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A fundamental assumption in quantitative genetics is that traits are controlled by many loci of small effect. Using genomic data,

this assumption can be tested using chromosome partitioning analyses, where the proportion of genetic variance for a trait

explained by each chromosome (h2
c), is regressed on its size. However, as h2

c-estimates are necessarily positive (censoring) and

the variance increases with chromosome size (heteroscedasticity), two fundamental assumptions of ordinary least squares (OLS)

regression are violated. Using simulated and empirical data we demonstrate that these violations lead to incorrect inference of

genetic architecture. The degree of bias depends mainly on the number of chromosomes and their size distribution and is therefore

specific to the species; using published data across many different species we estimate that not accounting for this effect overall

resulted in 28% false positives. We introduce a new and computationally efficient resampling method that corrects for inflation

caused by heteroscedasticity and censoring and that works under a large range of dataset sizes and genetic architectures in

empirical datasets. Our new method substantially improves the robustness of inferences from chromosome partitioning analyses.
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Impact summary
Chromosome partitioning analyses, where the propor-

tion of genetic variance for a trait explained by each

chromosome (h2
c) is regressed on its size, is a common

way to test for a polygenic basis of traits. However, h2
c-

estimates are censored to be positive and the variance

in h2
c increase with chromosome size, violating two as-

sumptions of least squares regression. Using simulated

and empirical data we demonstrate that these violations

lead to incorrect inference of genetic architecture that

depends on the number and size distribution of chromo-

somes, with 28% of published results being false posi-

tives. We introduce a new and computationally efficient

resampling method that provides unbiased estimates and

substantially improves the robustness of inferences from

chromosome partitioning analyses.

Genome wide association studies (GWAS) in humans

(Donnelly 2008; Yang et al. 2013; Timpson et al. 2018), livestock

(Sharma et al. 2015) and natural plant and animal populations

(Schielzeth and Husby 2014) have demonstrated that a wide

variety of traits are controlled by many loci of individually small

effect (Mackay et al. 2009), consistent with the infinitesimal

model of quantitative genetics (Fisher 1930). When traits are

polygenic, SNPs that reach statistical significance at a genome-

wide level typically only account for a small amount of the total

narrow-sense heritability (h2). This has fueled many discussions

of “missing” or “hidden” heritability in GWAS studies (Manolio

et al. 2009; Eichler et al. 2010; Yang et al. 2013).

One possible solution to the “missing heritability” problem

is to consider the effect of all SNPs jointly, which should provide

an unbiased estimate of the variance explained by all SNPs in

the dataset, the so called SNP-based heritability (h2
SNP; Yang

et al. 2010). For instance, h2
SNP was estimated to 45% for human

height, compared to 1–3% when only considering genome wide
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significant SNPs (Yang et al. 2010). The SNP-based heritability

relies on causal variants being in linkage disequilibrium (LD)

with genotyped SNPs and is a useful parameter also because it can

be further partitioned among arbitrary portions of the genome, for

example among intergenic and genic regions (Yang et al. 2010;

Gusev et al. 2013; Yang et al. 2014; Loh et al. 2015). In particular,

partitioning genetic variance among chromosomes (h2
c) has

proven a useful and popular approach to test for a polygenic basis

of trait inheritance (Davies et al. 2011; Yang et al. 2011b; Jensen

et al. 2012; Lee et al. 2012; Lee et al. 2013; Santure et al. 2013;

Robinson et al. 2013; Yang et al. 2014; Berenos et al. 2015;

Santure et al. 2015; Wenzel et al. 2015; Silva et al. 2017). If a trait

is polygenic, then larger chromosomes (on average harboring

more causal loci) are expected to explain more of the total h2
SNP

and h2
c is expected to scale positively with chromosome size

(Yang et al. 2011b). Indeed, many human studies (Davies et al.

2011; Yang et al. 2011b; Lee et al. 2012, 2013; Yang et al. 2013,

2014) as well as studies on natural populations (Santure et al.

2013, 2015; Robinson et al. 2013; Berenos et al. 2015; Wenzel

et al. 2015; Silva et al. 2017) have found significant regressions

between h2
c and chromosome size across a variety of different

traits, suggesting that most traits are polygenic.

Chromosome partitioning tests are typically performed

using ordinary least squares (OLS) regressions (Davies et al.

2011; Yang et al. 2011b; Jensen et al. 2012; Lee et al. 2012; Lee

et al. 2013; Santure et al. 2013; Yang et al. 2013; Robinson et al.

2013; Yang et al. 2014; Berenos et al. 2015; Santure et al. 2015;

Wenzel et al. 2015; Duan et al. 2016; Silva et al. 2017). However,

standard errors of h2
c estimates (SEh) increase with the number

of SNPs (Visscher et al. 2014). This violates the assumption of

homoscedasticity in OLS regression, something that can lead to

bias in both the slope of the regression line (β) and the associated

P value (Strutz 2016). Using simulated data we show that

heteroscedasticity in combination with the fact that h2
c-estimates

are constrained to be positive (censoring) leads to considerable

P value inflation in chromosome partitioning analyses that use

OLS regressions between h2
c and chromosome size, something

that can result in misleading inferences about the genetic

architecture of traits.

