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Muscle invasive bladder cancer (MIBC) is a heterogeneous disease with a high
recurrence rate and poor clinical outcomes. Molecular subtype provides a new
framework for the study of MIBC heterogeneity. Clinically, MIBC can be classified
as basal and luminal subtypes; they display different clinical and pathological
characteristics, but the molecular mechanism is still unclear. Lipidomic and metabolomic
molecules have recently been considered to play an important role in the genesis and
development of tumors, especially as potential biomarkers. Their different expression
profiles in basal and luminal subtypes provide clues for the molecular mechanism of
basal and luminal subtypes and the discovery of new biomarkers. Herein, we stratified
MIBC patients into basal and luminal subtypes using a MIBC classifier based on
transcriptome expression profiles. We qualitatively and quantitatively analyzed the lipids
and metabolites of basal and luminal MIBC subtypes and identified their differential
lipid and metabolite profiles. Our results suggest that free fatty acids (FFAs) and
sulfatides (SLs), which are closely associated with immune and stromal cell types,
can contribute to the diagnosis of basal and luminal subtypes of MIBC. Moreover,
we showed that glycerophosphocholine (GCP)/imidazoles and nucleosides/imidazoles
ratios can accurately distinguish the basal and luminal tumors. Overall, by integrating
transcriptomic, lipidomic, and metabolomic data, our study reveals specific biomarkers
to differentially diagnose basal and luminal MIBC subtypes and may provide a basis for
precision therapy of MIBC.
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INTRODUCTION

Bladder cancer (BC) is the 10th most common malignancy
worldwide (Bray et al., 2018). BC can be classified into non-
muscle-invasive bladder cancer (NMIBC) and muscle-invasive
bladder cancer (MIBC) based on the depth of tumor cells
invasion (Kamat et al., 2016). Approximately 25% of BC patients
are diagnosed with MIBC, which has a higher rate of relapse
and worse prognosis than NMBIC. Neoadjuvant cisplatin-based
chemotherapy (NAC) before radical cystectomy is the standard
treatment option for MIBC patients (Grossman et al., 2003;
International Collaboration of Trialists et al., 2011). However,
approximately 40% of MIBC patients benefit from NAC, and only
a minority of patients with MIBC respond to immunotherapy
(Zargar et al., 2015). Therefore, new MIBC diagnostic biomarkers
and therapeutic strategies are urgently needed.

Accumulating evidence indicates that MIBC is a
heterogeneous disease that can be divided into different
molecular subtypes based on transcriptome profiles or specific
genomic alterations (Sjodahl et al., 2012; Cancer Genome Atlas
Research Network, 2014; Robertson et al., 2017; McConkey
and Choi, 2018). MIBC can be grouped into basal and luminal
subtypes with distinct classifiers or models, which are similar
to the molecular subtypes used to stratify types of breast
cancer (Damrauer et al., 2014; Sjodahl et al., 2017). Among
these classifiers, a clinically significant panel of 47 genes
(BASE47) is used as a classifier of high-grade MIBC. BASE47
accurately discriminates intrinsic MIBC subtypes and promotes
an understanding of MIBC pathobiology (Damrauer et al.,
2014). Typical urothelial basal cells markers, such as KRT6B,
KRT14, and KRT5, are highly expressed in basal tumors, while
luminal tumors express high levels of genes that mark terminal
urothelial differentiation, such as those seen in umbrella cells
(KRT20, UPK1B, UPK3A, and UPK2). MIBC subtypes not
only demonstrate distinctive biological characteristics but also
have prognostic and therapeutic value. Basal MIBC has a worse
prognosis and a higher rate of metastasis than the luminal
subtype (Choi et al., 2014a; Robertson et al., 2017). Moreover,
basal MIBC subtype is more sensitive to anti-epidermal
growth factor receptor (anti-EGFR) agents and cisplatin-based
combination chemotherapy than the luminal subtype (Choi
et al., 2014a,b). Given the complex heterogeneity of MIBC,
there is an urgent need for the definition of subtype-specific
biomarkers that can be applied for more precise management
and therapeutic interventions for MIBC.

