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Abstract: Emerging evidence suggests that adequate intake of omega-3 polyunsaturated fatty acids
(n-3 PUFAs), which include docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), might be
associated with better sleep quality. N-3 PUFAs, which must be acquired from dietary sources, are
typically consumed at suboptimal levels in Western diets. Therefore, the current placebo-controlled,
double-blind, randomized trial, investigated the effects of an oil rich in either DHA or EPA on sleep
quality in healthy adults who habitually consumed low amounts of oily fish. Eighty-four participants
aged 25–49 years completed the 26-week intervention trial. Compared to placebo, improvements
in actigraphy sleep efficiency (p = 0.030) and latency (p = 0.026) were observed following the DHA-
rich oil. However, these participants also reported feeling less energetic compared to the placebo
(p = 0.041), and less rested (p = 0.017), and there was a trend towards feeling less ready to perform
(p = 0.075) than those given EPA-rich oil. A trend towards improved sleep efficiency was identified
in the EPA-rich group compared to placebo (p = 0.087), along with a significant decrease in both
total time in bed (p = 0.032) and total sleep time (p = 0.019) compared to the DHA-rich oil. No
significant effects of either treatment were identified for urinary excretion of the major melatonin
metabolite 6-sulfatoxymelatonin. This study was the first to demonstrate some positive effects of
dietary supplementation with n-3 PUFAs in healthy adult normal sleepers, and provides novel
evidence showing the differential effects of n-3 PUFA supplements rich in either DHA or EPA.
Further investigation into the mechanisms underpinning these observations including the effects of
n-3 PUFAs on sleep architecture are required.

Keywords: docosahexaenoic acid; eicosapentaenoic acid; omega-3; sleep; actigraphy; SMEDS

1. Introduction

The relationship between diet, which includes both specific dietary components and
eating behaviors, and sleep quality and duration, is complex and bi-directional in nature [1].
Whilst emerging evidence suggests that obesity and following a high-fat, high-carbohydrate
diet might be detrimental to sleep, conversely, improving micronutrient status (e.g., iron,
zinc, magnesium, vitamin D, vitamin B12) and consumption of particular whole foods (e.g.,
milk, kiwi, tart cherries, oily fish) might have beneficial effects [2,3]. Oily fish is rich in
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the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and
eicosapentaenoic acid (EPA), which are not easily produced endogenously in humans and
so must be acquired from the diet. EPA and DHA are incorporated into the membranes
of cells throughout the body, and DHA is particularly enriched in the brain. As such,
adequate intake of these important fatty acids ensures proper functioning across multiple
systems. Indeed, low levels of circulating n-3 PUFAs were observed in a wide range of
psychopathologies, including attention deficit hyperactivity disorder, major depression,
and Alzheimer’s disease [4].

Converging evidence suggests n-3 PUFAs are also important for sleep. Studies of
dietary deficiency of n-3 PUFAs in experimental animals revealed a number of mechanisms
through which DHA might specifically affect sleep regulation, including impaired func-
tioning of the superchiasmatic nuclei [5], altered melatonin release [6], and disruption to
endocannabinoid signaling [7]. With regard to behavioral effects, n-3 PUFA deficiency in
rodents results in disorganized sleep patterns [6], an observation that was paralleled in
children during a period of total parenteral nutrition devoid of lipids [8]. In humans, higher
maternal levels of DHA appear to be linked to more mature infant sleep patterns [9,10].
Further, lower levels of DHA and a lower ratio of DHA to arachidonic acid (an n-6 PUFA)
were negatively associated with parent ratings of children’s total sleep disturbance [11].
Likewise, the concentration of n-3 PUFAs in adipose tissue of patients with obesity suffer-
ing from sleep apnea was positively associated with sleep efficiency and minutes spent in
slow wave sleep and rapid eye movement (REM) sleep [12].

Results from an exploratory pilot trial in children (n = 43, age 7–9 years) indicated
that dietary supplementation with DHA might improve objectively measured sleep [11].
However, more data are needed. In addition, to our knowledge no studies evaluated the
effects of EPA, which might also be relevant, given the previously observed effects of n-3
PUFAs on serotonin release [13] and the production of prostaglandins [14]; prostaglandin
D2, in particular, is a potent somnogen known to mediate the sleep/wake cycle [15].
Therefore, the present study investigated the effects of 26 weeks’ supplementation with
oils rich in either DHA or EPA on subjective and objective sleep quality in healthy, adult,
low consumers of oily fish.

2. Materials and Methods
2.1. Study Design

This study employed a randomized, placebo-controlled, double-blind, parallel groups
design. Participants were randomly assigned to receive one of three treatments for 26 weeks
(placebo, DHA-rich oil, EPA-rich oil).

2.2. Participants

Prior to screening, all participants received information about the study and its proce-
dures and signed an informed consent form. Participants were aged between 25–49 years
and had to pass a physical/lifestyle screening to demonstrate they were in good health.
Participants self-reported consumption of oily fish of less than once per week, measured
via a DHA food frequency questionnaire [16]. Having good health was identified as being a
non-smoker, free from prescription, herbal, illicit, or recreational drugs (females taking the
contraceptive pill were included), free from major illnesses, having a blood pressure lower
than 159/99 mmHg and a BMI between 18.5 and 35 kg/m2. All participants were recruited
via posters, adverts placed on social media websites, or emails sent out to university
staff and students, and were either students or staff attending/working at Northumbria
University or individuals living in the Newcastle-upon-Tyne surrounding area.

