e2f5) transgene as indicated. The numbers of adult males investigated are listed at the bottom. (F) Diagram of the constructs

for making gfp-e2f5 transgene. (G-H) H&E staining results showing testes of wild-type (G) and e2f5 homozygous mutants (H). Arrows indicate primary

spermatocytes. Asterisks point to mature spermatozoa which were substantially reduced in the mutants. (I-J) Confocal images showing the staining of sperm

flagella in wild-type (I) and e2f5 mutant testis (J) visualized with acetylated alpha-tubulin (ac-Tu) antibody. Nuclei and actin filaments were counterstained with

DAPI and phalloidin, respectively. Scale bars: 1cm in panel D, 50 μm in panel G, H and 25 μm in panel I, J.

https://doi.org/10.1371/journal.pgen.1008655.g001
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rate of homozygous mutants. While both wild-type and heterozygote fish displayed a similar

ratio between male and female, none of the 148 homozygous mutants were female (Fig 1D).

When further crossed to wild-type females, all of the homozygous mutants from all three

mutant alleles displayed severe fertility defects (the percentage of fertilization rates in mutants

ca. 3%, n = 18; vs wild-type 94%, n = 4) (Fig 1E). To further explore this phenotype, we gener-

ated a stable transgenic line of E2f5 fused to the C-terminus of GFP, expression of which is

driven by the constitutive and ubiquitously active β-actin promoter (Fig 1F). The fertilization

rate was significantly rescued in e2f5 mutant males carrying this transgene (Fig 1E). Moreover,

this transgene also allowed the recovery of female e2f5 homozygous mutants (S1A and S1B

Fig). These data suggest that the fertility defects are due to a bona fide requirement of E2f5 in

the germline.

In adult wild-type males, fully developed testes are plump and display milky white color,

while testes from e2f5 mutants are slender and the color is also quite transparent (S1C and

S1D Fig). Furthermore, histological sections through the seminiferous tubules showed a large

number of mature spermatozoa and spermatocytes in the wild-type, while the number of

mature spermatozoa were reduced substantially in the mutant testes (Fig 1G and 1H). Immu-

nostaining with acetylated tubulin antibody, which labels the flagella of mature spermatozoa,

also showed the absence of mature spermatozoa in the mutant testes (Fig 1I and 1J). These

results demonstrate that spermatogenesis is strongly impaired in the absence of E2f5 activity.

Spermatogenesis is arrested in prophase I of meiosis in e2f5 mutants

After DNA replication and sister chromatid formation is complete, primary spermatocytes

enter the first meiotic division (prophase I). Absence of mature spermatozoa is suggestive of

defective meiosis in e2f5 mutants. To begin to understand the defect in greater detail, we ana-

lyzed the expression of Synaptonemal complex protein 3 (Sycp3), a marker of meiotic pro-

phase I. Sycp3 is detected first in the lateral element of the synaptonemal complex at leptotene,

and remains as part of this complex during homologous synapsis at zygotene and pachytene

stages. At the later diplotene and diakinesis stages, Sycp3 signals become weakened and is

maintained as short patches between the sister chromatids (Fig 2A–2E) [32]. In e2f5 mutants,

we observed similar distribution of Sycp3 at early stages (Fig 2F–2H). However, the percentage

of spermatocytes at leptotene and zygotene stages were increased dramatically, while those at

later stages were barely seen (Fig 2I), confirming a meiotic arrest of spermatogenesis.

Phosphorylation of H2A histones is indispensable for the recruitment of repair factors to

damaged DNA after DSB formation in leptotene and zygotene spermatocytes. In the wild-type,

staining of phosphorylated histone H2AX (γ-H2AX) first appeared as clusters in the nuclear

region at mid-leptotene stage, and then displayed a scattered pattern throughout the nucleus at

late leptotene and early zygotene stages (Fig 2J). From mid-zygotene stage, γ-H2AX staining

gradually disappeared and no staining was detected from late zygotene onward [33, 34]. In con-

trast, high levels of γ-H2AX staining was present in the mutant testes. In addition to the clusters

of staining at mid-leptotene stage, most cells had strong γ-H2AX staining throughout their nuclei

(Fig 2K), suggesting that spermatogenesis likely arrests at the zygotene stage in the absence of

E2f5.

Apoptosis in e2f5 mutant spermatocytes

Germ cell apoptosis is a common consequence of meiotic arrest during spermatogenesis. The

number of apoptotic cells increased significantly in the testes of e2f5 mutants (Fig 2L–2N). It

has been shown earlier that mutation of the apoptotic gene tp53 (p53) can rescue the sex rever-

sal defects caused by germ cell apoptosis [35, 36]. To test this, we generated e2f5-/-; tp53-/-
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double mutants to prevent cell apoptosis. Although double mutant males were still infertile,

e2f5 female homozygous mutants could be recovered in the absence of p53 activity (4 female

and 4 male double mutants were recovered among 128 adult fish derived from crossing

between two e2f5+/-; tp53+/- heterozygotes) (Fig 2O), suggesting that p53 mediated germ cell

apoptosis contributes to the absence of female e2f5 mutants. Interestingly, e2f5-/-; tp53-/-

females were able to produce eggs when crossed to wild-type males, although the fertilization

rates were low and most fertilized eggs developed abnormally at later stages (Fig 2P, S1E and

S1F Fig). Further histological analysis showed that the symmetrical distribution of nucleoli

near the nuclear periphery (stage IB oocyte) was consistently disrupted in oocytes from the