One potential solution to mitigate P value inflation is to

generate a null-distribution by removing associations between

genotype and phenotype prior to chromosome partitioning (by

permutation). However, this is computationally demanding and

complicated by the presence of population stratification that may

add additional biases (Abney 2015). We use simulated and previ-

ously published empirical data from humans and other organisms

and demonstrate that both heteroscedasticity and censoring in

OLS regression between h2
c and chromosome size can be ac-

counted for by a simple and computationally efficient resampling

procedure that is ideal for large genomic datasets. We demonstrate

that our resampling procedure is robust to variation in genome

characteristics as well as variation in the underlying genetic

architecture of the trait, population stratification, and dataset size.

Methods
P VALUE INFLATION IN OLS REGRESSIONS BETWEEN

h2
c AND CHROMOSOME SIZE IN DATA SETS

SIMULATED UNDER THE NULL HYPOTHESIS

Theoretically, h2
c estimates must be larger than or equal to zero

(since they represent proportion of variance explained) and thus

negative h2
c estimates are typically censored to a small positive

value by software that are used to partition heritability among

chromosomes (e.g., GCTA, Yang et al. 2011a). In addition, SEh

in these analyses are expected to increases with chromosome size

(Visscher et al. 2014). As demonstrated in Figure 1, while only

heteroscedasticity (Fig. 1A) or only censoring (Fig. 1D) are not

expected to bias the mean β for regression lines (under the null

hypothesis), the combination of both can severely bias both β’s

and P values (Fig. 1D). Thus, in the context of chromosome par-

titioning analyses, when SEh increases with chromosome size,

but h2
c cannot be negative, mean h2

c is expected to increase with

chromosome size even when there is no genetic basis of the trait.

To test to what extent this causes P value inflation we performed

chromosome partitioning analyses on data simulated under the

null-hypothesis of no association between genotype and pheno-

type. Earlier we have also demonstrated that variation in chromo-

some sizes and the numbers of chromosomes influence the power

of chromosome partitioning analyses (Kemppainen and Husby

2018). We therefore tested the potential effect of these parameters

on P value inflation in chromosome partitioning analyses using

the chicken genome as a contrast to the human genome. While

the human genome (Lander et al. 2001) comprises 22 chromo-

somes ranging from 47 to 250 mega base pairs (Mb), the chicken

genome consists of 38 chromosomes ranging from <0.1 Mb to

196 Mb, the majority of chromosomes being so called “micro-

chromosomes” (20 of the smallest chromosomes are less than

5% of the size of the largest chromosome; Groenen et al. 2000).

We excluded ten of the smallest chromosomes (<1 Mb) from the

chicken genome in our simulations as they rarely contained any

(or only a few) of the SNPs in each dataset. Thus for the simu-

lated human genome we included 22 autosome pairs and for the

chicken genome simulation 28 autosome pairs.

Population genomic datasets were simulated using Fastsim-

coal2, version 2.5.2.21 (Excoffier and Foll 2011; Excoffier et al.

2013) assuming sexually reproducing, nonselfing individuals

with nonoverlapping generations. For all datasets the total

genome size was set to 1 Mb (but with different chromosome

numbers and sizes directly scaled to the genome in question),

and mutation rate, μ (with no transition bias), was adjusted such
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Figure 1. The expected effects of heteroscedasticity and censoring on OLS regression between h2
c and chromosome size under the null

hypothesis of no heritability. Simulated data for figures were produced by generating 10 k x values (representing chromosome size in

arbitrary units, z, range: 1–10,000), and sampling y values (representing h2
c) from a normal distribution with mean = 0 and sd = sqrt(z)

(A); sd = sqrt(z) with negative values censored to 1 × 10−6 (B); sd = 20 and no censoring (C); sd = 20 with negative values censored to

1 × 10−6 (D). Without heteroscedasticity (C and D) slopes (β) of OLS regression lines are expected to be unbiased. While on average β’s

are expected to be zero in (A), but with large variance, a bias towards positive β’s is expected in (B). Dashed orange line represents β

under the null hypothesis (y-intersect = 0, β = 0) and blue line represents linear regression line for all data points in each panel.

that at least nl = 10,000 biallelic SNPs (MAF > 0.05) would be

generated for each dataset. Recombination between adjacent sites

per generation, r, was set to 10 μ regardless of chromosome size

and was uniform across chromosomes. Individuals were sampled

from a single panmictic population with effective population

size, Ne = 5000. We generated one thousand population genomic

datasets for each species with ni = 2000 individuals and

nl = 10,000 loci with phenotypic values sampled from a standard

normal distribution with no association to genotype.