Ninety-five males and females were screened for eligibility, 90 were enrolled into
the study and 84 completed all study requirements. Of the six participants that did not
complete the study, four were lost to follow-up after completion of the baseline testing
visit, one withdrew consent and one was advised to stop adhering to the consumption of
supplements due to reports of minor adverse events. Participant disposition throughout
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the trial is displayed in Figure 1, demographic data are shown in Table 1 and outcomes
from the DHA food frequency questionnaire are shown in Table 2.
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Figure 1. Participant disposition through the trial. Figure depicts the disposition of participants throughout the study,
culminating in n = 84 of the 90 who were randomized.

2.3. Sample Size

Sample size was calculated based on a medium effect size reported by Montgomery
et al. [11] for total minutes asleep measured via actigraphy, following 16 weeks’ supplemen-
tation with DHA. Given this effect size, an a priori calculation of the size of sample required
in order to detect a significant difference between the groups given 80% power and an
alpha level of 0.05, was 30 participants per treatment arm, inclusive of a 10% anticipated
dropout rate. Power calculations were made using GPower 3.1.3.

2.4. Randomization

Treatment group was assigned randomly, according to a randomization schedule
produced using the website www.randomization.com. To ensure blinding was maintained
throughout the study, a third party within the same university created the randomization
schedule and coded treatments before the treatments and randomization schedule were
delivered to the research team. Capsules were provided in opaque containers. Therefore,
both the research team and participants were blind as to which participants received which
treatment, until after data analysis was complete.

www.randomization.com
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Table 1. Demographic information and baseline characteristics for the 84 participants who completed
all aspects of the study. Means ± SD are given where appropriate. Baseline differences were
assessed using separate one-way ANOVAs or chi-square tests; resulting p values from these analyses
are presented.

Variable Treatment Mean SD p

n (Males/Females)
Placebo 8/20 -

DHA-rich 7/22 - 0.886
EPA-rich 8/19 -

% of EPA in RBC
Placebo 0.82 0.21

DHA-rich 0.89 0.28 0.169
EPA-rich 1.05 0.67

% of DHA in RBC
Placebo 4.87 0.94

DHA-rich 4.74 0.92 0.637
EPA-rich 5.04 1.50

n-3 index (EPA + DHA)
Placebo 5.69 1.01

DHA-rich 5.63 1.06 0.455
EPA-rich 6.10 2.00

Age (years)
Placebo 36.89 7.78

DHA-rich 37.41 7.28 0.768
EPA-rich 35.89 8.73

Systolic BP (mmHg)
Placebo 122.80 11.19

DHA-rich 120.21 13.04 0.699
EPA-rich 120.50 13.43

Diastolic BP (mmHg)
Placebo 81.00 8.12

DHA-rich 79.45 9.67 0.805
EPA-rich 79.81 9.82

Heart Rate (BPM)
Placebo 71.70 12.36

DHA-rich 69.50 11.38 0.439
EPA-rich 73.43 10.42

Weight (kg)
Placebo 73.92 17.45

DHA-rich 70.37 12.20 0.656
EPA-rich 72.11 14.40

Height (cm)
Placebo 168.83 9.85

DHA-rich 166.59 6.01 0.614
EPA-rich 167.65 8.48

BMI (kg/m2)
Placebo 25.76 4.59

DHA-rich 25.36 4.24 0.936
EPA-rich 25.62 4.48

Years in Education
Placebo 16.28 1.10

DHA-rich 15.56 1.74 0.239
EPA-rich 15.96 1.61

Fruit & Vegetable (portions per day)
Placebo 4.13 1.78

DHA-rich 4.48 2.21 0.359
EPA-rich 4.11 1.93

Alcohol (units per day)
Placebo 1.00 0.71

DHA-rich 1.27 1.05 0.157
EPA-rich 1.23 0.85
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Table 2. Outcomes from the DHA food frequency questionnaire for the 84 participants who completed
all aspects of the study. Group differences were assessed using separate one-way ANOVAs; resulting
p values from these analyses are presented.

N-3 PUFA Food Source Treatment Mean SD p

Oily fish, servings per month a
Placebo 1.43 1.45

DHA-rich 1.79 1.55 0.522
EPA-rich 1.85 1.48

Fish, servings per month b
Placebo 2.07 1.54

DHA-rich 2.05 1.76 0.834
EPA-rich 2.33 2.41

Fish/shellfish, servings per month c
Placebo 1.36 1.70

DHA-rich 1.90 1.81 0.402
EPA-rich 1.39 1.50

Liver, servings per month d
Placebo 2.04 4.78

DHA-rich 0.78 1.84 0.381
EPA-rich 1.93 4.12

Egg yolks, servings per week
Placebo 4.11 3.62

DHA-rich 4.52 4.12 0.890
EPA-rich 4.69 5.77

Poultry, servings per week
Placebo 2.93 2.36

DHA-rich 3.53 2.59 0.534
EPA-rich 2.87 2.44

a includes bluefish, blue fin tuna, cisco (smoked), herring, mackerel, pollock, sardines, salmon, whitefish;
b includes bass, calamari, catfish, drumfish, flounder, grouper, hailbut, mussels, perch, redfish, rockfish, shark,
snapper, sole, squid, swordfish, trout, tuna (canned 6 oz), whiting; c includes carp, clams, cod, crab, crayfish,
fish patties/squares, fish sticks, haddock, lobster, mullet, oysters, pike, pompano, scallops, shrimp (14 medium),
surgeon; and d includes chicken liver, turkey liver, or beef liver.