Fig 2. Spermatogenesis arrest in e2f5 mutants. (A-H) Confocal images of primary spermatocytes at different prophase stages of meiosis I as indicated

by anti-Sycp3 antibody staining (red). Arrowheads indicate spermatozoa nuclei from wild-type testis stained with DAPI in blue (A-E). (I) Bar graph

showing the statistical results of the percentage of cells in different meiotic stages. The numbers of spermatocytes investigated are shown on top of each

bar. (J-K) Staining of γH2AX (red) in the testes of wild-type and e2f5 mutant. Arrows point to the primary spermatocytes at leptotene and zygotene

stages. (L-M) Confocal images showing apoptotic cells stained by TUNEL assay in red. (N) Bar graph with individual data points showing the number

of TUNEL positive cells in wild-type and e2f5 mutant testes. (O) Phenotypes of e2f5;tp53 double mutants. (P) Bar graph showing the percentage of

abnormal embryos produced from e2f5;tp53 double mutant females crossed with wild-type males. n = 441 from two double mutant females. (Q-T)

Histological analysis of ovaries from wild-type and e2f5;tp53 double mutants. Inserted images are magnified views. Arrow in Q indicates peripheral

localization of nucleoli stained by DAPI in stage II oocytes of wild-type ovary. The asterisk in S indicates cortical alveoli at later stage oocytes, which

were visible under the confocal microscope due to autofluorescence. In panels J-M, Q-T, nuclei were counterstained with DAPI in blue. Scale bars:

10 μm in panel A-H, J-M and 50 μm in panel Q-T.

https://doi.org/10.1371/journal.pgen.1008655.g002
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double mutants (Fig 2Q and 2R). In addition, late-stage oocytes, normally distinguished by

numerous cortical alveoli, were also barely seen in the mutant ovaries (Fig 2S and 2T). Thus,

even though ovaries formed, oocyte development remained defective in the double mutant

females.

Transcriptome analysis of e2f5 mutants

To further clarify the reason of meiotic arrest in e2f5 mutants, we performed RNA sequencing

(RNA-seq) analysis on the testes of wild-type and e2f5 mutants. Sequencing results from two

independent sample sets (in total from 10 wild-type and 10 mutants) revealed distinct gene

expression patterns of e2f5 mutant testes relative to those of wild-type controls (Fig 3A). We

found 1352 transcripts upregulated in e2f5 mutants compared to wild-type, whereas 763 tran-

scripts were downregulated (FDR< = 0.05). Surprisingly, most genes associated with homolo-

gous recombination, including rad51, blm, ino80 and brca2 [37, 38], showed grossly normal

expression levels in the mutants (Fig 3B, S2A Fig). However, the expression of dmc1, an essen-

tial gene involved in meiosis homologous recombination, was significantly downregulated in

the mutants (Fig 3B, S2A Fig). To further validate this finding, we compared the expression

levels of genes involved in meiotic HR via qRT-PCR. Of all the genes tested, dmc1 was again

the only one significantly down regulated in e2f5 mutant testes (p = 4.21E-24), while other

genes, including rad51, were expressed at similar levels to those of the wild-type controls (Fig

3C, S2B Fig). Expression level of tp53 was also increased, which is consistent with the TUNEL

assay results (Fig 3C).

Overexpression of Dmc1 rescued spermatogenesis defects in e2f5 mutants

Mutation of DMC1 in humans and mice leads to male sterility due to defects in spermatogene-

sis [39]. In the medaka fish, loss-of-function of Dmc1 has been reported to produce abnormal

sperm with multiple tails [40]. In line with this, we also observed abnormal sperm with two

flagella in zebrafish e2f5 mutants (S3 Fig), suggesting that the decreased expression of Dmc1

could be the key issue underlying the defects in spermatogenesis in e2f5 mutants. To test this

hypothesis directly, we generated a stable transgenic line expressing dmc1 under the control of

the β-actin promoter (Fig 3D). With this transgene, the fertilization rates were significantly

increased in e2f5 homozygous mutants (Fig 3E). The majority of e2f5 homozygous mutants

(19 of 26 males) have fertilization rates lower than 5%, while 9 of 17 e2f5 mutants containing

dmc1 transgene showed fertilization rates above 10%. Of note, in some of the transgenic lines,

the fertilization rates increased to 77%, comparable to the rescue efficiency observed in Tg(β-
actin:gfp-e2f5) transgenic e2f5 mutants (Figs 3E vs 1E). Histological analysis and immunostain-

ing with acetylated tubulin antibody revealed that the number of mature spermatozoa was also

substantially increased in the testes of the transgenic mutants (Fig 3F–3K).

E2f5 binds to the promoter of dmc1
To investigate whether E2f5 can regulate dmc1 gene expression directly, we performed chro-

matin immunoprecipitation (CHIP) analysis. We dissected testes from Tg(β-actin:gfp-e2f5)

transgenic fish and incubated the lysate with anti-GFP antibody to pull down E2f5-binding

DNA fragments. Following this, PCR analysis showed a –309 to +245 DNA fragment, near the

transcription start site of dmc1, to be significantly enriched for E2f5-binding (Fig 3L). On the

contrary, we failed to amplify any transcription elements of rad51 and blm genes, which are

both involved in HR, but show normal expression levels in e2f5 mutants (S2A Fig). To confirm

the binding activity of E2f5, we further performed electrophoretic mobility shift assays

(EMSAs). By searching the promoter of dmc1, we identified one potential E2f5 binding site
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Fig 3. E2f5 binds to the promoter of dmc1. (A) Heat map of RNA-seq transcriptome analysis from two sets of wild-type and mutant testes. (B) Expression

heat map of genes involved in homologous recombination in wild-type and e2f5 mutants. The full list of genes analyzed is listed in S2A Fig. (C) qRT-PCR

results showing the relative expression level of genes involved in homologous recombination in wild-type and e2f5 mutant testes. The expression of each gene

in wild-type testes was set as 100%. The full list of genes analyzed is listed in S2B Fig. (D) Diagram of the construct used for generating Tg(β-actin:dmc1)
transgenic fish. (E) Dot plot showing the fertilization rate of e2f5 mutants carrying the Tg(β-actin:dmc1) transgene. (F-H) H&E staining results showing testes

from wild-type, e2f5 mutant and e2f5 mutant carrying Tg(β-actin:dmc1) transgene. Asterisks indicate mature spermatozoa. Arrows indicate spermatocytes.
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within the +29 to +44 region (Fig 3M). When incubated with recombinant zebrafish E2f5

protein, only FAM-labeled wild-type, but not mutant probe, showed band shift (Fig 3N).