We used the software GCTA v1.24 (Yang et al. 2011a) to

compute the chromosome-specific genetic relationship matrices

(GRMs) for each chromosome and estimated h2
c by fitting

the GRMs of all chromosomes separately (–grm and –reml

options in GCTA) in the model: y = gC + ε, where gC is a

vector of genetic effects attributable to each chromosome and

var (gC ) = AC δ2
C where AC is the GRMs from the SNPs on

each chromosome and δ2
C is the per chromosome variance. The

proportion of variance explained by each chromosome is defined

as h2
C = δ2

C/δ2
P , with δ2

P being the total phenotypic variance.
Under a polygenic model, h2

c is expected to scale positively

and linearly with the number of genes, ng, tagged by the SNPs

on each chromosome (i.e., SNPs in LD with causal variants of

a gene; Yang et al. 2010, 2011b). Assuming gene content and

recombination rate is uniform across the genome and SNPs are

randomly distributed, chromosome size (in base pairs) is a good

and often used proxy for ng in these analyses. In our simulated

data, recombination rate was uniform across chromosomes, and

thus, the linkage map distances directly scales with physical dis-

tance. Because of the higher variability of SNP numbers in small

chromosomes and the limited number of SNPs in our simulated

datasets, we here used the number of SNPs on each chromosome

as the proxy for ng, rather than chromosome size per se (still
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referred to as chromosome size throughout this manuscript). Lin-

ear relationships between h2
c and chromosome size was tested

with standard one-tailed OLS regressions testing for the null-

hypothesis that β � 0.

Under the true null-hypothesis of a test, P values are expected

to be uniformly distributed between 0 and 1 (Clayton et al. 2005).

Deviations from this uniform distribution were estimated as the

slope of a linear regression line in a quantile–quantile (QQ) plot

based on observed versus expected –log10 P values and is equiv-

alent to P value inflation (λ; Clayton et al. 2005). The presence

of heteroscedasticity in the 2000 simulated datasets above was

tested by regressing the means of the standard errors (SEh) for

the h2
c-estimates (obtained from GCTA) against the square root

of the number of SNPs on each chromosome.

CORRECTING FOR HETEROSCEDASTICITY AND

CENSORING IN CHROMOSOME PARTITIONING

ANALYSES

One potential way to control for heteroscedasticity in a regression

analysis is to use weighted least squares (WLS) regression.

However, this is not expected to control for P value inflation

arising from heteroscedasticity in combination with censoring.

Another potential way to control for P value inflation arising

from both heteroscedasticity and censoring, is to generate a null

distribution of P values using permutations that is randomly

changing the phenotypic values among sampled individuals

in each dataset to remove any association between phenotype

and genotype. In our data simulated under the null hypothesis

this is guaranteed to produce an unbiased test (i.e. uniformly

distributed P values) as in the simulated data there was no

association between phenotype and genotype to begin with.

However, permutation tests are slow and in addition challenging

to perform in the presence of population stratification (Abney

2015).

Instead, we here introduce a method where a null distribution

of P values is generated by sampling h2
c values from a normal

distribution with mean equal to zero and standard deviation

(sd) equal to SEh for all regression data points for a given

dataset. These data points are then censored as per standard

in GCTA, that is replacing all negative h2
c-estimates with 1 ×

10−6. This produces resampled datasets with the same pattern of

heteroscedasticity and censoring as in the original dataset without

the need for permuting phenotypic values and reanalyzing the

data. If heteroscedasticity and censoring are the only sources of

P value inflation in OLS regressions between h2
c and chromosome

size, we expect such resampled data with heteroscedasticity and

censoring to generate similar distributions of (inflated) P values

and β’s as simulated data under the null hypothesis. To test this, we

generated resampled data (with heteroscedasticity only and with

both heteroscedasticity and censoring) from the 2000 datasets

simulated under the null hypothesis (see above) and compared the

resulting P values and β distributions using QQ plots. If resam-

pled data with heteroscedasticity and censoring produces similar

distributions of P values as the underlying datasets simulated

under the null-hypothesis, we also expect P value null distribu-

tions from such resampled data to produce uniformly distributed

P values, thus producing an unbiased test. From here on we refer

to this procedure to simultaneously account for Heteroscedasticity

and Censoring by resampling as “HC-correction.” We also tested

to what extent WLS regressions could control P value inflation

by using 1/(SEhˆ2) as the weigh when fitting a linear model to the

simulated or resampled data. Lastly, we also expect P values from

HC-correction and simple permutation of phenotypic values (see

above) to be highly correlated, not only under the null hypothesis,

but also when null hypothesis is not true (i.e., h2 > 0). To test this,

100 population genomic datasets were simulated with ni = 1000

and nl = 5000 for both chicken and human genomes with h2 = 0

or h2 = 0.5. The smaller number of samples and loci were used

to limit computational time for the permuted datasets, otherwise

simulation parameters were as described above. For data sets

with h2 = 0, phenotypic values were generated as above. When

h2 = 0.5, a polygenic architecture was simulated by randomly

sampling 100 causal loci from each dataset (i.e., all phenotypic

variance was captured by our causal loci). Phenotypes were then

simulated based on the causal loci (following documentation

to GCTA software, version 1.24; Yang et al. 2011a) assuming

an additive genetic model yi j = ∑
i wi j × ui + ε j , where

wi j = (xi j − 2pi )/
√

2pi (1 − pi ) , xij is the number of reference

alleles for the i-th causal variant of the j-th individual, pi is

the frequency of the i-th causal variant, ui is the allelic effect size

of the i-th causal variant and ej is the residual effect. The allelic

effect sizes were sampled from a standard normal distribution.