2.5. Treatment

All treatment capsules were supplied by BASF AS. Treatment was provided as three 1 g
capsules. The DHA-rich capsules provided 900 mg DHA/d and 270 mg EPA/d (Accelon™
DHA EE EU capsules), the EPA-rich capsules provided 360 mg DHA/d and 900 mg EPA/d
(Accelon™ EPA EE EU capsules) and the placebo capsules contained 1 g refined olive oil.
Each capsule of Accelon High DHA contained 600 mg oil with at least 420 mg omega-3
fatty acid EEs, including EPA, DHA, C18:3 n-3, C18:4 n-3, C20:4 n-3, C21:5 n-3, and C22:5
n-3. The amount of DHA was at least 300 mg and EPA at least 90 mg per capsule. Similarly,
each capsule of Accelon High EPA contained 600 mg oil with at least 450 mg omega-3 fatty
acid EEs, including the same fatty acids as above. The amount of DHA was at least 120 mg
and EPA was at least 300 mg per capsule. The additional capsule fill, 400 mg/capsule
for both formulations, was food additives (permitted for use in food supplements). The
active treatments using the Accelon™ technology also contained a proprietary mixture of
surfactants and co-solvents. When exposed to the contents of the stomach, these ingredients
are designed to spontaneously emulsify the oils, forming microdroplets. Known as a self-
microemulsifying delivery system (SMEDS), this approach improves the absorption of the
n-3 PUFAs contained within the treatments [17]. Participants were instructed to take their
capsules with a glass of water at their usual bedtime. Placebo and treatment capsules were
identical in size and shape, and similar in appearance.

2.6. Procedure

All study visits took place at Northumbria University’s Brain, Performance, and
Nutrition Research Centre (BPNRC). Potential participants attended the centre for an initial
screening visit. The principal investigator or designee discussed with each participant the
nature of the trial, its requirements and restrictions, in line with the participant information
sheet previously given to the participant. Formal written consent was provided.
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Before the baseline and week 26 assessments, participants were required to visit the
center to collect an actiwatch, sleep diary, and urine sampling pack. Participants were
required to wear the actiwatch and complete the sleep diary for the 7 nights, prior to the
baseline and week 26 assessments, and to provide urine samples the night before and
the morning of the baseline and week 26 assessments. Participants were asked to avoid
alcohol and refrain from intake of ‘over the counter’ medications for 24 h and of caffeine
for 18 h before both the baseline and week 26 assessments. Participants were contacted to
remind them of the requirements prior to each assessment. On the morning of the baseline
testing visit, participants were requested to eat their usual breakfast at least 1 h prior to
arrival at the laboratory (but to avoid any caffeinated products) or to not have breakfast if
they usually skipped breakfast. At the end of the baseline assessments, participants were
provided with the first batch of capsules (3 bottles of 100 capsules each) and given a diary
in which to record their daily consumption of capsules, along with any adverse events
and concomitant medications (see Supplementary Figure S1 for schematic depiction of the
study overview).

Participants also reported to the BPNRC during week 13 to collect the second batch
of capsules (3 bottles of 100 capsules each) and to complete the Leeds Sleep Evaluation
Questionnaire (LSEQ) and subjective awakening scales. Participants also brought with
them their diary, which was replaced with a new diary to complete between week 13–26,
and any remaining unused treatment capsules, so that a treatment compliance percentage
could be calculated.

The week 26 testing assessment was identical to the baseline assessment in all aspects,
apart from collecting the treatment and sleep diaries, all remaining treatments, completion
of a treatment guess questionnaire, and finally a full debrief once all assessments were
completed. During both baseline and week 26 visits, participants were also required to
provide a 6 mL venous blood sample to determine red blood cell fatty acid profile.

2.7. Outcomes
2.7.1. Subjective Measures

The LSEQ is a 10-item visual analog scale (VAS) specifically designed to measure
changes in subjective sleep, following a pharmacological intervention [18]. The question-
naire measures aspects of sleep including Getting to Sleep, Quality of Sleep, Awakening
from Sleep, and Behavior Following Sleep. The 10 items that made up the four sleep
components were each presented on a 100 mm line with one end representing a negative
and the other representing a positive response to the question. Higher scores on these
scales represented more positive feelings of the respective items.

The VAS measured items related to participant’s subjective awakening state. Partic-
ipants rated their current subjective state by making a mark on a 100 mm line with the
end-points labelled “not at all” (left hand end) and “very much so” (right hand end). These
scales included the following questions “how rested do you feel?”, “how energetic do you
feel?”, “how relaxed do you feel?”, “how irritable do you feel?”, “how ready do you feel
to perform”, and “have you had a good night’s sleep?”. Higher scores on these scales
represent stronger feelings of the respective items.

2.7.2. Biological Measures

Urine sampling commenced on the evening prior to the baseline and week 26 testing
visits and comprised three separate samples—void at bedtime and the first and second voids
of the following day (morning of the testing visit). If a participant needed to urinate during
the night, then these voids were also collected in the same manner, as described below.