The reprogramming of metabolic patterns in tumor tissue
facilitates the rapid proliferation of tumor cells in the absence
of oxygen and nutrients and drives tumor progression (Putluri
et al., 2011; Nuhn et al., 2012). The tumor metabolome originates
from the interaction of genome, transcriptome, proteome, and
a series of external influences. Metabolomic signatures mirror
the dynamic biochemical activity of the tumor’s pathobiology
(Loras et al., 2018). Therefore, over the last decade, research had
increasingly focused on the identification of novel biomarkers
associated with metabolomics for the early detection of cancer
(Alberice et al., 2013; Frantzi et al., 2016; Yumba Mpanga et al.,
2018). Although previous research had concentrated on BC

metabolism for screening and detection (Sahu et al., 2017), it
has become evident that lipid metabolism is also an important
component to be considered. Lipids are employed to store energy;
they are also involved in cell membrane synthesis and act as
messengers for molecular recognition and signal transduction
(Larrouy-Maumus, 2019). Lipid metabolism is closely related to
cancer progression (Munir et al., 2019). Thus, both lipidomics
and metabolomics play vital roles in the occurrence and
development of cancer. However, to date, differential lipid and
metabolite profiles between basal and luminal MIBC subtypes
have not been examined.

Herein, we integrated transcriptomic, lipidomic, and
metabolomic analyses to identify the differential lipids and
metabolites between basal and luminal MIBC subtypes, which
will provide potential biomarkers for precision therapy of MIBC.

MATERIALS AND METHODS

Clinical Samples
The 12 MIBC tissues used in this study were obtained from
The First Affiliated Hospital of Guangxi Medical University
in China from June 2019 to June 2020. Patients undergoing
chemotherapy or radiotherapy before surgical resection were
excluded, and the diagnosis of MIBC was confirmed by two
experienced pathologists.

RNA Sequencing
Total RNA was extracted from tissues using TRIzol R© reagent
(Invitrogen, Carlsbad, CA, United States) according to the
manufacturer’s protocol. Ribosomal RNA (rRNA) was removed
from the total RNA using Ribo-Zero rRNA removal kits
(Illumina, San Diego, CA, United States). Complementary DNA
(cDNA) libraries were constructed by reverse transcription of
the purified messenger RNAs (mRNAs). The libraries were
amplified by PCR, followed by sequencing for 150 cycles on an
Illumina HiSeq 4000 sequencer (Illumina). The quality of the raw
sequencing data was assessed using FastQC software. Fastp was
used to preprocess the raw data (Chen et al., 2018). The clean
data were mapped to the human genome (hg19) using HISAT2
(Kim et al., 2019) and StringTie (Pertea et al., 2015, 2016), and
Cufflinks was used to merge the data (Ghosh and Chan, 2016).
The 47-gene panel was used to accurately separate MIBC samples
into luminal and basal subtypes (Damrauer et al., 2014). Gene
set enrichment analysis (GSEA) was conducted based on the
default parameters, using mRNA expression profiles of samples.
The xCell algorithm was used to specifically infer 64 immune and
stromal cell types in each sample, based on mRNA expression
profiles (Aran et al., 2017). The expression profiles of samples
were prepared and uploaded to the xCell web1. Analysis was
performed by xCell signature (N = 64) with 1,000 permutations,
based on the parameter settings.

1http://xcell.ucsf.edu/
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Tissue Metabolome Extraction
Extraction methods were performed as previously reported
(Yuan et al., 2012). Tissues were ground using the Precellys
evolution system (Bertin Technologies, Saint Quentin en
Yvelines, French) under 1,600 × g, for 10 s, two cycles, and a 5-s
pause. Samples were then incubated at 500× g for 30 min at 4◦C.
The sample was centrifuged at 4,000× g for 10 min at 4◦C; then,
the supernatant was isolated and dried by Genevac miVac (Tegent
Scientific Ltd., Ipswich, United Kingdom). Precipitates were
resuspended in 100 µl of 1% acetonitrile, and the supernatant was
isolated for further analysis.