The residual effect was generated from a normal distribution with

mean of 0 and variance equal to var (
∑

i wi j × ui )/(1 − 1/h2),

where the narrow sense heritability, h2 = VA/VP, VA being the

additive genetic variance and VP the total phenotypic variance.

Null distributions for observed P values were generated either

by permuting phenotypic values among individuals in a simulated

data set or by resampling h2
c estimates with heteroscedasticity and

censoring as described above. To avoid unnecessary resampling,

we continued permutation or resampling adaptively (Che et al.

2014) until either the number of P values from OLS regressions

between h2
c and chromosome size were more significant than

the observed P value (a), or the total resampling replicates were

calculated with R total successes (b), where R < a. We set the

precision level, c = SE(P̂)/α to 0.2 where type I error rate,

α = 0.05, thus assuring SE(P̂)at α = 0.05 is less than cα = 0.01.

With these settings, following guidelines in Che et al. (2014), we

continued resampling until either a = 34 (P̂ = a/B) or b = 475

(P̂ = (R+1)/(b+1)).
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Table 1. Summary of empirical datasets.

Dataset nl ni Stratification No. of traits∗

Humans1 565,040 6641–11,578 Unrelated 5 (2/2)
Great tits2 5312 416–1949 Family structure 17 (10/2)
Soay sheep3 37,037 5805 Family structure 5 (2/1)
House sparrows4 6196 721–1448 Family structure 7 (3/1)
Collared flycatchers4 40,822 798—800 Family structure 4 (2/2)

nl, number of loci; ni, number of individuals.
∗
Values in brackets indicate number of significant regressions between h2

c and chromosome size, before/after

HC-correction (see also Table S1). References: 1Yang et al. 2011b, 2Santure et al. 2015, 3Berenos et al. 2015, 4Silva et al. 2017.

EVALUATING HC-CORRECTION USING EMPIRICAL

DATA

If heteroscedasticity and censoring are the only factors determin-

ing P value inflation in chromosome partitioning analyses, we

further expect chromosome partitioning to produce similar (but

not necessarily identical) relationships between HC-corrected and

uncorrected P values in empirical and simulated data, given the

chromosome number and size distribution (as used in the chro-

mosome partitioning analyses in the empirical data) are exactly

the same. To test this, and to evaluate the presence of P value

inflation in chromosome partitioning analyses in empirical data

more generally, we reviewed the literature. In order to compare

the empirical data to simulated data we generated data under a

broad spectrum of dataset sizes and genetic architectures (where

h2 > 0; see below), but always exactly matching the chromosome

size distribution in the corresponding empirical data set. Based

on our literature review, the five empirical datasets presented in

Table 1 were the largest available with respect to number of traits

for the same dataset, and where information about chromosome

sizes as well as both h2
c and SEh for each of the chromosome

partitioning analyses (the data necessary for HC-correction) were

available. For all datasets except humans (see below) we used the

number of SNPs for each chromosome as a proxy for chromo-

some size in the matching simulated datasets, as for some datasets

(collared flycatchers and great tits), SNPs were not randomly

sampled from the genome. To achieve convergence in chromo-

some partitioning analyses in some of the published studies on

empirical bird datasets, loci from the micro-chromosomes were

either pooled (great tits) or successively removed (starting from

the smallest chromosome, until convergence was achieved; col-

lared flycatchers and house sparrows). When chromosomes were

removed to achieve convergence, we only used the chromosomes

that converged for all phenotypic traits for a given genomic dataset

to maximize the number of data points with exactly the same

chromosome number and size distributions. Thus, our results

with uncorrected P values are not necessarily directly compara-

ble with the original results. Since only information for chromo-

some size was available for human data set (number of SNPs and

chromosome sizes are however highly correlated in this data; Yang

et al. 2011b), we used chromosome sizes directly to determine size

of the simulated human chromosomes, instead of the number of

SNPs for each chromosome. Note that the final number of SNPs

per chromosome were not necessarily the same in all simulated

data sets (or compared to the empirical datasets) as the number

of SNPs (for a given level of nl) was a random sample of all the

polymorphic SNPs in the simulated data that passed the filtering

criteria.