Urine was collected in a sterilized measuring cylinder. Void volume, time and date
were recorded, before a 10 mL aliquot of urine was retained and refrigerated in a screw cap
container, pre-labelled with the participant’s study details. The samples were taken to the
laboratory at the baseline and week 26 testing visits, for further labelling and immediate
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storage at −80 ◦C for later analysis of the major melatonin metabolite 6-sulfatoxymelatonin
(aMT6s), using radioimmunoassay [19].

Total excretion of aMT6s (ng) summed from all voids and the bedtime aMT6s (ng)
values were calculated. Bedtime excretion of aMT6s specifically was also chosen to be
analyzed independently from the total aMT6s, as a measure of melatonin production before
sleeping, in an attempt to assess the effects of treatment on bedtime melatonin levels. This
is because reduced evening melatonin production is associated with sleep disturbances [20],
and urinary levels of aMT6s are seen to parallel those of melatonin in the blood, saliva, and
urine [21].

2.7.3. Objective Measures

Participants were instructed to complete sleep diaries to record time in and out of
bed, and to wear actigraphy WGT3X-BT watches (ActiGraph LLC, Pensacola, FL, USA) on
the non-dominant wrist for seven consecutive days and nights, both prior to commencing
and before completing the 26-week supplementation period. The devices were small
and lightweight and could detect body accelerations in the vertical, horizontal (right to
left), and frontal (front and back) planes, at varying sample rates. The data from the
watches were collected in 1-min epochs. Utilizing Actilife software (version 6.1, ActiGraph,
Pensacola, FL, USA) and the Cole-Kripke algorithm [22], the following parameters could
then be calculated:

• Sleep latency (The difference in minutes between In-Bedtime and sleep onset).
• Sleep efficiency (Number of sleep minutes divided by the total number of minutes the

participant was in bed, i.e., the difference between the In-Bed and Out-Bedtime).
• Total sleep time (The total number of minutes scored as “asleep”).
• Total minutes in bed (The total number of minutes in bed both awake and asleep).
• Wake after sleep onset (The total number of minutes awake after sleep onset occurred).
• Number of awakenings (Total number of awakenings from the time spent in bed).
• Average awakening length (The average length, in minutes, of all awakening episodes).
• Sleep Fragmentation Index (The sum of the Movement Index—Total of scored awake

minutes divided by Total time in bed in hours ×100 and the Fragmentation Index—
Total of 1-min scored sleep bouts divided by the total number of sleep bouts of any
length × 100)

2.8. Red Blood Cell Fatty Acid Measurements

Blood samples were collected via venepuncture into ethylenediaminetetraacetic acid
vacutainers (6 mL) by trained phlebotomists. The samples were stored in an ice box, or
at 5 ◦C, until they could be processed, which was within 8 h of collection. Blood was
centrifuged at 2000 rpm (913× g) for 10 min at room temperature. The top layer of plasma
was then removed and discarded. One ml of the red blood cell (RBC) pellet was collected,
transferred to a 15 mL centrifuge tube and the volume was increased to 15 mL with
phosphate-buffered saline (PBS). The mixture was inverted and centrifuged at 1200 rpm
(350× g) for 10 min, at room temperature, with a low brake. The PBS was then removed
and the washing process repeated for a second time. After the second wash, the RBC
pellet was transferred into 1.5 mL microtubes and immediately frozen at −80 ◦C, prior
to analysis.

RBC fatty acid composition was analyzed by gas chromatography [23]. The RBC pellet
was washed twice with 5 mL of 0.9% sodium chloride (NaCl) and then total lipid was
extracted using chloroform–methanol (2:1) containing 50 mg/L butylated hydroxytoluene
as an antioxidant. The lipid phase was dried down under nitrogen, redissolved in a small
volume of toluene, and then heated for 2 h at 50 ◦C with dry methanol containing 2%
sulfuric acid. This procedure cleaved fatty acids from more complex lipids (e.g., membrane
phospholipids) and simultaneously methylated them to produce fatty acid methyl esters
(FAMEs). At the end of the reaction time, the sample was neutralized and FAMEs were
extracted into hexane. FAMEs were concentrated and then separated on an Agilent 6890 gas
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chromatograph fitted with a 30-m long SGE BPX-70 fused silica capillary column. The split
ratio was 25:1. The injector port temperature was 300 ◦C and helium was used as the carrier
gas. The oven was held at 115 ◦C for 2 min, then increased at a rate of 10 ◦C per minute up
to 200 ◦C, where it was held for 18.5 min. Oven temperature was then increased at a rate
of 60 ◦C per minute to 245 ◦C, where it was held for 4 min. The flame ionization detector
was held at 300 ◦C. FAMEs were identified by comparison with run times of authentic
standards. Peak areas were calculated using the ChemStation software and each FAME
was expressed as a weight % of the total. The n-3 index was calculated as % EPA + % DHA.

2.9. Compliance and Treatment Guess

As each participant was provided with 600 treatment capsules throughout the sup-
plementation period, treatment compliance (%) could be calculated in order to measure
adherence to the study protocol, with regards to appropriate consumption of the study
treatments. Treatment compliance was calculated by comparing the number of capsules
that were returned by each participant at the end of the study with the number of capsules
that were to be returned.

