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ABSTRACT

Gene expression technology has become a
routine application in many laboratories and has
provided large amounts of gene expression signa-
tures that have been identified in a variety of cancer
types. Interpretation of gene expression signatures
would profit from the availability of a procedure
capable of assigning differentially regulated genes
or entire gene signatures to defined cancer signal-
ing pathways. Here we describe a graph-based
approach that identifies cancer signaling pathways
from published gene expression signatures.
Published gene expression signatures are collected
in a database (PubLiME: Published Lists of
Microarray Experiments) enabled for cross-platform
gene annotation. Significant co-occurrence mod-
ules composed of up to 10 genes in different gene
expression signatures are identified. Significantly
co-occurring genes are linked by an edge in an
undirected graph. Edge-betweenness and k-clique
clustering combined with graph modularity as a
quality measure are used to identify communities
in the resulting graph. The identified communities
consist of cell cycle, apoptosis, phosphorylation
cascade, extra cellular matrix, interferon and
immune response regulators as well as commu-
nities of unknown function. The genes constituting
different communities are characterized by
common genomic features and strongly enriched
cis-regulatory modules in their upstream regulatory
regions that are consistent with pathway assign-
ment of those genes.

INTRODUCTION

Gene expression microarrays have been applied to study-
ing a wide variety of biological conditions, including
cancer. Analysis of microarray data is generally per-
formed by applying a number of filtering steps, the
application of statistical tests, cluster analysis, definition
of classifier gene sets, annotation of genes identified in
clusters and the validation of differential expression using
alternative techniques such as quantitative PCR. With the
accumulation of publicly accessible datasets stored in
repositories like ArrayExpress (1), GEO (2), CIBEX (3)
and Oncomine (4), it is becoming increasingly feasible to
cross-compare in-house generated data to published
datasets and to perform meta-analysis, which can be
very informative.

However, since gene expression studies are being
performed using a variety of commercially available as
well as custom microarray platforms, meta-analysis is
hampered by the need for cross-platform annotation.
As a consequence, researchers are forced to compare
their data to published data that have been generated
on compatible microarray platforms or to undergo a
painstaking cross-platform annotation effort which limits
the number of datasets available for meta-analysis.
Furthermore, the difficulties in rendering datasets compat-
ible for meta-analysis often conditions the choice of
published datasets to those which are most ‘interesting’
from the point of view of biological intuition, precluding
the discovery of unexpected connections between diverse
datasets.

We (5) and others (6) have proposed possible solutions
to this problem by developing repositories that are helpful
in performing meta-analysis tasks and in identifying
similar datasets in an unbiased manner. Nevertheless,
despite of the use of sophisticated gene annotation tools
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such as DAVID (7), Onto-tools (8) and GoMiner (9), the
interpretation of gene expression signatures remains
essentially restricted to the interpretation of gene lists
identified in isolated experiments and subject to personal
judgment, as different hypotheses can have similar
statistical validity. Furthermore, using approaches based
on pre-assembled gene lists, discovery of unknown path-
ways is impossible.

Here we discuss a graph-based integrative approach
that identifies biologically meaningful pathways from the
analysis of co-occurrence patterns observed in published
gene expression signatures. Genes whose expression is
governed by similar signals are expected to co-occur
significantly in distinct signatures and to form a strongly
interconnected community with different communities
being targeted by different signaling pathways. Using
this approach, individual genes as well as entire signatures
can be assigned to pathways whose composition is entirely
determined by the signatures in the repository as well as
the signature being analyzed rather than by pre-configured
gene sets that have been grouped according to various
measures of similarity.

The analysis consists in the following steps:

(1) Identification of significantly co-occurring gene mod-
ules composed of up to 10 genes in the PubLiME
repository.

(2) Generation of a graph representation of co-occurring
gene modules where genes are represented by nodes
that are linked by an edge when the genes are part of
the same significant co-occurrence module.

(3) Identification of strongly interconnected communities
(i.e. pathways) in the resulting graph using two
different approaches: edge-betweenness clustering
combined with graph modularity as a quality
measure (10), which identifies separate communities
and k-clique clustering (11) identifying partially
overlapping communities, both yielding highly con-
sistent results.

Following this procedure, we identified communities that
correspond to defined biological pathways composed of
regulators of the cell cycle, phosphorylation cascades,
apoptosis, extracellular matrix, immune and interferon
responses, as well as communities of unknown function.
We show that the genes that constitute different commu-
nities are characterized by common genomic features
and display strongly enriched cis-regulatory modules in
their putative promoter regions that are consistent with
pathway assignment.