Metabonomics Data Acquisition
Ultrahigh performance liquid chromatography (UPLC, Agilent
1290 II, Agilent Technologies, Waldbronn, Germany) combined
with tandem quadrupole time-of-flight (5600 Triple TOF Plus,
AB Sciex, Singapore), and ACQUITY UPLC HSS T3 (1.8 µm,
2.1 mm × 100 mm, Waters, Dublin, Ireland) chromatographic
column were used for the analysis. All analyses were performed
in electrospray ionization mode. Instrument conditions were as
previously reported (Song et al., 2020), including the following:

curtain gas = 35; positive ion spray voltage = 5,500 V;
negative ion spray voltage = -4,500 V; temperature = 450◦C;
ion source gas 1 = 50; and ion source gas 2 = 50. Data
acquisition mode included a full scan of the primary mass
spectrum and information-dependent acquisition of secondary
mass spectrum data. MarkerView 1.3 (AB Sciex, Concord, ON,
Canada) was used to extract the peak area, mass-to-charge
ratio, and retention time of the primary mass spectrum data
to generate a two-dimensional data array. Secondary mass
spectrum data were extracted by PeakView 2.2 (AB Sciex),
and metabolite IDs were identified after interrogation of a
metabolite database, HMDB, and METLIN standards. Metabolite
IDs were assigned to the corresponding ion of the two-
dimensional data array.

Tissue Lipid Extraction
Lipid extraction was conducted according to a modified
Bligh/Dyer extraction method (Song et al., 2020). Samples were
redissolved in isotopic mixed standards and then analyzed via
Exion UPLC-QTRAP 6500 Plus (Sciex) with the electrospray
ionization mode under the following conditions: curtain gas = 20;

FIGURE 1 | Transcriptome analysis reveals changes in lipid and metabolic pathways. (A) Expression heatmap of specific MIBC basal and luminal markers. (B) GSEA
analysis showed the activation pathways in basal and luminal MIBC subtypes.

FIGURE 2 | Distinct lipid profiles in basal and luminal MIBC subtypes. (A) The lipid types and amounts tested. (B) The relative frequencies of lipids in basal and
luminal MIBC subtypes. BMP, bis (monoglycerol) phosphate ester; CE, cholesteryl esters; Cer, ceramides; Cho, free cholesterols; CL, cardiolipins; DAG,
diacylglycerols; FFA, free fatty acids; Gb3, Ceramide trihexoside; GM3, monosialogangliosides; LacCer, lactosylceramides; LPA, lyso-PA; LPC, lyso-PC; LPE,
lyso-PE; LPI, lyso-PI; LPS, lyso-PS; PA, phosphatidic acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PG, phosphatidylglycerols; PI,
phosphatidylinositols; PS, phosphatidylserines; SL, sulfatides; SM, sphingomyelins; Sph, sphingosine; TAG, triacylglycerols.
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ion spray voltage = 5,500 V; temperature = 400◦C; ion source gas
1 = 35; and ion source gas 2 = 35.

Lipidomics Data Acquisition
Phenomenex Luna silica (3 µm, 1.5 mm× 200 mm) was selected
as the chromatographic column. Lipids were extracted under
A phase (chloroform/methanol/ammonia = 89.5:10:0.5) and B
phase (chloroform/methanol/ammonia/water = 55:39:0.5:5.5).
Extraction began with a 95% gradient of A phase from 0 to 5 min,
then a linear decrease to 60% (in 7 min) for 4 min, a further
decline to 30% for 15 min, and return to 95% for the last 5 min.
Mass spectrometry multiple reaction monitoring was established
for lipid identification and quantitative analysis (Lam et al., 2017,
2018).

Metabonomics and Lipidomics Data
Analysis
Metabonomics and lipidomics data were prepared and uploaded
to the MetaboAnalyst software 4.02 (Chong et al., 2019).
Multivariate statistical analysis, cluster analysis, dimensionality
reduction, and heatmaps were performed, based on the
default parameters.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism
software (version 8.0, GraphPad, San Diego, CA, United States).
Statistically significant differences between the two groups were
evaluated by two-tailed Student’s t-test. The relationships
between lipid elements and cell types in the tumor
microenvironment were analyzed by Pearson correlation
analysis. A p < 0.05 was considered statistically significant. The
area under the receiver operating characteristic (ROC) curve
(AUC) was calculated to evaluate the accuracy of prediction.