Together, these data suggest that E2f5 can transactivate the expression of dmc1 by directly

binding to its promoter region.

Multiciliogenesis defects in e2f5 mutants

E2f5 plays an essential role during multicilia formation in MCCs by regulating the expression

of genes required for centriole duplication and ciliary motility [23, 24]. Moreover, gene ontol-

ogy analysis of biological functions of the transcriptome in e2f5 mutants also pointed to

dramatic expression changes of genes required for ciliogenesis (S4 Fig). Whole-mount immu-

nostaining results with anti-glycylated tubulin antibody showed that MCCs failed to develop

in the mutant pronephric tubules and olfactory pits, while single cilia in spinal cord and ear

hair cells developed normally (Fig 4A and 4B, S5A–S5H Fig). MCCs are enriched in the proxi-

mal tubule of zebrafish pronephros, which can be further subdivided into proximal convoluted

tubule (PCT) and proximal straight tubule (PST) [41]. Interestingly, multicilia in the PST of

pronephric tubules, but not PCT, recovered at 5dpf in the mutants (Fig 4C and 4D, S5G and

S5H Fig). This could be due to the redundancy of function with E2f4. We therefore generated

e2f4 mutants to address this issue (S5I Fig). Although MCCs developed completely normally

in the e2f4 mutants, e2f4;e2f5 double mutants displayed a complete block in multiciliogeneis

both in the pronephric tubules and the nose (Fig 4E–4H, S5J–S5M Fig). On the other hand,

the recovery of MCCs in the PST was completely inhibited in the double mutants and only

single cilia were present at 5dpf (Fig 4H).

To gauge whether the single cilia of the double mutants are motile or immotile, we assessed

cilia motility in the pronephric tubules with high-speed video microscopy. In the PST of 5 dpf

wild-type larvae, coordinated cilia beating formed a rhythmic sinusoidal wave, a characteristic

pattern of multicilia motility (Fig 4I, S1 Movie) [42]. By contrast, in e2f4; e2f5 mutants, cilia

movement appeared to be uncoordinated (Fig 4J, S2 Movie). Although ciliary beat frequency

was similar to that of multicilia in wild-type embryos, the pronephric tubules were significantly

dilated (Fig 4K–4L). Noticeably, all the cilia in the PST were single motile cilia, and the number

of cells bearing cilia appeared to be increased in the mutants (S2 Movie). To further examine

this, we labeled cilia and basal bodies with anti-acetylated alpha-tubulin and gamma-tubulin

antibodies, respectively. In wild-type and e2f4 mutant larvae, each multicilia bundle arose

from numerous basal bodies (Fig 4M and 4N). In contrast, each cilium was associated with a

single basal body in e2f5 and e2f4;e2f5 double mutants (Fig 4O and 4P). We compared the

number of cells bearing cilia in the PST region and found the number of ciliated cells increased

significantly (Fig 4Q). Together, these data suggest that differentiation of the MCCs is inter-

rupted in e2f4; e2f5 double mutants.

Cilia are not present in the PST principal cells

Principal cells have been suggested earlier to form cilia in the pronephric duct region [13, 18].

To clarify from where the extra motile cilia arose in the e2f4;e2f5 mutants, we further

(I-K) Confocal images showing the staining of sperm flagella visualized with an anti-acetylated tubulin antibody in green in wild-type and mutant testes as

indicated. Nuclei and actin filaments were counterstained with DAPI (blue) and phalloidin (red) respectively. (L) CHIP analysis of GFP-E2f5 binding to the

promoter of dmc1. (M) Diagram showing the position and sequence of potential E2f5 binding site near the transcription start site (TSS) of the dmc1 gene. (N)

EMSA analysis of the interaction between E2f5 protein and oligonucleotide probes corresponding to the wild-type and mutant E2F binding sites as indicated in

panel M. “++” indicates that the amount of probes was doubled than those in other parallel experiments (+). Scale bars: 100 μm in panel F-H and 25 μm in

panel I-K.

https://doi.org/10.1371/journal.pgen.1008655.g003
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investigated ciliogenesis in the PST region. Using a stable Tg(β-actin:Arl13b-GFP) trans-

gene which labels cilia in the pronephric duct, we observed that all the cilia in the PST

region of wild-type embryos were motile at 24 hpf (S3 Movie). We further performed dou-

ble in situ hybridization analysis using trpm7, a principal cell marker, together with several

genes required for ciliary motility, including rfx2, foxj1a, zmynd10, lrrc50, as well as gmnc, a

marker for multiciliated cells. The expression of trpm7 and all of these motile cilia related

genes showed clearly non-overlapping expression pattern (Pearson’s Correlation Coeffi-

cient were all close to 0), suggesting that these motile cilia were not differentiated from prin-

cipal cells (Fig 5A–5J, S6A Fig). Moreover, cilia were of similar length in this region when

labeled with anti-acetylated tubulin antibody (Fig 5K and 5L). These findings suggest that

Fig 4. Multiciliogenesis defects in e2f5 mutants. (A-H) Confocal images showing cilia in the PST region of the pronephros of wild-type and mutant larvae at

different stages as indicated. Cilia were visualized with anti-glycylated tubulin antibody in green. Nuclei were labeled with DAPI in blue. Red arrowheads indicate

multicilia bundles and yellow arrowheads indicate single cilia. (I-J) Still images from S1 and S2 Movies showing cilia in the PST of 5dpf wild-type (I) and e2f4;e2f5
(J) double mutants. Bottom images show kymographs of cilia movement. (K) Beating frequency of cilia in the pronephric tubules of wild-type and e2f4; e2f5 double

mutants. (L) Dot plot showing the width of pronephric tubule lumen as indicated by vertical lines in panel I and J. (M-P) Confocal images showing cilia and basal

bodies labeled with anti-acetylated tubulin (ac-Tu, green) and anti-γ tubulin (γ-Tu, red) antibodies in the PST of 48 hpf wild-type and mutant larvae as indicated.