For all chromosome size distributions (matching a given em-

pirical data set), we simulated 100 datasets for each combination

of levels of the factors ni (1000 or 2000), nl (5000 or 10,000)

with h2 = 0.5, in total 400 datasets (with phenotypes generated

as described above). In addition, for all these datasets, phenotypic

values were permuted to generate 400 additional datasets with

no association between phenotype and genotype (h2 = 0). No

attempt was made to match these parameters with the empirical

data (except for the chromosome size distribution). This was both

deliberate and practical as the main objective was to compare

the results of chromosome partitioning analyses with matching

genome characteristics, simulating complicated population struc-

ture (similar to what is observed in the empirical datasets) is

challenging and simulating large datasets is computationally de-

manding. To estimate HC-corrected P values we increased b to

49,9975 (instead of 475, see above) to ensure SE(P̂)would be

less than cα = 0.01 at α = 0.05/1000, all other parameters for

the adaptive resampling being as defined above. To calculate HC-

corrected P values for empirical datasets we further increased a

to 120 and b to 49,9975 to ensure that SE(P̂) is no lower than

cα = 5 × 10−3 at α = 0.05/1000 (with other parameters kept as

above), thus ensuring higher precision for HC-corrected P values

for the empirical datasets compared to the simulated datasets.

We tested whether the HC-correction in the empirical data

differed from their respective simulated data by first fitting a loess

regression line in R (R Core Team 2015) to the simulated data

and then using a paired t-test to asses if there was a difference in

the predicted HC-corrected P values and the observed empirical

HC-corrected P values.
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To test the effect of population structure on our HC-correction

approach we simulated 400 additional datasets with two popula-

tions (Ne = 2500 each) connected by two migrants per generation

in mutation drift balance, for human genomes (ni = 1000 or 2000;

nl = 5000 or 10000 and h2 = 0.5, as described above). We fitted

the GRMs of all the chromosomes simultaneously (-mgrm option

in GCTA software) in the model y = ∑nC
C=1 gc + ε where nC

is the number of chromosomes for the analysis. Due to conver-

gence limitations, datasets simulated with population structure

were restricted to h2 = 0.5 and human genomes (with population

structure we could not perform analyses on data simulated under

the null hypothesis of h2 = 0, see Discussion).

Results
P VALUE INFLATION UNDER THE NULL HYPOTHESIS

In the chicken datasets simulated under the null hypothesis of

no heritability, –log10 P values from one-tailed OLS regressions

between h²c and chromosome size were inflated by a factor of 3.4

and among the human datasets by a factor of 1.5 (Fig. 2A). Thus,

the standard way in which chromosome partitioning analyses test

for polygenic architecture is anti-conservative and biased to infer

a polygenic architecture. Indeed, to reach the true significance

level the nominal P value would have had to be 3.8 × 10−5

and 0.011, leading to 42% and 14% false positives for chicken

and human datasets, respectively (instead of the expected 5%, at

false-discovery rate α = 0.05).

In these data sets (with h2 = 0) we found that mean SEh

increases linearly with the square root of chromosome size (as

measured by the number of base pairs; P < 0.001, β = 3.3 × 10−5,

adjusted R2 = 1.0; Fig. 1B), thus, heteroscedasticity is prevalent.

Under the null hypothesis of no association between phenotype

and genotype, the means of h²c for each chromosome (h2
c) should

be centered around zero and thus the slope of the regression line,

β, between h2
c and chromosome size is not expected to deviate

from zero. However, due to heteroscedasticity and the fact that

h²c-estimates are constrained to be positive by GCTA, the means

of h²c are always positive and they also scale linearly with the

square root of chromosome size (P < 0.001, β = 1.3 × 10−5,

adjusted R2 = 0.98; Fig. 2B). This inevitably causes P value

inflation in regression tests between h2
c and chromosome size, as

seen in Figure 2A.

CORRECTING FOR HETEROSCEDASTICITY AND

CENSORING IN CHROMOSOME PARTITIONING

ANALYSES

In datasets with both heteroscedasticity and censoring, WLS re-

gression (that control for heteroscedasticity but not censoring)

reduced P value inflation in both human and chicken datasets, but

was not sufficient to remove it (Fig. S2). Particularly in chicken

datasets substantial P value inflation remained (Fig. S1). One fre-

quently used alternative to generate unbiased distribution of test

statistics is permutation tests and as expected this produced uni-

formly distributed P values for both the simulated chicken and

human genome datasets and resulted in unbiased tests (Fig. S2A).

Next, we explore how heteroscedasticity alone and in combi-

nation with censoring bias β’s and P values in chromosome parti-

tioning analyses. In Figure 3, we compare datasets simulated with

no heritability (h2 = 0) with data resampled with heteroscedastic-

ity and censoring (H+C) and heteroscedasticity without censoring

(H). As expected (based on Fig. 1), with resampled data with

heteroscedasticity but no censoring, β’s were centered around

zero (Fig. 3A). With heteroscedasticity and censoring there was a

bias toward positive values and this bias was stronger for chicken

genomes compared to human genomes (Fig. 3A and B). In ad-

dition, the resampled data with heteorscedasticity and censoring

are indistinguishable from the simulated data (when h2 = 0) with

respect to both β‘s and P value, for both chicken and human

genomes (Fig. 3B,C). This is because SE = sd/
√

(n) where n is

the sample size and since n is a constant sd scales linearly with SE

for a given dataset. This demonstrates that in our simulated data

heteroscedasticity and censoring is enough to explain the observed

P value inflation in regressions between h2
c and chromosome

size.