RESULTS

Transcriptome Analysis Reveals
Changes in Lipid and Metabolic
Pathways
The establishment of tumor molecular subtypes has deepened
our understanding of mutation gene profiles, tumor progression,
and therapy responses (Robertson et al., 2018; Kamoun et al.,
2020). Herein, we accurately classified 12 MIBC patients
into basal and luminal subtypes using the BASE47 classifier
based on transcriptome expression profiles (Damrauer et al.,
2014). RNA-seq analysis revealed that basal and luminal
MIBC subtype tumors displayed distinct gene expression
patterns. Basal subtype had high levels of basal marker
expression but low levels of luminal marker expression,
while the luminal subtype displayed an opposite pattern
(Figure 1A). GSEA analysis showed that activated long-chain
fatty acyl-coA metabolic processes, positive regulation of steroid
metabolic processes, and regulation of the lipopolysaccharide-
mediated signaling pathway were associated with basal

2www.metaboanalyst.ca

MIBC subtype, and glycosyl-phosphatidyl inositol (GPI)
anchor metabolic process, coenzyme A metabolic process,
and estrogen metabolic process were related to luminal

TABLE 1 | Differential lipids of basal and luminal subtype (basal vs. luminal).

Elevated lipids Log2FC p-value Declined
lipids

Log2FC p-value

SL d18:1/24:1h 3.9567 0.014* CL68:6(16:1) −2.3181 0.018*

SL d18:1/22:0 3.9406 0.012* CL68:5(16:1) −2.1704 0.045*

SL d18:1/24:0h 3.107 0.011* SM
d(18:1/26:0)

−1.9878 0.020*

SL d18:1/22:1 2.8944 0.012* PC34:2
(16:1/18:1)

−1.8854 0.011*

SL d18:1/22:0h 2.8846 0.003* PC34:1
(16:1/18:0)

−1.5558 0.009*

LacCer d18:1/14:0 2.2354 0.042* BMP36:2 −1.5464 0.012*

GM3 d18:1/22:1 1.8766 0.002* PI 34:1 −1.4499 0.034*

SM d18:1/20:1 1.6788 0.033* BMP36:1 −1.4439 0.004*

SM d18:1/18:1 1.537 0.018* CL70:7(16:1) −1.3534 0.004*

SM d18:1/22:1 1.5258 0.045* BMP36:4 −1.3515 0.040*

SM d18:1/18:0 1.4422 0.002* CL70:6(16:1) −1.3464 0.007*

SL 1.3674 0.013* BMP −1.2687 0.008*

SM d18:1/20:0 1.1882 0.000* BMP36:3 −1.2364 0.042*

DAG38:4(18:0/20:4) 1.1665 0.004* PC34:3
(16:1/18:2)

−1.2302 0.012*

FFA16:0 0.99879 0.000* PA32:1 −1.0937 0.032*

FFA18:0 0.98576 0.000* CL70:6(18:2) −1.0884 0.033*

FFA 0.91768 0.000* PC34:3 −1.0569 0.010*

LPI20:4 0.86724 0.004* PG38:6 −0.98387 0.043*

SM d18:1/22:0 0.82901 0.005* PC36:2 −0.82249 0.045*

PI 38:4 0.77328 0.025* BMP38:4 −0.80758 0.022*

FFA18:1 0.75857 0.047* PE38:6 −0.76824 0.043*

TAG52:5(16:0) 3.0945 0.0527 PE40:6 −0.74456 0.033*

Cer d(18:1/20:0) 2.8726 0.065368 CL66:4(16:1) −2.2132 0.081798

LacCer d18:1/18:0 2.6487 0.082395 PC32:2
(16:1/16:1)