Additionally, at the end of the study, all participants were provided with a treatment
guess questionnaire and asked to choose between whether they had received an active or
placebo treatment throughout the supplementation period, to verify the blinding procedure.
Responses from the treatment guess questionnaire were analyzed via the chi-square test,
comparing the number of correct and incorrect responses given by each treatment group.

2.10. Statistical Methods

Statistical analyses were performed with the IBM SPSS statistics software (version 25;
IBM Corp, Armonk, NY, USA). Full data handling and cleaning procedures are described
in the Supplementary Materials Section 2. Descriptive and comparison statistics (inde-
pendent t-test, two-tailed, or chi-square test) of all baseline characteristics were based on
all participants who were randomized and consumed at least one dose of treatment. All
other analyses conducted were from the intention-to-treat (ITT) population. The general
statistical approach selected to analyze the repeated measures data by treatment group was
via linear mixed models (LMM) with treatment (DHA-rich, EPA-rich, placebo) and night
(1–7) as factors in the objective sleep models and treatment (DHA-rich, EPA-rich, placebo),
and visit (week 13 and week 26) in the subjective models. For each model that was run,
the covariance matrix structure was chosen on the basis of structure that produced the
lowest Schwarz’s Bayesian Criterion (BIC), an indication of the best fitting model for the
data [24]. Changes within outcome variables during the treatment period were assessed
via LMMs that adjusted for the respective baseline scores. Significant main or interaction
effects of treatment (p < 0.050) were further investigated with Sidak-corrected comparisons
to account for multiple group comparisons.

2.11. Ethics

This study was pre-registered via www.clinicaltrials.gov (NCT03559361) and con-
ducted at the University of Northumbria, according to the guidelines of the Declaration of
Helsinki (2013). Ethical approval for the trial was obtained from the University of Northum-
bria, Department of Psychology Ethics Committee (SUB023), and written informed consent
was obtained from all participants. All paper study data were stored in a locked filing
cabinet and electronic data on a secure network drive with access granted only to those
working within the research center. The trial described in this manuscript was a sub-study
of a larger study investigating the effects of the EPA- and DHA-rich oils on cognitive
function (NCT02763514).

www.clinicaltrials.gov
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3. Results

The flow of participants through the study is summarized in Figure 1. The final
analysis was conducted in 84 participants (n = 28 in the placebo group; n = 29 in the DHA-
rich oil group; n = 27 in the EPA-rich oil group) for whom baseline and end of study data
were available. Baseline characteristics of subjects are summarized in Table 1. No significant
differences between the treatment groups were identified for any baseline demographics.

3.1. Compliance

For participants who completed the study, compliance was observed to be very good
in all three groups (95.21% Placebo, 96.42% DHA-rich, 95.64% EPA-rich), with one-way
ANOVA identifying no significant differences for compliance percentage by treatment
group [F (2, 81) = 0.274, p = 0.761]. A chi-square test was also conducted on the responses
to the treatment guess questionnaire that was completed at the end of the final visit and
revealed no significant differences in participants’ ability to correctly identify whether they
were administered an active or placebo treatment between the three groups [χ2 (2) = 3.84,
p = 0.147]. Analysis of RBC fatty acid profiles further supports the compliance data, with
increases in EPA, DHA and n-3 index in both EPA and DHA groups (Table 3). This increase
was more marked in the DHA than the EPA group (Table 3).

Table 3. Red blood cell EPA, DHA, and n-3 index for placebo, DHA-rich, and EPA-rich treatment
groups. Data are mean ± SD at baseline, week 26, and change (from baseline).

Variable Treatment Baseline
(n = 80)

Week 26
(n = 70)

Change *
(n = 69)

% of EPA in RBC
Placebo 0.82 ± 0.21 0.80 ± 0.27 −0.03 ± 0.19

DHA-rich 0.88 ± 0.28 2.16 ± 0.57 1.24 ± 0.57
EPA-rich 1.03 ± 0.43 2.73 ± 1.02 1.68 ± 1.03

% of DHA in RBC
Placebo 4.82 ± 0.96 4.77 ± 0.82 0.03 ± 0.78

DHA-rich 4.71 ± 0.91 7.69 ± 1.31 2.94 ± 1.42
EPA-rich 5.04 ± 1.48 6.12 ± 0.95 1.08 ± 1.43

n-3 index (EPA + DHA)
Placebo 5.63 ± 1.03 5.57 ± 0.95 −0.00 ± 0.80

DHA-rich 5.59 ± 1.06 9.85 ± 1.64 4.18 ± 1.69
EPA-rich 6.07 ± 1.94 8.85 ± 1.60 2.75 ± 2.19

* Change values are only calculated for those participants who had data at both baseline and week 26.

3.2. Mixed Models Analysis

Due to the number of possible interactions between the factors, only those that re-
vealed significant main or interaction effects, including treatment, are reported.

3.2.1. Objective Measures

See Table 4 for a summary of all objective sleep results. A significant main effect of
treatment for sleep efficiency was identified [F (2, 79.79) = 3.68, p = 0.030] with post-hoc
comparisons identifying the DHA-rich group (92.02%; p = 0.037) as having significantly
higher sleep efficiency, with a trend towards significantly higher sleep efficiency in the
EPA-rich group (91.85%; p = 0.087) as compared to the placebo (90.30%) (Figure 2A).