Because data resampled with heteroscedasticity and censor-

ing produces equivalent distributions of P values as data generated

under the null hypothesis, HC-correction (for the two thousand

datasets presented in Fig. 2A) produced uniformly distributed

P values (Fig. S2B). More importantly, P values from permutation

and HC-correction were highly correlated (R2 > 0.83; Fig. S3)

both when the null hypothesis was correct (h2 = 0) as well as

when the true underlying genetic architecture was polygenic with

h2 = 0.5, demonstrating that these methods are comparable. There

was an expected upward shift in the range of –log10 P values in

data simulated under the null hypothesis compared to when the

trait was polygenic (Fig. S3).

It took approximately 13,000 times longer (on a standard i5

8600 Intel core desktop computer using a single core) to generate

null distributions by permutation (22 s/replicate), compared to

HC-correction (1.7 ms/replicate), for the above datasets. More-

over, HC-correction is independent of size of the genomic dataset,

in contrast to the permutation approach where time per replicate

increased approximately sixfold when doubling of the number of

individuals (but was not affected much by the number of loci in

the dataset).

HC-CORRECTION IN PUBLISHED EMPIRICAL DATA

The resampling method (HC-correction) is only useful if it

also works for empirical data, which potentially have much

more complex genetic architectures and population demographic
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Figure 4. P values from chromosome partitioning in simulated and empirical data. Data were simulated both when the null hypothesis
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not accounting for heteroscedasticity and censoring.

history compared to simulated data. We have demonstrated that

genome characteristics have a strong effect on P value inflation

in simulated data (Fig. 2A). If this is the only factor determining

P value inflation in chromosome partitioning analyses, we expect

HC-correction to produce similar results in empirical and simu-

lated data, given the chromosome number and size distribution

(as used in the chromosome partitioning analyses in the empirical

data) are exactly the same. Figure 4 shows that the empirical data

for each species follow their own (simulated) distribution much

more closely than those from the other species. However, the

empirical datasets differed significantly (paired t-tests) with re-

spect to the relationships between uncorrected and HC-corrected

P values in Soay sheep (t4 = 3.7, P = 0.02), great tits (t14 = 3.3,

P = 0.006), and house sparrows (t6 = 4.7, P = 0.003), but not in

humans (t4 = –0.04, P > 0.05) or collared fly catchers (t3 = 0.4,

P > 0.05). The ratio between HC-corrected and uncorrected

P values (λcor) can be viewed as a point estimate of P value

inflation (otherwise P value inflation can only be estimated when

a large number of tests have been performed; Kemppainen and

Husby 2018). As seen in Figure S4 (where λcor is plotted against

the uncorrected P value), the level of P value inflation that can be

expected in chromosome partitioning analyses (when not account-

ing for heteroscedasticity and censoring) to some extent depends

on the strength of the relationship between chromosome size and

h2
c (i.e., the effect size). This is also evident in Figure 4, where

the relationship between HC-corrected and uncorrected P values

is not strictly linear. However also in Figure S4 the relationship

between λcor and the uncorrected P value (used as a proxy for

effect size), the difference between simulated and empirical data

within each species is small relative to that observed between

species.

The small differences between empirical and simulated

datasets could be due to factors other than variation in chromo-

some number and size distribution, such as, for example, genome

architecture and population stratification. Figure S5, shows that

(moderate) population structure to some extent effects the re-

lationship between HC-corrected and uncorrected P values, but

again, the difference between datasets with and without popula-

tion structure is small relative to the effect of chromosome num-

ber and size distribution. In addition, among the 400 simulated

datasets, there was no difference in the ratio between significant

and nonsignificant HC corrected P values (χ2-test; P > 0.05)

between datasets with and without population structure (217 sig-

nificant and 183 nonsignificant tests vs 229 significant and 171

nonsignificant for data sets with and without population structure,

respectively).

Among the 36 empirical chromosome partitioning tests

(Table 1 and Table S1), 18 were significant prior to HC-correction

and eight remained significant after HC-correction, thus 28%

of the tests were false positives due to not accounting for

heteroscedasticity and censoring in the regression test between

h2
c and chromosome size.

Discussion
Large-scale genotyping studies can substantially contribute to the

central goal of understanding and defining the genetic architecture

of complex traits in humans (Timpson et al. 2018) and in evo-

lutionary genetics more generally (Schielzeth and Husby 2014).