Staining of γ-tubulin is also indicated in the bottom to show the multiple basal bodies of MCCs (red arrowheads) and single ciliary basal bodies (yellow

arrowheads). (Q) The number of cells bearing motile cilia per arbitrary unit (a.u.) in the PST region of wild-type and mutant larvae as indicated. Scale bars: 25 μm

in panels A-H, 10 μm in panels I, J and 5μm in panels M-P.

https://doi.org/10.1371/journal.pgen.1008655.g004
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contrary to previous reports [13, 18], motile cilia in the PST region do not differentiate on

principal cells.

E2f5 determines principal cell differentiation by regulating jag2b
expression in MCCs

As mentioned before, during zebrafish pronephros development, the fate of MCCs and princi-

pal cells is determined through the Notch signaling pathway. Zebrafish mind bomb (mib)

mutants are deficient in a ubiquitin ligase essential for Notch signaling, and thus, develop

supernumerary MCCs in the pronephric ducts (S7A–S7J Fig) [13]. Consistent with this and

the requirement of e2f5 in MCC formation, the expression of e2f5 was expanded in mib
mutants (Fig 6A and 6B). We next examined the expression of a suite of genes associated with

MCC development in the e2f5 mutants to uncover the exact defect in the MCC developmental

program. We observed that the expression of rfx2, foxj1b, odf3b and cetn4, which are highly

expressed in the MCCs, was strongly reduced in e2f5 mutants, further confirming the defect in

multiciliogenesis (Fig 6C–6H, S7K and S7L Fig). On the other hand, the expression of foxj1a, a

master regulator for motile cilia formation, was maintained in the mutants, suggesting differ-

ent roles of foxj1a and foxj1b during MCC differentiation (Fig 6I and 6J).

Fig 5. Cilia are not present in the PST principal cells. (A-E) Double fluorescence in situ hybridization results showing the expression of trpm7 and different

motile cilia related genes as indicated. (F-J) Line profile plots showing the pixel intensities of green and red channels along the dotted line in panels A-E. (K)

Confocal image showing cilia in the PST region of a 24 hpf wild-type larva. Cilia were visualized with anti-acetylated tubulin antibody in green and nuclei were

counterstained with DAPI in blue. (L) Box plot graph showing relative length of 198 individual cilia from 33 embryos. Each dot represents a single cilium. Scale

bars: 10 μm.

https://doi.org/10.1371/journal.pgen.1008655.g005
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Fig 6. Ectopic motile cilia developed in the principal cells of e2f5 mutants. (A-P) Whole-mount in situ hybridization results showing the expression

of e2f5 and other marker genes in the pronephric duct of 24 hpf control and mutant larvae as indicated. The numbers in the bottom right-hand corners

indicate the numbers of embryos with similar staining results (left) and total numbers of embryos analyzed (right). (Q-V) Fluorescence in situ
hybridization results showing the expression of rfx2 (red) and trpm7 (green) in the pronephric tubule of 36 hpf wild-type control (Q-S) and e2f5 mutant

larvae (T-V). (W-X) Line profile plots showing the pixel intensities of green and red channels along the dotted line in panels S and V. (Y)

Immunofluorescence results showing the staining of anti-acetylated tubulin (ac-Tu) and α6F antibodies on cross-sections through the pronephric

tubules of 5dpf control and e2f5 mutant larvae. (Z) Model illustrating dual roles of E2f5 during multiciliogenesis. In the absence of E2f5 (maybe also

E2f4), both MCC and principal progenitor cells developed a single motile cilium. Scale bars: 500 μm in panels A-P, 10 μm in panels Q-V and 5 μm in

panel Y.

https://doi.org/10.1371/journal.pgen.1008655.g006
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Unexpectedly, the expression of jag2b was also dramatically diminished in e2f5 mutants

(Fig 6K and 6L). Inhibition of Jag2b expression leads to MCC hyperplasia at the expense of

principal cells [13, 18]. To test whether the number of MCCs and principal cells changed in

e2f5 mutants, we further stained the mutants with several MCC and principal cells markers.

The expression of trpm7, together with other markers for transporting epithelial cells were

unchanged in the mutants (Fig 6M and 6N, S7M–S7T Fig). Furthermore, the expression of

gmnc, an early MCC differentiation marker was also unchanged (Fig 6O and 6P). These results

suggest that although lateral inhibition was diminished, the number of the progenitor cells of

MCCs and principal cells was maintained in the mutants. We hypothesized that extra motile

cilia in the PST region of pronephric tubules of the e2f5 mutants may come from principal

cells. To test this, we performed double fluorescence in situ hybridization assay with trpm7
and rfx2 genes. Rfx2 is a central regulator for ciliogenesis and also a marker for MCCs [18]. In

wild-type larvae, rfx2 and trpm7 displayed a mutually exclusive expression pattern (Fig 6Q–6S

and 6W). By contrast, rfx2 and trpm7 transcripts partially colocalized in the mutant proneph-

ric ducts (Fig 6T–6V and 6X). Pearson’s Correlation Coefficient analysis also suggested a posi-

tive correlation in the expression of these two genes in the mutants (S6B Fig). Together, these

data suggest that some of the principal cells expressed rfx2 in the mutants. Indeed, double

immunostaining with α6F (antibody against chick alpha-1 subunit of the Na+/K+ ATPase)

and acetylated-alpha tubulin antibody showed that cilia developed in the principal cells of e2f5
mutants, but not in those of wild-type larvae (Fig 6Y).