Analysis identified a significant main effect of treatment for sleep latency [F (2, 322) = 3.68,
p = 0.026] with post-hoc comparisons identifying the DHA-rich (3.76; p = 0.021) but not the
EPA-rich (3.98; p = 0.276) group as showing significantly shorter sleep latency, as compared to
placebo (4.31) (Figure 2B).

Analysis also identified a significant interaction between treatment and night for sleep
latency [F (12, 322) = 2.28, p = 0.009], with post-hoc comparisons identifying the DHA-rich
group (3.31) as having a significantly shorter latency period compared to both the placebo
(6.43; p = 0.003) and the EPA-rich (5.80; p = 0.023) groups on night 1, and both the DHA-rich
(3.36, p = 0.017) and EPA-rich (3.34, p = 0.021) groups as having a significantly shorter
latency period compared to placebo (4.53) on night 6.
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Table 4. Objective sleep outcomes for the placebo, DHA-rich, and EPA-rich treatment groups. Post-
dose estimated marginal means and standard error (SE) are presented with F and p values of the
main effects from the linear mixed models.

Variable Treatment
Post-Dose Main Effects

n Mean SE F p

Latency
(minutes)

Placebo

74

4.31 a 0.21 Treatment 3.68 0.026
DHA-rich 3.76 a 0.26

EPA-rich 3.98 0.27 Treatment
× Night 2.28 0.009

Efficiency (%)

Placebo

72

90.30 a,T 0.50 Treatment 3.68 0.030
DHA-rich 92.02 a 0.49

EPA-rich 91.85 T 0.57 Treatment
× Night 1.47 0.138

Total Minutes
in bed

(minutes)

Placebo

74

484.51 8.13 Treatment 3.29 0.039
DHA-rich 494.85 b 6.63

EPA-rich 467.10 b 8.55 Treatment
× Night 0.851 0.598

Total Sleep
Time (Minutes)

Placebo

73

437.91 7.56 Treatment 4.06 0.018
DHA-rich 455.17 b 6.18

EPA-rich 427.28 b 8.08 Treatment
× Night 1.20 0.281

Wake after
Sleep Onset

(minutes)

Placebo

72

42.02 2.42 Treatment 2.55 0.084
DHA-rich 35.84 2.14

EPA-rich 34.77 2.74 Treatment
× Night 1.29 0.225

Number of
Awakenings

Placebo

74

17.50 0.99 Treatment 0.813 0.446
DHA-rich 15.87 0.88

EPA-rich 16.20 1.08 Treatment
× Night 1.19 0.289

Average
Awakening

Length
(minutes)

Placebo

74

2.44 0.11 Treatment 0.576 0.564
DHA-rich 2.29 0.09

EPA-rich 2.38 0.12 Treatment
× Night 1.50 0.126

Sleep
Fragmentation

Index

Placebo

74

22.89 1.28 Treatment 0.802 0.451
DHA-rich 20.80 1.11

EPA-rich 22.22 1.38 Treatment
× Night 1.90 0.036

a = significant difference between active and placebo groups, p < 0.050; b = significant difference between the
active treatment groups, p < 0.050; T = trend towards a significant difference between active and placebo groups,
p < 0.100.

Analysis identified a significant main effect of treatment for total minutes in bed
[F (2, 328) = 3.29, p = 0.039], with post-hoc comparisons identifying no significant differ-
ences between the active and placebo groups, but the DHA-rich group (484.51 min) spent
significantly more time in bed than the EPA-rich group (467.10; p = 0.032) (Figure 2C).

A significant main effect of treatment was also identified for total sleep time [F (2, 323)
= 4.06, p = 0.018] with post-hoc comparisons identifying no significant differences between
the active and placebo groups but the DHA-rich group (455.17 min) spent significantly
more time asleep than the EPA-rich group (427.28; p = 0.019) (Figure 2D).

Analysis also identified a significant interaction between treatment and night for
the sleep fragmentation index [F (12, 227.64) = 1.90, p = 0.025], with post-hoc compar-
isons identifying the DHA-rich group (15.88; p = 0.003) as having significantly less sleep
fragmentation compared to placebo (26.85) on night 2 only.
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3.2.2. Subjective Measures

See Table 5 for a full summary of subjective sleep results. A significant effect of
treatment for feeling energetic was also identified [F (2, 79.35) = 3.545, p = 0.034], with
post-hoc comparisons identifying the DHA-rich (53.79; p = 0.041) but not the EPA-rich
(64.94; p = 0.970) group as feeling significantly less energetic, as compared to the placebo
(62.47) (Figure 3).

A significant effect of treatment for feeling rested was identified [F (2, 76.42) = 4.71,
p = 0.017], with post-hoc comparisons identifying no significant difference between the
active and placebo groups, but the DHA-rich group (53.55) were significantly less rested
than the EPA-rich group (64.94; p = 0.017) (Figure 3).

A significant effect of treatment for feeling ready to perform was identified [F (2, 84.12)
= 3.211, p = 0.045], with post-hoc comparisons identifying no significant difference between
the active and placebo groups but the DHA-rich group (59.12) showed a trend towards being
significantly less ready to perform than the EPA-rich group (66.65; p = 0.075) (Figure 3).
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Table 5. Subjective sleep outcomes for the placebo, DHA-rich, and EPA-rich treatment groups.
Estimated marginal means and standard error (SE) for week 13 and week 26 are presented with F
and p values of the main effects from the linear mixed models.