MATERIALS AND METHODS

Generation of a repository of published
cancer gene signatures

We searched the Affymetrix database of publications
using Affymetrix technology and PubMed to identify
cancer-related gene expression microarray studies appear-
ing in the years 1999-2005. Four hundred ninety nine
published cancer-related gene expression microarray
studies were scrutinized for scope of the study, microarray

platforms employed, organism studied and feasibility of
cross-platform annotation of published gene expression
signatures. Two hundred seventy three studies (233 human
and 40 mouse) were selected for manual extraction of gene
expression signatures. The selected publications report
two basic types of signatures: signatures resulting
form unbiased screening of cancer specimens as well as
studies identifying differentially regulated genes in cell-
line-based model systems. Cross-platform annotation
of gene expression signatures was performed
according to a procedure described in (12). Medline
annotations of these publications were downloaded by
calling NCBI Entrez Ultilities (http://utils.ncbi.nlm.nih.
gov/entrez/query/static/eutils_help.html from a Perl script
via the LWP module. Parsing of downloaded XML files
was performed by a Perl script using the DOM module.
Data regarding publications and gene expression signa-
tures were imported into a relational MySQL database
that is accessible via a web-interface (http://bio.ifom-ico-
campus.it/publime/).

Significance of co-occurrence of genes in gene
expression signatures

Estimates of significance of co-occurrence of genes in a
gene expression signature are based on randomization of
signatures. Gene expression signatures are composed of
non-redundant sets of genes. Thus, randomized signatures
must be composed of non-redundant gene sets as well,
leading to constraints on the composition of randomized
signatures which precludes calculating the probability of a
gene for being part of a given signature based on the
number of signatures that a gene is part of and the number
and sizes of analyzed signatures. Therefore, a gene-swap
procedure is used where prior to swapping two genes
between signatures, a test is performed ensuring that the
genes to be swapped between signatures are not already
present in the respective target signatures. To ensure
complete randomization of signatures, the number of
swaps performed in a single simulation is chosen to be 10
times the sum of all signature sizes. Ten thousand
simulations are run and at each simulation, the pre-
sence/absence of each gene in each signature is deter-
mined. The occurrence probability of a gene in a given
signature is then calculated as the number of times the
gene was found being part of that signature divided by
10 000.

Given the occurrence probabilities of genes per signature,
co-occurrence probabilities are calculated by multiplying
the occurrence probabilities of the genes under study (this
set of genes is called a module) in each signature. Co-
occurrences of two up to ten genes were analyzed.
Co-occurrence probabilities are signature-specific.

Given the co-occurrence probabilities of a module, the
significance of the number of observed co-occurrences
must be evaluated. If co-occurrence probabilities were
equal for all signatures (which would be the case if all
signatures were of equal size), the probability distribution
of co-occurrences of a module would be given by the
Binomial Distribution in which the number of trials is
equal to the number of signatures, the number of successes



is the number of co-occurrences and the probability of
success is the co-occurrence probability of a module.
However, the signature-specific nature of co-occurrence
probabilities caused by differences in signature sizes
implies that the co-occurrence probability distribution of
a module is given by a Binomial Distribution with trial-
specific probabilities. Calculating this distribution for
large numbers of signatures is not feasible because it
implies summation of a number of terms that is given
by the binomial coefficient (i) where k is the number
of co-occurrences and S is the number of signatures
which assumes large values even for relatively small
numbers of signatures. Therefore, we apply a Z-score
transformation to the number of co-occurrences k of a
module given by

k—pu

o

Here, u© and o designate the mean and standard
deviation of the Binomial Distribution with trial-specific
probabilities which are calculated as:

s
/L:Zp,- and o=
=1

where p; designates the signature-specific co-occurrence
probability and S is the number of signatures. Please note
that for all p; being equal u=S*p and o = /S*p — S*p?
which are the mean and standard deviation of the
Binomial Distribution, respectively.