Many studies use chromosome partitioning to test for a polygenic

basis of traits by regressing chromosome specific heritability esti-

mates on chromosome size (Yang et al. 2011b; Santure et al. 2013,

2015; Robinson et al. 2013; Berenos et al. 2015). However, we
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show here that heteroscedasticity in combination with censoring

causes biased parameter estimates and P value inflation in chro-

mosome partitioning analyses (Figs. 2–4), which can lead to over-

confidence in a polygenic basis of traits. Lack of support for poly-

genic trait inheritance could, for example be due to low power (low

number of loci or low h2 of the trait), oligogenic trait inheritance,

skewed effect size distributions, or that causal loci are not ran-

domly distributed in the genome (Kemppainen and Husby 2018).

Using simulated data we show that the magnitude of P value infla-

tion depends on the number and size distribution of chromosomes

of the species in question; P value inflation is much higher when

number of chromosomes and variation in chromosome sizes are

large, as is found in bird genomes (λ = 3.4) compared to human

genomes (λ = 1.5; Fig. 2; see also Kemppainen and Husby

2018). Under the null hypothesis of no association between phe-

notype and genotype, not accounting for heteroscedasticity and

censoring resulted in 42% and 14% false positives, for chicken

and human datasets, respectively, instead of the expected 5%

(at α = 0.05).

With simulated data, we further demonstrate that using null-

distributions for OLS regression P values from either i) permu-

tation of phenotypic values prior to chromosome partitioning

analyses, or (ii) resampling h2-estimates from a normal distri-

bution with mean equal to zero and sd = SEh with censoring

(HC-correction) accounts for the P value inflation under the null

hypothesis (Fig. S2), and that P values from both approaches are

highly correlated (Fig. S3). Thus, heteroscedasticity and censor-

ing causes the observed P value inflation in the simulated data

with h2 = 0 and accounting for these biases with permutation or

HC-correction leads to comparable and unbiased tests.

However, permutation of phenotypic values has two major

drawbacks: first, it is computationally demanding since separate

chromosome partitioning analyses need to be performed on each

permuted dataset. Second, and more importantly, in the presence

of population stratification (as is present in virtually all empirical

datasets), naively permuting phenotypic values among all indi-

viduals in a dataset can lead to an invalid test (Abney 2015).

HC-correction avoids these shortcomings by directly addressing

biases caused by heteroscedasticity and censoring by resampling,

and is therefore well suited for large empirical genomic data where

computational speed is of concern.

The simulated data were generated under simple population

genetic scenarios and genetic architectures, while empirical data

potentially have much more complex population demographic

histories, patterns of population stratification and genetic archi-

tectures of phenotypic traits, something that could potentially

affect our HC-correction approach. In addition, particularly in

humans, the size of the simulated data substantially differed

from the empirical data (5000 vs 565,040 loci and 1000 vs

11,578 individuals in simulated and empirical data, respectively;

Table 1). Despite this, the relationship between uncorrected and

HC-corrected P values from data simulated under a variety of

dataset sizes with polygenic trait inheritance were not substan-

tially different from empirical data with matching chromosome

numbers and size distributions (Fig. 4 and Fig. S4). However,

there were some significant differences between the empirical

and simulated data that were not fully accounted for by genome

characteristics–this is apparent in the way that the empirical data

in Figure 4 and Figure S4 do not perfectly match the simulated

data. This could, for instance, be due to population stratification

(as also shown for simulated data with population structure;

Fig. S5) or other effects. Importantly, this does not necessarily

imply that HC-correction in empirical data is biased as we do not

know the true distribution of P values in empirical data when the

null-hypothesis is not true and what/how other factors apart from

population stratification and genome characteristics may affect it.

Due to convergence issues (see below) we could not evaluate

P value inflation in datasets with population structure under the

null hypothesis of h2 = 0. Nevertheless, HC-correction addresses

the substantial part of the P value inflation (that can be explained

by genome characteristics, and is caused by violating the assump-

tions of homoscedasticity and noncensoring of data) in empirical

data, and doing so will, in future, make other, more minor effects,

easier to address. How much population stratification, for example

strong family structure also biases chromosome partitioning anal-

yses, beyond what can be addressed by HC-correction, remains

also to be tested in the future.

In the software used for chromosome partitioning, GCTA

(Yang et al. 2011a), h²c can be estimated for all chromosomes

jointly (joint analyses, option -mgrm) or for each chromosome

separately (separate analyses, option -grm). While the separate

analyses are sensitive to population stratification in the data (oth-

erwise joint and separate analyses produce equivalent results;

Yang et al. 2011b), it is not possible to achieve convergence in the

joint analyses when heritability for all chromosomes is zero (and

is difficult also when the majority of chromosomes only explain

small portions of the total phenotypic variance). Thus, in order

to evaluate the possibility of P value inflation under the null hy-

pothesis of h2 = 0, the simulated populations were here assumed

to be panmictic, such that no bias would be introduced when h²c
for each chromosome were estimated separately. Although sepa-

rate analysis almost certainly leads to biased results in empirical

datasets and is therefore not recommended (except for the pur-

pose of comparison; Yang et al. 2011b), the high similarity of

the relationships between HC-corrected and uncorrected P values

in simulated and empirical data (Fig. 3; Fig. S4) in our analyses

suggests that this is unlikely to have introduced any strong bias.