Together, all of these findings suggest that E2f5, possibly together with E2f4, is required

both for multiciliated and principal cell differentiation. In e2f5 single or e2f4; e2f5 double

mutants, the progenitor cells of MCCs and principal cells developed but failed to further

undergo their specific differentiation programs. Instead, both MCCs and principal cells

developed single motile cilia (Fig 6Z).

Discussion

During cell-cycle regulation, E2F5 has been recognized as a transcriptional repressor that

inhibits gene expression at G1 phase. In this study, we provide data to show that E2f5 also

functions as a transcription activator. In particular, E2f5 activates the transcription of dmc1 to

promote homologous recombination during meiosis. Our data, together with previous reports,

suggest that E2f5 also functions as a transactivator to control the expression of genes required

for centriole duplication and ciliogenesis during MCC differentiation. Interestingly, when

investigating the role of E2f5 through luciferase reporter assay, we found that E2f5 can func-

tion as a transcriptional repressor in cultured cells (S8A and S8B Fig). Furthermore, we gener-

ated an e2f5 mutant line carrying the inducible transgene Tg(fabp10:rtTA2s-M2;TRE2:EGFP-
krasG12V), which contains a liver-specific double transgene to induce the expression of EGFP-

KrasG12V specifically in the liver that leads to excessive cell proliferation and subsequent carci-

nogenesis [43, 44]. e2f5 mutant fish developed significantly enlarged and hyperplastic livers

than wild-type siblings, providing corroborating evidence that E2f5 does play an inhibitory

role during cell proliferation (S8C and S8D Fig). Thus, our present data together with earlier

studies suggest that E2f5 is an ambivalent transcription factor, acting as an activator as well as

repressor during development, in a context-dependent manner.

During sexual maturation, juvenile zebrafish usually first develop presumptive ovaries that

contain gonocytes, early meiotic oocytes, and perinucleolar oocytes. Later, oocytes in animals

that will become females continue to mature. By contrast, those fish with oocyte degeneration

and spermatogonia and spermatocyte development develop as males [45]. Whole-mount in
situ hybridization with vasa, a germ cell marker, showed that the number of primordial germ
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cells (PGCs) appeared to be normal in e2f5 mutants at early stages. Recovery of females among

e2f5; tp53 double mutants indicates that oocyte apoptosis is the main reason for the loss of

females among e2f5 mutants. These findings also suggest that similar to spermatocyte apopto-

sis, E2f5 may also regulate homologous recombination during oocyte meiosis. Meiosis arrest

in e2f5 mutants is similar to that reported for brca2 and fancl mutants [35, 36, 46]. Both Brca2

and Fancl function to repair Spo11-induced double strand breaks to initiate meiotic recombi-

nation by forming complex with Rad51 and Dmc1 [28]. These data indicate that mutations

affecting factors involved in DSB repair will result in meiosis arrest and germ cell apoptosis,

which finally causes the male infertility phenotype. We have shown here that E2f5 binds

directly to dmc1 promoter and that the downregulation of dmc1 expression is the major factor

accounting for HR defects in e2f5 mutants. Although overexpression of Dmc1 increased male

fertility in e2f5 mutants, we failed to recover mutant females, suggesting that other genes regu-

lated by E2f5 also contributes to proper oocyte development.

We have also extended and further clarified the role of E2f5 in the development of the

MCCs. Our data are consistent with a model of E2f5 playing cell autonomous and non-cell

autonomous functions for the differentiation of the MCCs and the principal cells. e2f5 expres-

sion is regulated by Notch signaling, the major signaling pathway regulating MCC differentia-

tion. E2f5, by interacting with Gmnc, activates the expression of genes required for basal body

amplification and multiciliogenesis in the MCCs. This may also include the expression of

Jag2b, which activates Notch signaling in the neighboring principal cells and prevents them

from adopting the MCC fate (Fig 6Z). In e2f5 mutants, MCCs failed to form due to the absence

of key genes required for centriole duplication. Interestingly, expression of gmnc, an early

marker for MCCs, is unaffected in e2f5 mutants (Fig 6O and 6P). Gmnc functions both in

the initial step for MCC precursor specification and is also required for later multiciliogenesis

[47]. These results suggest that multiciliated progenitor cells develop in the mutants, and the

numbers of these cells are unchanged. In the neighboring principal cells, the expression of sev-

eral ciliary genes is de-repressed due to the absence of inhibitory Notch signaling from the loss

of Jag2b in the MCCs. Consequently, the expression of foxj1a is activated in these cells, which

promotes the formation of a single motile cilium. Interestingly, our data also suggest a func-

tional difference of foxj1a and foxj1b during multicilia formation. Foxj1b likely contributes to

multiciliogenesis in MCCs, while Foxj1a is a general factor for motile cilia differentiation. In

gmnc mutants, the expression of foxj1b is absent while foxj1a remains unchanged, which fur-

ther confirms their functional diversity [19]. Finally, principal cell markers, including trpm7,

appear to be expressed normally in the e2f5 mutants. Together, these results suggest that both

MCCs and principal cell precursors are specified in the mutants, while multiciliation and lat-

eral inhibition is interrupted due to the loss of E2f5, and this finally results in the formation of

single motile cilia in both cell types.

In conclusion, our study shows that besides its function as a transcription repressor during

cell division, E2f5 also functions as a transcription activator both in spermatogenesis and mul-

ticiliogenesis. This information will help us to further appreciate the genetic complexity in the

function of the E2f factors during embryonic and post-embryonic development as well as in

adult physiology.

Materials and methods

Ethics statement

All zebrafish study was conducted according standard animal guidelines and approved by the

Animal Care Committee of Ocean University of China (Animal protocol number:

OUC2012316).
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Zebrafish strains and mutants

All zebrafish strains were maintained at 14-hour light / 10-hour dark cycle at 28.5˚C. mibta52b

mutant line was obtained from Dr. Anming Meng. tp53zdf1 mutant line was obtained from Dr.