−1.8787 0.088617

GM3 d18:1/1:80 1.9886 0.070227 GM3
d18:0/26:0

−1.8627 0.070982

Cer d(18:1/14:0) 1.6358 0.066787 BMP34:1 −1.7599 0.057363

Gb3 d18:1/18:0 1.4349 0.098536 PE32:1 −1.6519 0.086111

GM3 d18:1/22:0 1.3553 0.053135 BMP34:2 −1.5235 0.051358

LysoPC18:0 1.0642 0.055778 CL70:5(16:1) −1.3076 0.070479

FFA22:4 1.0201 0.092333 PC32:2 −1.2708 0.079861

FFA22:5 0.92609 0.087524 SM d18:1/25:0 −1.2471 0.052022

PA(36:1) 0.78922 0.066101 PC32:1 −1.2189 0.091632

SM d18:1/24:1 0.78035 0.056402 GM3
d18:0/25:0

−1.1178 0.058641

FFA20:4 0.75017 0.090839 PC36:2
(18:1/18:1)

−1.0772 0.050403

PC36:3
(18:1/18:2)

−0.86314 0.090513

LysoPC16:1 −0.84867 0.094135

PC32:1
(16:0/16:1)

−0.84791 0.069625

PC36:3 −0.78299 0.050465

PC40:7
(22:6/18:1)

−0.69562 0.062649

* indicates p < 0.05.
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FIGURE 3 | Potential lipid biomarkers of basal and luminal MIBC subtypes. (A) VIP score of altered lipid elements. (B) Heatmap of the top 25 altered lipid elements
in basal and luminal MIBC subtypes. (C) The levels of the top 10 significantly differential lipid constituents in basal and luminal MIBC subtypes. (D,E) FFA and SL
levels and AUC values. * indicates p < 0.05; ** indicates p < 0.01; and *** indicates p < 0.001.

MIBC subtype (Figure 1B). These results indicated that the
lipid and metabolic pathways of basal and luminal MIBC
subtypes were different.

Distinct Lipid Profiles in Basal and
Luminal MIBC Subtypes
To further explore the differential lipids between basal and
luminal MIBC subtypes. A total of 417 lipid elements could
be qualitatively and quantitatively detected (Figure 2A). The
content of lipid elements was significantly different in basal

and luminal MIBC subtypes (Figure 2B). The differential lipid
elements are shown in Table 1.

Potential Lipid Biomarkers of Basal and
Luminal MIBC Subtypes
Partial least squares discrimination analysis (PLS-DA) was
performed to detect significant differential lipid elements
between basal and luminal MIBC subtypes. By the variable
import in project (VIP) score of each group, the top 15
lipid elements were identified (Figure 3A). The top 25
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FIGURE 4 | Potential lipid biomarkers are associated with tumor microenvironment. (A) Heatmap of the relative frequency of immune cell and stromal cell types in
basal and luminal MIBC samples as identified by the “xCell” algorithm. Red line represents the maximum expression level and blue line represents the minimum
expression level. (B) Pearson correlation analysis revealed the relationship among FFA, SL, immune, and stromal cell types. Red line represents the maximum
expression level and blue line represents the minimum expression level.

FIGURE 5 | Distinct metabolite profiles in basal and luminal MIBC subtypes. (A) The types and amounts of metabolites examined in this study. (B) Relative
frequencies of metabolites in basal and luminal MIBC subtypes.

differential lipid elements between the basal and luminal
MIBC subtypes are shown in Figure 3B. To explore the
potential lipid biomarkers of basal and luminal MIBC
subtypes, the following top 10 significantly differential lipid
elements were analyzed: SL d18:1/24:1h, SM d18:1/20:0, SL
d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, LacCer d18:1/14:0,
GM3 d18:1/22:1, SM d18:1/20:1, SM d18:1/18:1, and SM
d18:1/22:1 (Figure 3C). Of these, SL d18:1/24:1h, SM d18:1/20:0,
SL d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3 d18:1/22:1,
SM d18:1/18:1, and SM d18:1/22:1 produced the highest
AUC values (Supplementary Figure 1), indicating that these
lipid elements could accurately separate basal and luminal
MIBC subtypes, and these elements potentially to be targets
of precision therapy in the future. In addition, the levels of
total FFA and SL in the basal subtype were significantly higher
than the luminal subtype, which displayed high AUC values
(Figures 3D,E). These data indicated that SL d18:1/24:1h, SM
d18:1/20:0, SL d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3
d18:1/22:1, SM d18:1/18:1, SM d18:1/22:1, FFA, and SL had
potencies to be biomarkers for precisely distinguishing basal and
luminal MIBC subtypes.