Edge-betweenness clustering and graph modularity

Edge-betweenness is defined as the fraction of shortest
paths in a graph that pass through an edge. Edges that are
connecting two strongly interconnected communities
(hence are in between those communities) will be part of
shortest paths more often than edges within the commu-
nities when shortest paths are calculated for all nodes of
the two communities. Having identified the edge with the
largest edge-betweenness, the edge is removed from the
graph. Then, the algorithm restarts calculating shortest
paths in the remaining graph, identifies the next edge with
highest edge-betweenness, removes it from the graph and
so on. The procedure is supplemented with a quality
measure (graph modularity) which tells the algorithm the
optimal number of edges to be removed from the graph.
Graph modularity is calculated as the difference of the
fraction of observed edges within a community minus the
expected fraction of edges within a community if the edges
were linking the nodes of the graph at random. This
difference is calculated for all communities and the sum
thereof represents graph modularity whose value for
highly modular graphs is found to be larger than 0.3
and rarely exceeds 0.7 (10).

Promoter analysis

The identification of co-occurrence modules of genes is
performed using a list representation of signatures as
PubmedID-gene pairs. The identification of cis-regulatory
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modules is performed using the same software and
statistics with the only difference that lists of promoter-
motif pairs are used. To obtain these lists (supplementary
file ‘Symbol TF.txt’), we assembled a collection of
consensus transcription regulatory motifs derived from
Transfac database (13) (supplementary table ‘consensus_
motifs.xls”). Next, we identified all matches of consensus
motifs within 500 bp upstream of the annotated transcrip-
tion start site for all Refseq genes in the human genome
(UCSC hgl8), excluding duplicated promoter sequences
and Refseqs with ambiguous genome mapping. Multiple
occurrences of a motif in the same promoter were ignored.
The swapping procedure described earlier was used to
obtain genome-wide occurrence probabilities for each
motif in each promoter region. Co-occurrence of combi-
nations of motifs in the promoters of community forming
genes is then analyzed and gives the number of promoters
containing the module. Modules are required to be present
in at least one-third of all promoters of community
forming genes. The promoter-specific co-occurrence prob-
ability of a module is then calculated by multiplying
the occurrence probabilities of the composing motifs.
A Z-score using the Binomial Distribution with trial-
specific probabilities is calculated as described earlier.
A Z-score cutoff of 5 is chosen to define significant cis-
regulatory modules. The same procedure is carried out in
randomized versions of promoter-motif lists for each
community. The number of significant cis-regulatory
modules for each community and module size is divided
by the corresponding number of modules identified
in randomized promoter-motif lists so as to obtain a
signal-to-noise ratio (SNR).

In order to visualize the modules identified at the module
size giving the best signal-to-noise ratio, we generated a
graph representation of motif modules where motifs are
nodes linked by an edge if they are part of the same
significant cis-regulatory module. In this representation,
the motif that is most frequently co-occurring with other
motifs will be characterized by a high node degree that can
be visualized by varying node size. A similar representation
is obtained using the PageRank algorithm (JUNG soft-
ware package) that, in addition to node degree, also takes
into consideration the structure of the graph in order to
identify the node that will be visited most frequently upon
random walks along the edges of a graph.

Software

Custom Java-based software was used for determining
occurrence probabilities, co-occurrence probabilities and
the identification of significant co-occurrence modules
from PubLiME data. JUNG (http://jung.sourceforge.net/
index.html) and Netsight (http://jung.sourceforge.net/
netsight/) software were used for edge-betweenness
clustering and graph visualization. For calculating graph
modularity, a customized Java class implementing graph
modularity calculation as described by (10) was written
and run within the JUNG framework. CFinder software
was used for k-clique clustering (11). Boxplots and Q-Q
plots were prepared using R.
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RESULTS
PubLiME content and meta-analysis

Gene expression microarray data generated from numer-
ous studies are generally published as supplementary data
and/or they are deposited in public gene expression data
repositories like ArrayExpress (1) and GEO (2). The fact
that there are a considerable number of different micro-
array platforms available turns meta-analysis of gene
expression data into a nontrivial task because individual
genes are often represented in a many-to-many relation-
ship on different array platforms. While individual
experiments can be scrutinized in great depth, meta-
analysis of microarray data is concerned with cross-
experiment and often cross-platform comparison of gene
expression data (Figure 1A). Complications in this process
arise from the use of different identifiers and formats in
different publications as well as from differences in gene
content and probes employed by different microarray
platforms.