Jianfeng Zhou. The Tg (fabp10:rtTA2s-M2;TRE2:EGFP-krasG12V) transgenic line was a gift

from Dr. Zhiyuan Gong. Zebrafish e2f4 and e2f5 mutants were generated with CRISPR/Cas9

system with the following target sequences: e2f4: 5’- AGATCTCAAGTTGGAACTGG -3’,

e2f5: 5’-GGGTGACGAACTTGACTGTG -3’. The single guide RNA and Cas9 mRNA were

synthesized using Ambion’s MEGAshortscript T7 Transcription Kit (AM1354). Guide

sgRNAs and Cas9 mRNA were co-injected into zebrafish embryos at the one-cell stage.

Transgenic lines

The transgenic fish expressing e2f5 or dmc1 were generated using Multisite Gateway technol-

ogy. Briefly, the open reading frame of e2f5 and dmc1 was amplified from zebrafish cDNA

library and cloned into pDONR vector using BP reaction (Invitrogen). For e2f5 gene, the ORF

was cloned into pDONRP2R-P3 vector, then multisite gateway recombination was performed

with the following constructs: pDEST vector, p5E-β-actin, pME-EGFP and pDONRP2R-P3-

e2f5. The dmc1 final construct was generated through multisite gateway with pDEST vector,

p5E-β-actin, pDONR221-dmc1 and p3E-IRES-EGFP. Multisite gateway cloning was per-

formed according to the standard protocol from Invitrogen (Life Technologies).

Whole-mount in situ hybridization

Whole-mount in situ hybridization was performed according to the standard protocol. The

primers used to amplify genes involved in the development of MCCs and principal cells are

listed in S1 Table. The clcnk, slc12a1 and slc4a4a genes were obtained from Dr. Ying Cao. Dou-

ble fluorescent in situ hybridization was carried out using TSA-plus Fluorescein System (Per-

kin Elmer) according to manufacturer’s protocol. Images were captured with Leica M165FC

microscope or Leica TCS SP8 confocal microscope.

Immunohistochemical staining, immunofluorescence and TUNEL assay

Zebrafish testes were dissected and fixed in 4% paraformaldehyde (PFA) (w/v) in PBST over-

night at 4˚C. After gradual dehydration through 30%, 50%, 75%, 95% and 100% ethanol, the

testes were embedded in JB4 embedding medium (Polysciences Inc.). Sections and H&E stain-

ing were performed as previously described [44]. For immunofluorescence on whole-mount

larvae or cryosections through the testis, the following antibodies were used: mouse anti-acety-

lated tubulin (sigma, T6793), rabbit anti-acetylated tubulin (Cell Signaling Technology,

5335S), anti-glycylated tubulin (EMD, TAP952), anti- γ tubulin (sigma,T5326), anti-γ-H2Ax

(Genetex), and a6F (Developmental Studies Hybridoma Bank). TUNEL assay was performed

using the in situ cell death detection kit (Roche) according to standard protocols from the

manufacturer.

Quantitative PCR

Testes from e2f5 mutants or control siblings were dissected to isolate total RNA. cDNA was

synthesized using PrimeScript 1st strand cDNA Synthesis Kit (Takara). qPCR was performed

on the Step One real-time PCR system (Thermo Scientific) using the Eva-Green Master Mix

(ABM). The primers used for qPCR are listed in Supplementary S2 Table. Relative gene

expression levels were quantified using the comparative Ct method (2−ΔΔCt method) based

on Ct values for target genes and zebrafish β-actin.
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Chromatin-immunoprecipitation assay

Testes from Tg(β-actin:GFP-e2f5) transgenic fish were first crosslinked in 1.85% PFA for 15

min at room temperature, and subsequently quenched with 0.125M glycine for 5 min with

gentle shake, then homogenized with nuclei lysis buffer (50 mM Tris-HCl pH8.0, 10 mM

EDTA, 1% SDS, 1 mM PMSF and protease inhibitor APL). The sample was sonicated using

Bioruptor sonicator (Diagenode) for 15 min with 30s ON and 30s OFF at high power. 50 μl

sonicated samples were saved as input control. Then, 25 μl GFP-Trap-A (Chromotek) was

added to the sonicated samples and incubated overnight at 4˚C with rotation. After 1 min cen-

trifuge at 1000g, the beads were washed sequentially with wash buffer I (20 mM Tris-HCl pH

8.0, 2 mM EDTA, 1% TritonX-100, 150 mM NaCl and 0.1% SDS), wash buffer II (20 mM

Tris-HCl pH 8.0, 2 mM EDTA, 1% TritonX-100, 500 mM NaCl and 0.1% SDS), wash buffer

III (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.25 M LiCl, 1% NP-40 and 1% Deoxycholate

Sodium Salt) and TE buffer (10 mM Tris-HCl pH 8.0 and 1mM EDTA). Finally, 500 μl elution

buffer (25 mM Tris-HCl, 10 mM EDTA and 0.5% SDS) were added to elute the DNA-protein

complex at 65˚ for 15 min. The supernatant was transferred to a new tube and 20 μl 5M NaCl

was added, then incubated at 65˚ for 4 hours to reverse crosslinks. Finally, the immunoprecipi-

tated DNA were purified using Phenol/Chloroform/Isoamyl alcohol and further analyzed with

regular PCR. The following primers were used for PCR analysis: dmc1 forward: 5’-

GCTGCAAAGCTGAAGTATTC-3’, reverse 5’- CACGTAATTTGGTAACAAG-3’; rad51 for-

ward 5’- TGCCAGTAGTTTGAATGAGC -3’, reverse 5’- TCACTCACCCGCTAAGCTAC -3’

and blm forward 5’- TAGTCCTATTATTAGCGCCG -3’, reverse 5’- AACCAAATAACA-

CAACAAAG -3’.