Potential Lipid Biomarkers Are
Associated With Tumor
Microenvironment
Tumor microenvironment is composed of numerous
cell types and greatly influences tumor progression and
therapy response (Pfannstiel et al., 2019). We measured
the relative frequencies of immune and stromal cell types
using a new algorithm based on transcriptome profiles
called “xCell” (Aran et al., 2017). The analysis showed that
the relative frequencies of cell types in basal and luminal
MIBC subtypes greatly differed (Figure 4A). Pearson
correlation analysis showed that SL levels of samples were
strongly related to B cells, CD8 + T cell, macrophages
M2, natural killer T (NKT) cells, mast cells, endothelial
cells, and fibroblasts values, while FFA levels of samples
were closely related to mesenchymal stem cell (MSC) and
regulatory T cell (Treg) values (Figure 4B). These data
suggested that SL and FFA were both strongly associated
with tumor microenvironment and may play key roles in
MIBC progression.
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Distinct Metabolite Profiles in Basal and
Luminal MIBC Subtypes
To map the differential metabolite profile between basal
and luminal MIBC subtypes, 133 metabolites were measured
(Figure 5A). The metabolite profiles of basal differed from
luminal MIBC subtypes (Figure 5B), and the differential
metabolites are shown in Table 2.

Potential Metabolite Biomarkers of Basal
and Luminal MIBC Subtypes
To further reveal the potential metabolite biomarkers in basal
and luminal MIBC subtypes, we employed PLS-DA analysis to
evaluate metabolite VIP scores. Based on the VIP score rank, the
top 10 metabolites were identified: tyrosyl-alanine, pyroglutamic
acid, 5-methoxy-L-tryptophan, citric acid, uridine, and uric acid
were increased in the basal subtype, while glutathione, pyruvic
acid, oxidized glutathione, glycerophosphocholine, creatine,
L-lactic acid, S-glutathionyl-L-cysteine, L-malic acid, and 3′-
adenosine monophosphate (3′-AMP) were increased in the
luminal subtype (Figure 6A). The top 25 differential metabolites
are shown in Figure 6B. The peak intensities of the top 10
significantly different metabolites in basal and luminal MIBC
subtypes are shown in Figure 6C. To further identify potential
metabolite biomarkers in basal and luminal MIBC subtypes,
we analyzed the levels of the main types of metabolites. It
was found that the levels of glycerophosphocholine (GCP),
hydroxy acids, and nucleosides increased in the luminal subtype,
while the levels of imidazoles and pyrimidine nucleoside
were higher in the basal than in the luminal subtype. These
metabolites presented different AUC values (Figure 6D).
Remarkably, the ratios of GCP/imidazoles (AUC = 1) and
nucleosides/imidazoles (AUC = 0.9714) had higher AUC values
than GCP (AUC = 0.8857), nucleosides (AUC = 0.8571), or
imidazoles (AUC = 0.9143) levels alone (Figure 6E). The
above results indicated that the ratios of GCP/imidazoles and
nucleosides/imidazoles had a greater capacity to differentiate
basal and luminal MIBC subtypes than the single metabolites;
these ratios could be used as potential biomarkers to distinguish
basal and luminal MIBC subtypes.

DISCUSSION

Muscle invasive bladder cancer is a molecularly heterogeneous
disease with high recurrence rates and poor prognosis (Prasad
et al., 2011; Meeks et al., 2020). The BASE47 classifier divides
MIBC into basal and luminal subtypes based on transcriptome
expression profiles. The differentiation pattern, histological
characteristic, overall survival, and therapy response of basal
and luminal MIBC subtypes are significantly different (Kamoun
et al., 2020). This classifier provides a new framework for
studying MIBC heterogeneity and has potential values for
clinical application (Ochoa et al., 2016; Fong et al., 2020).
Metabolic reprogramming of tumors drives tumor progression
by many aspects (Pavlova and Thompson, 2016). Although
previous studies have explored the metabolic profile and

TABLE 2 | Differential metabolites of basal and luminal subtype (basal vs. luminal).