In order to facilitate meta-analysis, we chose to generate
a repository of gene expression signatures that hosts the
differentially regulated gene sets identified by individual
studies as gene lists in a relational database (Figure 1B).
The database is composed of three logical units regarding
individual genes, gene lists (i.e. signatures) and publica-
tions. Currently, the database hosts 1041 human gene lists
collected from 233 publications and 241 mouse gene lists
from 40 publications. The types of identifiers used in
different gene lists are shown in Figure 1C. Genbank
accession number is the most widely used, followed by
Affymetrix probeset, gene symbol, Unigene title and
Unigene cluster identifier. All identifiers used in publica-
tions were mapped to Entrez Gene identifiers. 31243
reported identifiers of human genes were mapped to 7476
Gene identifiers and 8323 reported mouse identifiers were
mapped to 4277 mouse Gene identifiers meaning that
roughly one-third of all human and mouse genes have
been reported as differentially regulated at least once.

The publications cover a wide range of different
conditions. Figure 1D shows a classification of publica-
tions by experimental approach. There are roughly equal
numbers of studies employing model systems and patient
samples. Some studies use both approaches. The model
systems comprise screening of cell lines with inducible
gene expression, drug/hormone/cytokine/radiation/serum/
knockdown treatment of cell lines, co-culture/infection of
cell lines with pathogens, somatic gene knockout in cell
lines and comparison of cell lines with different tumori-
genic or drug-resistance properties. Patient samples and
model systems are derived from cancers of a wide range of
organs (Figure 1E). Publications studying cancer of blood
cells are most abundant but very heterogeneous. There are
patient sample studies on leukemia (T-ALL, B-ALL,
AML, CLL and CML), lymphoma, thymoma and many
model system studies. A complete account of conditions is
found in the supplementary file ‘conditions_overlaps.xIs’.

We analyzed the occurrence frequency of genes in
published signatures and found it to be strongly uneven,
with few genes being present in more than 20 signatures
while most genes are found in less than 5 signatures

(Figure 2A). The 20 most frequently occurring genes are
listed in Table 1. Possible explanations for this distribu-
tion are biased selection of conditions, higher expression
levels of most represented genes leading to more reliable
detection and use of alternative promoters in different
conditions, causing changing expression in a larger
number of conditions. Biased selection of conditions
appears unlikely considering the data shown in
Figure 1E, although it cannot be excluded entirely.
To test the remaining two hypotheses, we analyzed the
Unigene Hs.198 EST expression profiles. Expression levels
are expressed in transcripts per million in 49 different
tissues. We tested whether the 500 most frequently
occurring genes have a significantly higher expression
level in different tissues than the average of all genes with
an Entrez GenelD. Wilcoxon signed rank sum tests were
performed for all tissues. The negative decadic logarithm
of the obtained P-values shown in Figure 2B illustrates
that the 500 most frequently occurring genes are indeed
expressed at higher levels in nearly all tissues. Similarly,
we analyzed whether those genes are expressed in more
tissues. A gene was considered expressed when at least one
EST corresponding to that gene has been identified in that
tissue. The last column of Figure 2B shows that the 500
most frequently occurring PubLiME genes are expressed
in a larger number of different tissues with a highly
significant P-value. We sought to identify common
genomic features of the 500 most frequent genes. CpG
islands covering transcription start sites are known to be
associated with promoter activity and are characterized by
frequent alternative start sites (14,15). Therefore, we
analyzed CpG island lengths of CpG islands covering
annotated transcription start sites for the 500 most cited
PubLiME genes and compared it to the genomic average.
We found that the 500 most frequently occurring genes
have significantly longer CpG island promoters as well as
more annotated alternative 5'-ends (Figure 2C), suggest-
ing that these genes might be expressed from a number of
alternative promoters responding to different stimuli.
Apart from offering an explanation for the nonuniform
distribution of gene occurrences in PubLiME, these results
suggest that PubLiME hosts biologically relevant
information.

PubLiME can be queried via a web-interface. Possible
searches include single gene searches returning all
publications where the gene has been reported as
differentially regulated, gene list searches returning pub-
lications reporting similar gene sets where similarity is
evaluated based on the hypergeometric distribution, as
well as searches regarding publications where fields such
as Authors, Abstract, Title, Mesh terms and PubMed
identifiers can be interrogated (Supplementary Figures S1
and S2).