Electrophoretic mobility shift assay (EMSA)

The coding region of e2f5 was amplified from cDNA library and ligated into pDONR221

Gateway entry vector. After LR reaction, full-length coding sequence was further cloned into

pET30A vector. The expression of E2f5 was induced by 0.5 mM IPTG and purified with

nickel-nitrilotriacetic acid resin column (GE Healthcare). All the synthetic oligonucleotides

were FAM-labelled at the 5-terminal (Beijing Genomics Institute). The oligonucleotides were

first dissolved in distilled water to a final concentration of 100 μM and annealed with their

complementary oligonucleotides to a final concentration of 25 μM. The binding reaction was

carried out with 3 μg purified protein, 1μl annealed oligonucleotide in binding buffer (10 mM

Tris-HCl pH 8.0, 50 mM NaCl, 1 mM MgCl2, 0.5 mM EDTA, 0.5 mM DTT and 4% glycerol).

After 40 min incubation at room temperature, the samples were analyzed by 6.5% native poly-

acrylamide gel electrophoresis and detected using ChemiDoc MP Imaging System (Bio-Rad).

Chromosome spreading

To determine the stages of meiosis, testes were dissected from wild-type and mutant zebrafish

and incubated in 50 μl 1 X PBS. After gently tearing up using a pair of tweezers, 10 μl liquid

was transferred into 300 μl hypotonic solution (100 μl 1xPBS plus 200 μl double distilled

water) onto an adhesive slide. After 25 min incubation, the cells were fixed in 4% PFA for 5

min, washed three times with PBS, then blocked 30 min with blocking solution (10% goat

serum, 3% BSA, 0.05% TritonX-100). The slides were further incubated with Anti-Sycp3 anti-

body (Abcam, ab150292) for 4–5 hours at room temperature. Then after a brief wash, the sec-

ondary antibody was added and the slides were incubated at 37˚C for 2 hours. Images were

collected with a Leica Sp8 confocal microscope.
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RNA-seq transcriptome analysis

Testes from five wild-type or e2f5 mutants were dissected and total RNA was isolated using

Trizol according to standard protocol. RNA sequencing was performed by Novogene using

Illumina HiSeq X Ten (Novogene Bioinformatics Technology Co., Ltd., Tianjin, China). To

reduce potential sequencing errors, we repeated this experiment with Annoroad (Annoroad

Gene Technology Co., Ltd, Beijing, China). These two sample sets displayed similar changes

in gene expression pattern. Both of these RNA-seq data have been deposited to the Sequence

Read Archive (SRA) database under accession numbers SRR10854654, SRR10854655,

SRR10854656 and SRR10854657 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA599540).

We have mainly shown the data that we obtained from Novogene. For data processing, the

reads were mapped to the reference genome index constructed by hisat2 (version 2.1.0) using

Danio_rerio.GRCz10.90.gtf and Danio_rerio.GRCz10.dna.chromosome.1.fa. The raw counts

of the genes were obtained using featureCounts in the subread version 1.6.2 package. Sample

normalization and differential expression analysis was performed using edgeR Bioconductor

package. Then, the relative expression level RPKM of the differential genes was calculated

according to the traditional formula, and the gene expression heat map was obtained using the

pheatmap Bioconductor package.

High-speed video microscopy

Cilia motility in the PST of the zebrafish pronephric tubules was recorded at 5dpf. Briefly, wild-

type or mutant embryos were first treated with 30 μg/ml 1-phenyl 2-thiourea (PTU) to inhibit

pigmentation from 24 hpf. At 5dpf, the larvae were anesthetized with 0.01% tricaine, and then

placed on top of a cover glass. After removing most of the embryo medium, the cover glass was

placed upside down on the center of a depression slide containing 50 μl embryo medium. Cilia

movement in the pronephric tubules was recorded with 100 X oil objective on a Leica Sp8 con-

focal microscope equipped with a high-speed camera (Motion- BLITZ EoSens mini1; Mikro-

tron, Germany). Cilia movement was captured at rates of 500 frames per second, and playback

was set at 25 frames per second.

To record cilia motility in the Tg(β-actin:Arl13b-GFP) embryos, 24 hpf zebrafish embryos

were embedded in the same way as 5dpf larvae and movement of beating cilia was recorded

using an Olympus IX83 microscope equipped with a 60X, 1.3 NA objective lens, an EMCCD

camera (iXon+ DU-897D-C00-#BV-500; Andor Technology), and a spinning disk confocal

scan head (CSU-X1 Spinning Disk Unit; Yokogawa Electric Corporation). Ciliary motility

movies were acquired using μManager (https://www.micro-manager.org) at an exposure time

of 25 ms, and playback speed of 10 fps. Image processing was performed using ImageJ software

(National Institutes of Health, Bethesda, MD, USA).

Luciferase assay

Partial dmc1 promoter containing wild-type or mutant E2f5 binding site was cloned into the

pGL3 Luciferase Reporter Vector. For the effector vector, full length zebrafish e2f5 was first

cloned into pDONR221vector using BP reaction, then further cloned into pCS2-6xMyc desti-

nation vector using LR reaction. We co-transfected the effector and reporter vectors, along

with the Renilla luciferase vector, into HEK293 cells using Lipofectamine 2000 (Invitrogen)

with standard protocol. Luciferase activity was measured using the Dual Luciferase reporter

assay kit (Promega) at 48 hours after transfection.
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Pharmacological treatments

To test the role of E2f5 during cell proliferation in vivo, we generated e2f5 heterozygotes carry-

ing the Tg(fabp10:rtTA2s-M2;TRE2:EGFP-krasG12V) transgene, which drives liver-specific

expression of an activating mutation of KRAS to induce excessive cell proliferation after drug

treatment. We crossed e2f5 heterozygotes carrying the EGFP-krasG12V transgene with e2f5
heterozygotes, and compared the liver size between e2f5 homozygotes carrying the EGFP-

krasG12V transgene with wild-type carrying EGFP-krasG12V transgene. The embryos were

treated with 60 μg/mL doxycycline hydrochloride (Sangon Biotech, Shanghai, China) or

DMSO starting from 60 hours post fertilization and harvested at 1, 2 and 3 days after treat-

ment. Image capture and statistical analysis were as described previously[44].