Variable Treatment
Week 13 Week 26 Main Effects

n Mean SE Mean SE F p

Getting to
Sleep (0–300)

Placebo

86

182.49 6.69 170.63 6.69 Treatment 0.243 0.785
DHA-rich 177.13 7.28 177.05 6.56

EPA-rich 176.04 7.09 167.88 6.98 Treatment
× Visit 0.557 0.575

Quality of
Sleep (0–200)

Placebo

86

118.12 6.65 112.38 6.74 Treatment 0.438 0.647
DHA-rich 118.47 7.19 118.64 6.53

EPA-rich 109.22 7.02 112.26 6.92 Treatment
× Visit 0.392 0.677

Awake
Following

Sleep (0–200)

Placebo

86

107.23 6.01 113.52 6.12 Treatment 0.518 0.598
DHA-rich 118.80 6.62 115.34 5.91

EPA-rich 112.80 6.37 113.05 6.27 Treatment
× Visit 0.379 0.686

Behaviour
Following
Wakening

(0–300)

Placebo

86

191.09 7.68 180.02 7.79 Treatment 0.814 0.447
DHA-rich 181.98 8.38 165.39 7.57

EPA-rich 169.66 8.20 188.93 8.09 Treatment
× Visit 5.03 0.009

Rested (%)

Placebo

86

66.21 a 3.67 59.80 3.74 Treatment 4.71 0.012
DHA-rich 56.44 a 4.06 50.65 3.60

EPA-rich 68.79 3.91 61.09 3.82 Treatment
× Visit 0.034 0.966

Energetic (%)

Placebo

86

65.69 a 3.21 60.20 3.26 Treatment 3.55 0.034
DHA-rich 56.35 a 3.56 51.23 3.16

EPA-rich 60.42 3.42 62.51 3.37 Treatment
× Visit 1.05 0.354

Relaxed (%)

Placebo

86

64.87 3.21 65.82 3.26 Treatment 1.37 0.260
DHA-rich 61.12 3.49 58.81 3.14

EPA-rich 65.60 3.40 65.47 3.35 Treatment
× Visit 0.191 0.827

Irritable (%)

Placebo

86

26.74 3.70 27.70 3.77 Treatment 1.46 0.238
DHA-rich 31.95 4.09 35.10 3.64

EPA-rich 28.70 3.92 27.25 3.85 Treatment
× Visit 0.196 0.822

Ready to
Perform (%)

Placebo

86

65.70 2.81 66.23 2.86 Treatment 3.21 0.045
DHA-rich 61.56 b 3.08 56.68 2.76

EPA-rich 66.88 b 2.98 66.43 2.92 Treatment
× Visit 0.668 0.515

Good Night’s
Sleep (%)

Placebo

86

65.88 4.30 59.53 4.38 Treatment 1.61 0.205
DHA-rich 63.06 4.72 50.85 4.23

EPA-rich 68.37 4.54 62.69 4.45 Treatment
× Visit 0.392 0.677

a = significant difference between active and placebo groups, p < 0.050; b = significant difference between the
active treatment groups, p < 0.050.

A significant treatment by visit interaction for behavior, following waking, was ob-
served [F (2, 77.01) = 5.03, p = 0.009]. However, post-hoc comparisons identified no
significant differences between any of groups at either week 13 or 26. No other effects of
treatment were observed for any other subjective measures.
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3.2.3. Biological Measures

No significant main effects of treatment were observed for urinary aMT6s (Table 6).

Table 6. Urinary aMT6s for placebo, DHA-rich, and EPA-rich treatment groups. Post-treatment
estimated marginal means and standard error (SE) are presented with the F and p values of the main
effects from the linear mixed models.

Variable Treatment
Post-Treatment Main Effects

n Mean SE F p

Total aMT6s (ng)
Placebo

67
15,289.27 1,267.50

DHA-rich 15,335.89 1,267.88 Treatment 0.558 0.575
EPA-rich 13,585.56 1,346.06

Bedtime aMT6s (ng)
Placebo

60
563.98 120.67

DHA-rich 468.62 123.42 Treatment 2.12 0.130
EPA-rich 805.34 117.08

4. Discussion

The results from the current study show that supplementation with DHA-rich oil in
healthy adults who do not habitually consume oily fish, resulted in a significant increase
in sleep efficiency and a significant decrease in sleep latency compared to placebo. Inter-
estingly, despite these improvements in the objective actigraphy sleep measures in the
DHA-rich group, it was also found that this group reported feeling less rested compared
to placebo, and less energetic and ready to perform than those given EPA-rich oil. A
significant decrease in the sleep fragmentation index was also observed in the DHA-rich
group, as compared to the placebo. However, the latter effect was found to only be evident
during the second night of the seven nights recorded, and must be interpreted with caution.
With regards to the EPA-rich oil, a trend towards a significant increase in sleep efficiency
was identified in this group, as compared to the placebo. The EPA-rich oil also resulted
in a significant decrease in both total time in bed and total sleep time, as compared to
the DHA-rich group, although no significant differences were identified between either
treatment group and placebo for these measures. Finally, no significant effects of treatment
were identified for urinary aMT6s excretion.