There is an option in GCTA (–reml-no-constrain) that allows

negative estimates so that the mean from multiple replicates is

unbiased. In theory, with this option it should be possible to
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correct for heteroscedasticity using WLS regression (as then

there is no censoring). However, we experienced significant con-

vergence issues with this option even for human genomes (where

convergence was less problematic than in chicken genomes)

and when overall heritability was high (0.5). While removing

chromosomes with low heritability from the analyses would

eventually lead to convergence, this would bias results towards

large (nonnegative) h2−estimates similarly to censoring that also

would have to be addressed to produce a nonbiased test. The “–

reml-no-constrain” option in combination with WLS regression is

therefore not of any practical use to address the P value inflation.

While many studies in human genetics have tested for a poly-

genic basis of traits using OLS regressions between h2
c and chro-

mosome size, we only found one where the necessary information

for HC-correction was publicly available. In contrast, we found

several studies from natural populations that reported sufficient

information to allow us to apply our HC-correction (Table 1).

As the information needed for HC-correction is just chromosome

size (or other proxy that is expected to correlate strongly with

the number of genes per chromosome), h²c and SEh, this should

be simple to report and we recommend all studies to do this in the

future, also to facilitate possible meta-analyses. If these param-

eters are reported, it is possible to reanalyze published data on

chromosome partitioning to correct for the P value inflation. For

instance, of the 36 different chromosome-partitioning tests that

we reanalyzed, only 8 out of 18 significant tests (using uncor-

rected P values from OLS regression) remained significant after

HC-correction (Table S1). This clearly demonstrates the need

for HC-correction in genomic studies aiming to understand the

genetic architecture of traits, particularly in species with larger

number of chromosomes and range in chromosome sizes where

P value inflation is particularly prevalent.
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Kvalnes, et al. 2017. Insights into the genetic architecture of morpho-
logical traits in two passerine bird species. Heredity 119:197–205.

Strutz, T. 2016. Data fitting and uncertainty (A practical introduction
to weighted least squares and beyond). Springer Vieweg, Leipzig,
Germany.

Team RC. 2015. R: A language and environment for statistical computing. R

Foundation and Environment for Statistical Computing.

Timpson, N. J., C. M. T. Greenwood, N. Soranzo, D. J. Lawson, and J. B.
Richards. 2018. Genetic architecture: the shape of the genetic contribu-
tion to human traits and disease. Nat. Rev. Genet. 19:110–124.

Visscher, P. M., G. Hemani, A. A. E. Vinkhuyzen, G. B. Chen, S. H. Lee, N.
R. Wray, et al. 2014. Statistical power to detect genetic (Co)variance
of complex traits using SNP data in unrelated samples. PLos Genet.
10:e1004269.

Wenzel, M. A., M. C. James, A. Douglas, and S. B. Piertney. 2015. Genome-
wide association and genome partitioning reveal novel genomic regions
underlying variation in gastrointestinal nematode burden in a wild bird.
Mol. Ecol. 24:4175–4192.

Yang, C., C. Li, H. R. Kranzler, L. A. Farrer, H. Zhao, J. Gelernter, et al. 2014.
Exploring the genetic architecture of alcohol dependence in African-
Americans via analysis of a genomewide set of common variants. Hum.
Genet. 133:617–624.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders, D. R. Nyholt,
et al. 2010. Common SNPs explain a large proportion of the heritability
for human height. Nat. Genet. 42:565–569.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher. 2011a. GCTA: a
tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88:
76–82.

Yang, J., T. Lee, J. Kim, M. C. Cho, B. G. Han, J. Y. Lee, et al. 2013. Ubiquitous
polygenicity of human complex traits: genome-wide analysis of 49 traits
in Koreans. PLos Genet. 9:e1003355.

Yang, J., T. A. Manolio, L. R. Pasquale, E. Boerwinkle, N. Caporaso, J.
M. Cunningham, et al. 2011b. Genome partitioning of genetic vari-
ation for complex traits using common SNPs. Nat. Genet. 43:519–
525.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Ordinary least squares (OLS) regression versus weighted least squares regression (WLS) with heteroscedasticity and censoring.
Figure S2. Correction of P value inflation under the null hypothesis using permutation or resampling with heteroscedasticity and censoring.
Figure S3. P value correction using null distribution from permutation or resampling with heteroscedasticity and censoring.
Figure S4. The ratio between HC-corrected P values and uncorrected P values (λcor) depends on the strength of correlation between h2

c and chromosome
size.
Figure S5. Relationship between uncorrected and HC-corrected P in simulated data with population structure.
Table S1. Uncorrected (OLS) and HC-corrected (HC) P values from published chromosome partitioning analyses.

EVOLUTION LETTERS DECEMBER 2018 6 0 9