Statistical analysis

Statistical analysis was performed using Microsoft Excel or GraphPad Prism 6 software. All

data were presented as mean ±S.D. as indicated in the figure legends. Statistical significance

was evaluated by means of the two-tailed Student’s t-test for unpaired data. Pearson Coeffi-

cient analysis were performed using the Leica Sp8 confocal colocalization software. A value of

p<0.05 was considered statistically significant. All the p values are indicated in the figures.

Supporting information

S1 Fig. Phenotypes of e2f5 mutants. (A-B) External phenotypes of male and female e2f5
mutants rescued by gfp-e2f5 transgene under the regulation of the ubiquitously expressed β-
actin promoter. (C-D) Dissected testes from wild-type (C) and e2f5 adult mutant (D). (E-F)

External phenotypes of 72 hpf embryos collected from crosses between wild-type male and

e2f5;tp53 double heterozygous female (E) or e2f5;tp53 homozygous female (F). Scale bars: 1

cm in panel A, B and 1mm in panel C-F.

(TIF)

S2 Fig. Expression of dmc1 was downregulated in e2f5 mutants. (A) Heat map showing rela-

tive expression of genes involved in homologous recombination from RNA-seq transcriptome

analysis. The genes are listed according to fold change (FC) and p-value. (B) qPCR results

showing the relative expression level of genes involved in homologous recombination in wild-

type and e2f5 mutant testes.

(TIF)

S3 Fig. Phenotypes of mature spermatozoa in wild-type and e2f5 mutants. (A-D) Confocal

images showing the phenotypes of mature spermatozoa in wild-type (A) and e2f5 mutants

(B-D). Flagella were labeled with anti-acetylated tubulin antibody in green. Nuclei were stained

with DAPI in blue. Scale bar: 5 μm.

(TIF)

S4 Fig. Gene ontology (GO) enrichment analysis of differentially expressed genes in the

testes of e2f5 mutants. The genes were clustered according to biological processes. The colors

of the bars indicate p adjust value of different GO terms.

(TIF)

S5 Fig. Ciliogenesis in e2f5 and e2f4;e2f5 double mutants. (A-H) Confocal images showing

cilia in the cristae (A-B), spinal canal (SC) (C-D), olfactory pit (OP) (E-F) and PCT of the pro-

nephros (G-H) in 5dpf wild-type and e2f5 mutants. Cilia were visualized with anti-glycylated

tubulin antibodies in green and nuclei were counterstained with DAPI in blue. Arrow in (E)

points to cilia bundle of MCCs and asterisk indicates single primary cilia. (I) Diagram showing
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the genomic structure of e2f4 locus. The sequences of the wild-type and e2f4 mutant alleles

generated with CRISPR/Cas9 method is shown at the bottom. The sgRNA target sequence and

corresponding PAM region are also labeled. (J-M) Confocal images showing the localization

of basal bodies visualized with anti-γ tubulin (green) in the olfactory pits of wild-type and

mutant larvae as indicated. Arrows point to MCCs characterized by multiple basal bodies.

Inserted images are magnified views. Nuclei were stained with DAPI in blue and F-actin was

counterstained with phalloidin in red. Scale bars: 10 μm.

(TIF)

S6 Fig. Colocalization coefficient analysis by Pearson’s method for genes expressed in

MCCs and principal cells. (A) Colocalization analysis of different genes as indicated in 24 hpf

wild-type embryos. (B) Colocalization analysis of rfx2 and trpm7 expression in the PST of 36

hpf wild-type or e2f5 mutants as indicated. In panels A and B, each dot represents one zebra-

fish embryo analyzed.

(TIF)

S7 Fig. Expression of pronephric duct marker genes in mib and e2f5 mutants. Whole

mount in situ hybridization results showing the expression of ciliary genes (A-H, K-L) and

marker genes for transporter cells (I-J, M-T) in the pronephric duct of 24 hpf control and

mutant embryos as indicated. The numbers of positive/total analyzed embryos are shown in

the bottom right-hand corner of each panels.

(TIF)

S8 Fig. Zebrafish E2f5 plays repressor role during cell cycle regulation. (A) Diagram show-

ing the constructs used for reporter assays. Part of the promoter region of dmc1 was used to

drive the expression of the luciferase gene. The E2f5 binding site is also indicated. The mutant

sequence of E2f5 binding site is the same as used for EMSA assay. (B) Bar graph showing the rel-

ative luciferase activity in the different combinations as indicated. Increase in the amount

of E2f5 constructs further inhibited luciferase activity. (C) Representative images showing the

liver of control and e2f5 mutants as highlighted by EGFP-KrasG12V expression at different time

points after doxycycline treatment. dpt: days post treatment. (D) Dot plot showing the average

liver size in wild-type or e2f5 mutants at different time points after treatment. Scale bar: 200 μm.

(TIF)

S1 Movie. High-speed video microscopy showing cilia beating in the pronephric duct of

5dpf wild-type zebrafish larva.

(MOV)

S2 Movie. High-speed video microscopy showing cilia beating in the pronephric duct of

5dpf e2f4;e2f5 mutant larva.

(MOV)

S3 Movie. High-speed video microscopy showing cilia beating in the PST region of pro-

nephric duct in a 24 hpf zebrafish embryo. Cilia were visualized using Tg(β-actin:Arl13b-
GFP) transgene. Scale bar: 5 μm.

(AVI)

S1 Table. Primers used to amplify genes for whole-mount in situ hybridization.

(DOCX)

S2 Table. Primers used for qPCR analysis.

(DOCX)
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