Identification of significant co-occurrence modules of genes

We interrogated PubLiME with the aim of identifying
significantly co-occurring gene sets composed of up to
10 genes. We call a set of significantly co-occurring genes a
co-occurrence module and the number of co-occurring
genes the module size (Figure 3A). This nomenclature was
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Figure 1. PubLiME, a repository of published gene expression signatures. (A) PubLiME stores gene expression signatures as lists of gene identifiers
reported by different publications without reference to numerical detail. The resulting simplicity of database design enables efficient cross-experiment
and cross-platform gene annotation needed for meta-analysis. (B) Gene expression signatures are deposited in a relational MySQL database with
three logical areas of database schema: tables are related to genes, lists and publications. (C) Signatures classified by the type of identifier used in the
original publication. (D) Number of publications studying model systems, patient samples or both. (E) Number of publications classified by origin of
tumors studied.
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Figure 2. Nonuniform distribution of gene occurrences. (A) Graph showing absolute and relative occurrence frequency of PubLiME genes. Relative
occurrence frequency is calculated by dividing the absolute occurrence number by the number of studies where the gene was represented on the
microarray platform employed. (B) Five hundred most frequently occurring genes are expressed at higher levels and in more tissues (last column) as
compared to genomic average. Expression is measured in transcripts per million as reported in Unigene Hs.198 expression profiles. Log-transformed
Wilcoxon signed rank sum test P-values are shown. (C) Most occurring genes have longer CpG islands overlapping annotated transcription start sites
and more annotated alternative transcripts with different 5'-ends. Upper panel: Q-Q plot of genome-wide distribution of CpG island lengths which
are overlapping annotated transcription start sites. The plot shows that CpG island lengths follow a nearly normal distribution with some
overrepresentation of shorter CpG islands. Middle panel: comparison of genome-wide distribution of CpG island lengths (‘all’) with the distribution
of CpG island lengths that are overlapping with start sites of 500 most occurring PubLiME genes. P: T-test P-value, P,: Wilcoxon signed rank test
P-value (performed because CpG island lengths distribution is not perfectly normal). Lower panel: the distribution of relative occurrence frequencies
was calculated for PubLiME genes having exactly one annotated 5'-end or more than the indicated number of different alternative 5'-ends. P-value is
calculated using Wilcoxon signed rank sum test.

adopted from studies of significantly co-occurring tran- combinations of genes (Figure 3B). For a set of significant
scription factor binding motifs in promoter sequences co-occurrence modules, this procedure leads to a network
which are referred to as cis-regulatory modules. The whose numbers of nodes and edges are determined by the
number of signatures a module is required to be part of is stringency of the analysis. Performing the analysis on
called support (Figure 3A). Significance of co-occurrence randomized signatures allows evaluating the effectiveness
is evaluated using a generalized form of the Binomial of a given set of parameters.

Distribution with trial-specific probabilities (see ‘Materials The impact of varying the three analysis parameters is
and Methods’ section for details). Thus, there are three illustrated in Figure 3C-E. Signal-to-noise ratios (SNR)
parameters that influence the number of significant are calculated by dividing the number of nodes/edges/
co-occurrence modules: module size, support and modules in the real network by the corresponding number
Z-score. Each significant co-occurrence module is repre- of nodes/edges/modules in the randomized network.
sented as a fully connected undirected graph where genes Figure 3C shows the effect of raising the Z-score cutoff

are nodes and edges are drawn between all pair-wise on the SNR for module size 3 and support 5. Figure 3D




Table 1. Genes that are occurring most frequently in PubLiIME

Symbol Occurrences Detectable rel_occ_freq
CCND1 30 193 0.155
MYC 27 196 0.138
IL8 25 198 0.126
VEGF 25 198 0.126
TNFAIP3 25 198 0.126
FNI 25 198 0.126
CLU 24 199 0.121
FOS 24 199 0.121
IGFBP4 23 200 0.115
CDKNIA 23 200 0.115
TGFBI 22 201 0.109
TOP2A 22 201 0.109
JUNB 21 202 0.104
PCNA 21 202 0.104
SPARC 21 202 0.104
STATI1 21 202 0.104
SERPINEI1 20 203 0.099
IGFBP3 20 203 0.099
GADDA45A 20 203 0.099
LGALSI 20 203 0.099

Note: Relative occurrence frequency (rel_occ_freq) is calculated by
dividing column 2 (absolute occurrences) by column 3 (number of times
the gene was present on the array).