Elevated
metabolites

Log2FC p-value Declined
metabolites

Log2FC p-value

Arabinonic acid 2.2107 0.000* Glutathione −1.964 0.025*

Allantoin 1.8753 0.032* Oxidized
glutathione

−1.6275 0.020*

Gamma-
Glutamyl
Glutamine

1.7797 0.000* Glycerophos-
phocholine

−1.6203 0.014*

Pyroglutamic
acid

1.3859 0.002* Butyrylcarnitine −1.5932 0.001*

Glyceric acid 1.0352 0.033* L-Malic acid −1.1582 0.006*

Uridine 0.96311 0.031* R-3-
Hydroxybutyric
acid

−1.145 0.025*

Uric acid 0.86495 0.022* Propionylcarnitine −1.01 0.023*

Glutaric acid 0.7218 0.016* 3′-AMP −1.2204 0.052

tert-Butyl 3-
amino-1,4,6,7-
tetrahydro-5H-
pyrazolo4,3-
cpyridine-5-
carboxylate

0.58832 0.014* Pivaloylcarnitine −2.2577 0.086

5-methoxy-L-
tryptophan

2.2235 0.097 Xanthine −1.3516 0.054

Methionine
sulfoxide

1.3653 0.061 S-Glutathionyl-
L-cysteine

−0.96333 0.096

N-Acetylleucine 1.3234 0.075 Leucyl-Serine −0.79759 0.080

Taurodeoxycholic
acid

0.97946 0.062 N-Acetyl-L-
alanine

−0.74714 0.064

8-Hydroxy-
deoxyguanosine

0.85958 0.065 Succinyla-
denosine

−0.62835 0.062

Guanine 0.68097 0.074

* indicates p < 0.05.

identified metabolites associated with recurrence and poor
prognosis of BC (Armitage and Ciborowski, 2017; Loras
et al., 2018; Zhang et al., 2018), the differential lipids and
metabolites between basal and luminal MIBC subtypes remain
unclear. Knowledge of these profiles may provide potential
biomarkers and therapy targets for clinical application. In
this study, we integrated transcriptomics, lipidomics, and
metabolomics analysis to reveal the differential lipid and
metabolite profiles between basal and luminal MIBC subtypes,
providing potential lipid and metabolite biomarkers for precision
therapy of MIBC.

According to the BASE47 classifier, we divided MIBC patients
into basal and luminal subtypes based on transcriptomic
expression profiles. RNA-sequencing analysis revealed that
the lipid and metabolic pathways of basal and luminal
MIBC subtypes differed significantly, which suggested that
basal and luminal MIBC subtype potentially underwent
lipid and metabolic reprogramming (Lee et al., 2018). To
further explore the lipid profiles of basal and luminal MIBC
subtypes, we evaluated 417 tissue lipid elements in basal
and luminal MIBC subtypes. Results showed that there
were significant differences in the lipid profiles of basal
and luminal MIBC subtypes. The top 10 differential lipid
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FIGURE 6 | Potential metabolite biomarkers of basal and luminal MIBC subtypes. (A) VIP score of altered metabolites. (B) Heatmap of the top 25 altered
metabolites in basal and luminal MIBC subtypes. (C) The peak intensity of the top 10 significantly differential metabolites in basal and luminal MIBC subtypes.
(D) The peak intensity and AUC values of GCP, hydroxy acids, nucleosides, imidazoles, and pyrimidine nucleosides. (E) The AUC values of GCP/imidazoles and
nucleosides/imidazoles ratios. * indicates p < 0.05; ** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001.