The beneficial effects of DHA in increasing sleep efficiency and reducing sleep latency
were consistent with previous animal models [25] and exploratory data from an interven-
tion study in children [11], providing further evidence to support the beneficial role of DHA
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in sleep. Indeed, enzymatic transformation of serotonin to melatonin by aralkylamine
N-acetyltransferase [26] was supported by DHA, via its positive effects on membrane
fluidity [27] and serotonin levels in the prefrontal cortex [28], which might help modulate
the transition between sleep and wakefulness [29]. Given the above, the null findings of
treatment on urinary aMT6s might suggest that DHA affects sleep via mechanisms other
than the melatonin synthesis pathway. However, it might also be the case that the period
of urinary collection over a single night was simply not sensitive enough to identify an
effect on aMT6s. Therefore, in order to better evaluate the relationship between n-3 PUFAs,
melatonin and sleep, future research should consider either the use of 24/48 h urinary
collection periods or the analysis of melatonin in blood, which allows for greater resolution
and sensitivity [30].

The negative subjective ratings identified in the DHA-rich oil group were inconsis-
tent with the actigraphy data. One potential explanation for this might be informed by
investigations of patients suffering from insomnia. For instance, Feige et al. [31] explain
how a major enigma of insomnia research constitutes the frequently noted discrepancy
between the subjective experience of sleep (measured by sleep questionnaires) and the
polysomnographic (PSG) findings. PSG studies often demonstrate that patients suffering
from insomnia tend to underestimate their nocturnal sleep time [32,33], leading to terms
such as ‘sleep state misperception’ for patients with a relatively normal sleep continuity
and architecture, despite subjective complaints of disturbed sleep [34]. Due to the issues
with objectively defining sleep parameters (e.g., sleep efficiency/latency [35]), focusing
on the architecture of sleep might offer additional explanations for these conflicting data.
For example, Feige et al. [32] showed that differences between subjectively and objectively
measured wake times were correlated with the amount of REM sleep in insomnia patients,
i.e., patients with higher amounts of REM sleep tended to report more minutes of subjective
wakefulness. Further investigation using PSG would therefore provide valuable insights
into the effects of n-3 PUFAs on the sleep architecture, in relation to the amounts of REM
and non-REM sleep, which could then be evaluated alongside subjective effects.

Regarding the observed effects of EPA-rich oil on sleep, the differential pattern of
results compared to placebo and the direct differences between the effects of each treatment
do suggest specific roles of DHA and EPA in sleep. The shortened sleep times identified
within the current study, following the EPA-rich oil as compared to the DHA-rich oil,
might potentially be explained by the role of EPA inhibiting the formation of E2-series
prostaglandins, which in turn inhibit the release of serotonin [36]. As serotonin promotes
wakefulness and inhibits REM sleep [37], it might be that increased levels of circulating
EPA indirectly upregulate the promotion of wakefulness, resulting in decreased sleep time.
It should be noted that although participants in the EPA-rich oil group reported the shortest
sleep times, this did not appear to lead to any reduction in the quality of sleep. In fact, a
trend towards a significant increase in sleep efficiency, compared to placebo, was observed
along with no increases in the time spent awake, number of awakenings, or decreased
ratings of subjective sleep quality. This might potentially suggest that EPA is beneficial for
regulating a healthy sleep cycle and could help protect against suboptimal sleep (i.e., too
little or too much sleep), which is known to be detrimental for health [38,39].

The current study was the first to investigate the separate effects of DHA and EPA on
sleep, in a sample of healthy, young adults, with a rigorous study protocol that collected
both objective and subjective measurements of sleep. Additionally, the measurement of
aMT6s offered the potential to gain insight into possible mechanisms underpinning the
relationship between n-3 PUFAs and sleep. The study had good compliance, as confirmed
by measuring the RBC EPA, DHA, and the n-3 index. However, the study is not without its
limitations and several challenges were faced with regards to the collection of actigraphy
data, as well as with the subjective recording of sleep/wake times. Issues with incomplete
and even unusable actigraph data—as a result of improper use of the equipment—resulted
in a reduced sample size in the actigraphy datasets, although this reduction is in line
with missing data observed in previous actigraphy studies [11,40]. Furthermore, future
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research might wish to take body composition into account when recruiting participants. As
overweight and obese individuals are seen to have increased inflammatory profiles [41,42]
and are more likely to experience sleep disorders [43], this might be a factor that future
trials could control for more strictly or take into consideration during data analysis. As
the current study included participants with a BMI ≤ 35 kg/m2, it could be that a more
conservative range of BMI should be used in future.

Overall, this study provides additional support for the beneficial role of n-3 PUFAs,
particularly DHA, for sleep. These include an overall increase in sleep efficiency and
a reduction in sleep latency, although these positive measures of increased sleep qual-
ity measured using actigraphy were not consistent with subjective ratings, following
DHA-rich oil. Further investigations into the relationship between n-3 PUFAs and the
serotonin/melatonin synthesis pathway and effects on sleep architecture are required.
Nonetheless, as beneficial effects of sleep were identified following supplementation with
n-3 PUFAs in healthy, young adults, these data help to provide additional evidence towards
the role of n-3 PUFAs in facilitating healthy regulation of sleep.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-664
3/13/1/248/s1. Figure S1: Schematic showing the study progression from enrolment to completion
across the 26 weeks. Actigraphy recordings were taken for the seven days and nights prior to the
baseline; week 26 testing visits and urinary aMT6s samples were collected the night prior to and
morning of the baseline and week 26 testing visits. LSEQ—Leeds Sleep Evaluation Questionnaire.
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