illustrates the impact of the support parameter for module
size 3 and Z-score cutoff 7. Support 5 was found to give
the best SNR and was used for all further analyses. In
other words, we required a module to be observed in at
least five publications. This requirement eliminates the
need to include genes in the analysis which are present in
less than five signatures. Thus, 1642 out of 7476 human
genes annotated in PubLiME are included in the analysis.
Figure 3E depicts the number of modules in the real and
randomized networks as a function of module size for
support 5 and Z-score cutoff 7. Most modules are being
identified with module sizes 5 and 6 while the best SNR
(>1000) is obtained with module sizes 7 and 8. While at
module size 3a SNR of 38 is obtained, the SNR at module
size 2 was found less than five for varying Z-score cutoffs,
indicating that co-occurrence analysis at module size 2 is
not very informative. We conclude that highly significant
co-occurrence modules can be identified in PubLiME.
Please note that modules are defined from purely
qualitative data.

Community formation of genes in
co-occurrence module graph

To address the question whether the co-occurrence
modules are forming distinct gene sets, we sought to
identify strongly connected communities in co-occurrence
module graphs. Figure 4A shows the graph representation
of co-occurrence modules with module size 3, support 5
and Z-score cutoff 5. Community identification in this
graph was carried out following an approach proposed by
Newman (10), which is based on recursively removing
edges with the largest edge-betweenness. In short, edge-
betweenness is a measure that identifies edges in ‘between’
highly connected communities. Recursive removal of
edges leads to a partitioning of the graph into separate
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communities. The fraction of edges connecting nodes
within communities as opposed to edges connecting
nodes between communities can be used to define graph
modularity which assumes values above 0.3, rarely
exceeding 0.7, upon removal of relatively few edges in
modular graphs (10) (see ‘Materials and Methods’ section
for details).

We applied this algorithm to co-occurrence module
graphs for module sizes 10 to 3 (see supplementary file
‘community_composition.xls’). Figure 4B shows the
development of graph modularity upon removing edges
from the graph shown in Figure 4A and its randomized
counterpart. Graph modularity reaches a value of 0.52
upon removal of 231 edges indicating the presence of
communities in this graph while in the randomized graph
the modularity is mainly negative. We noticed that
removing the number of edges corresponding to maximal
graph modularity often leads to a partitioning of the
graph into communities with highly related functions
(as measured by Gene-Ontology-term enrichments).
Therefore, we adopted a different strategy for community
definition. Starting from high module sizes, we first
identified the most significant community forming genes.
With decreasing module size, more genes will be inserted
into the different communities. The number of edges to be
removed from the graph at a given module size was
required to minimize the separation of genes that had
been assigned to a community at higher module sizes.
A detailed report of community composition at different
module sizes is shown in the supplementary file ‘commu-
nity_composition.xls’. Genes with changing community
assignment at different module sizes were excluded from
the analysis (10 in total). Figure 4C depicts the commu-
nities that are identified upon removal of 91 edges
from the graph of module size 3, support 5 and Z-score
cutoff 5, designated C1 to C7. Communities composed of
four or fewer genes were not considered further. Gene-
Ontology-term enrichment analysis was used to define the
putative biological role of these communities: Cl—cell
cycle (P=3.8 E-23), C2—phosphorylation (P =2.9 E-11),
C3—interferon induction (P=1.8 E-11), C4—extracellu-
lar matrix (P =6.6 E-13), C5—immune response (P =2.6
E-4), C6—unknown, C7—=cell cycle (P=3.6 E-5) and
apoptosis (P=7.6 E-5).

A similar definition of communities was obtained by
using CFinder, a software that identifies partially over-
lapping communities by searching k-cliques sharing at least
one edge (11) (supplementary file ‘community _composi-
tion.xls’). Only communities containing more than four
genes were considered. In general, CFinder assigns fewer
genes to communities and tends to break—up related gene
sets as shown by Gene-Ontology-term enrichment.
However, assignment of single genes to different commu-
nities is surprisingly rare and limited to the two largest
communities, suggesting that the communities do reflect
distinct rather than strongly overlapping biological func-
tions. Interestingly, the gene assigned to most communities
is MYC (four communities). We conclude that genes
making up published gene expression signatures can be
partitioned into separate communities using two different
approaches of community identification.
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Promoter analysis of community genes

Since significant co-occurrence of genes is suggestive
of co-regulation, we sought to identify enriched cis-
regulatory modules of transcription factor binding
motifs in the promoters of genes forming different
communities. Identification of significant cis-regulatory
modules was carried out following the same procedure
used for detection of co-occurrence modules of genes in
different signatures, i.e. co-occurrence of combinations of
binding motifs in promoters of community genes is tested.
The resulting graph of cis-regulatory modules is not tested
for the presence of communities, however, but visualized
with the aim of identifying the most common motif which
will be characterized by the highest node degree (# of
edges). In addition, the PageRank algorithm (JUNG
software) is used that identifies the node visited most

frequently upon random walks along the graph (Figure 5,
node size represents PageRank).