elements were enriched in the basal subtype, eight of which
exhibited maximum AUC values and could be considered
as potential biomarkers: SL d18:1/24:1h, SM d18:1/20:0, SL
d18:1/24:0h, SL d18:1/22:1, SL d18:1/22:0, GM3 d18:1/22:1,
SM d18:1/18:1, and SM d18:1/22:1. Due to the small sample
size, the differential lipids identified between basal and luminal
MIBC subtypes may be limited. Thus, in our cohort, the
top 10 differential lipids between basal and luminal MIBC
subtypes were all enriched in basal MIBC subtype. Furthermore,
examination of the main types of lipids revealed that the
total FFA and SL levels of the basal samples were higher
than that of the luminal samples. These lipids display strong
potencies to be biomarkers. Additionally, according to a new

algorithm, we inferred the relative frequencies of immune
and stromal cells in samples based on their mRNA profiles.
Pearson correlation analysis showed that FFA and SL were
significantly related to specific immune and stromal cell
types in the tumor microenvironment. Indeed, FFA drives
tumor progression by stimulating cancer cell proliferation
and promotes CD8 + TRM cells to persist in tumor tissue
to mediate protective immunity (Iwamoto et al., 2018;
Zhang et al., 2020). Meanwhile, SL is involved in cancer
progression and improves sensitivity of tumor cells to
microenvironmental stress factors including hypoxia and
anticancer drugs (Suchanski and Ugorski, 2016; Suchanski et al.,
2018). Therefore, FFA and SL may play important roles in MIBC
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progression and potentially used to be biomarkers of basal and
luminal MIBC subtypes.

During tumor reprogramming, metabolic patterns of cancer
cells are changed to adapt to the new microenvironments,
which makes it important to deeply understand cancer metabolic
profiles (Kim and DeBerardinis, 2019; La Vecchia and Sebastian,
2020). To reveal the differential metabolite profiles between
basal and luminal MIBC subtypes, we evaluated a total of
133 metabolites. Our results suggested that GCP, hydroxy
acids, nucleosides, imidazoles, and pyrimidine nucleosides could
accurately distinguish the basal subtype from the luminal
subtype. Furthermore, the AUCs of the GCP/imidazoles and
nucleosides/imidazoles ratios were higher than those of GCP,
nucleosides, and imidazoles alone, suggesting that these ratios
were more sensitive for distinguishing basal from luminal MIBC
subtypes. According to previous reports, GCP, nucleosides,
and imidazoles drive cancer progression; they are associated
with poor prognosis of several types of cancer (Moestue
et al., 2012; Dolinar et al., 2018; Long and Wang, 2019).
Therefore, the GCP/imidazoles and nucleosides/imidazoles ratios
have potential clinical applications as biomarkers, while GCP,
nucleosides, and imidazoles may be the targets of MIBC
precision therapy.

The occurrence and development of tumor is a complex
process, which is coregulated by genomics, epigenomics,
transcriptomics, proteomics, metabolomics, microbiome, and
other factors (Menyhart and Gyorffy, 2021). Single omics
studies cannot fully reveal the characteristics of tumors and
provide reliable biomarkers. In this study, the integration of
transcriptomics, lipidomics, and metabonomics can be used to
develop subtype-specific biomarkers and therapeutic targets and
may provide more precise predictions for disease progression
and prognosis. However, it should be noted that this study has
some limitations. First, the sample size was small. Additional
larger and independent cohorts should be analyzed to reveal more
valuable lipidomic and metabonomic biomarkers. Second, this
study only explored the differential lipid and metabolite profiles
between basal and luminal MIBC subtypes. The accuracy and
sensitivity of the potential biomarkers identified here needed
to be confirmed in larger cohorts. Third, there is no strict
exclusion to some potential conditions that influence lipid
and metabolite profiles from our analysis, such as diabetes
and hyperlipemia.

In conclusion, our study integrated transcriptomic,
lipidomic, and metabolomic analysis to reveal the differential
lipid and metabolite profiles between basal and luminal
MIBC subtypes. It was also found that FFA, SL, the
GCP/imidazoles, and nucleosides/imidazoles ratios have strong
potencies to be biomarkers for distinguishing basal from
luminal MIBC subtypes.
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