For the cell cycle community, E2F was identified as the
motif having the largest node degree and page rank. The
genes making up this community are strongly enriched
(P=2.71 e-17) for genes which we have previously shown
to be under control of E2F transcription factors (RFC4,
CDC25A, RFC3, MAC30, RRM1, RRM2, BARDI,
MCM7, CCNEIl, CHAFI1A, EZH2, MCM4, PCNA,
TFDP1, HMGB2 and FENI1) (16,17). Motif searches in
the promoter regions of these genes indicated E2F, Spl,
GC-boxes and NF-Y (CCAAT boxes) as strongly
enriched transcription factor binding motifs (17). In
general, a number of motifs were identified whose role in
the regulation of genes making up the respective commu-
nities is either known or compatible with biological
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Figure 4. Identification of communities in the graph formed by significant co-occurrence modules. (A) Visualization of co-occurrence module graph

with module size 3, support=35, Z-score cutoff =5. Some highly interconnected parts of the graph are connected to the body of the graph by very
few edges which will be removed from the graph early in the process of edge-betweenness clustering leading to the formation of separate communities
and to a corresponding steep increase in graph modularity. (B) Graph modularity as a function of the number of edges removed from the graph in
the real and randomized co-occurrence module graph of module size =3, support=15, Z-score cutoff=5. The maximum of graph modularity
determines the number of edges to be removed from the graph for the definition of communities. (C) Communities defined by removal of 91 edges
from the co-occurrence module graph of module size =3, support=35, Z-score cutoff =5.

intuition. For example, promoters in the extracellular
matrix community are found enriched for SOXS5 and
SOX9 (Figure 5) which were reported to cooperatively
activate expression of the COLIA1 promoter (18).
Promoters of the immune response community are rich
in NFKB and OCT factor binding motifs, known
regulators of inflammation (19) and tissue-specific expres-
sion of immune system genes (20). In the interferon
community we find strong enrichment of interferon
regulatory factors 1 and 7 (IRF1, IRF7), known
mediators of the interferon response (21,22).

Publications reporting signatures enriched
in pathway targets

We queried PubLiME for the identification of publica-
tions reporting gene lists that are significantly overlapping
with pathways targets. The results of these queries are

documented in the supplementary file ‘conditions_over-
laps.xls’. The pathway targets have been identified in
publications reporting human expression profiles. Thus,
for human expression profiles, this approach is somewhat
circular. It nevertheless provides a detailed account of
conditions that lead to deregulation of pathway targets.
For murine expression profiles, instead, significant and
meaningful overlap with pathway targets can be taken
as an independent proof that the pathways identified
are biologically relevant and to illustrate that cross-
platform and cross-organism annotation are working
correctly.

We identified six publications reporting significant
overlap with cell cycle targets (Cl), two publications
with enrichment of immune response targets (C5), one
publication with enrichment for interferon response genes
(C3), two publications enriched for ECM targets (C4) and
one publication with enrichment for cell cycle/apoptosis
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Figure 5. Cis-regulatory modules enriched in promoters of community forming genes. Co-occurrence of two up to ten transcription factor motifs in
promoters of community forming genes were identified in real promoters and in promoters with randomized assignment of transcription factor
binding motifs. A signal-to-noise ratio is calculated by dividing the number of co-occurrence modules in real promoters by the corresponding number
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of the graph. Transcription factor binding motifs that are part of many cis-regulatory modules will have both a high node degree as well as a high
PageRank. All modules were required to be present in at least one-third of the promoters analyzed.

targets (C7). The publications reporting the most sig-
nificant overlap with cell cycle targets are studying MEFs
with knockout of pocket protein family members pRB,
pl07 and p130 (23), MEFs stimulated with serum and
comparison of growth-regulated genes with E2F target
genes (24) and expression of SV40 Large T Antigen in
neuroendocrine cells (25). The studies with overlapping
immune response targets are reporting expression changes
in dendritic cells pulsed with tumor antigens (26), and
IL-12 treatment of mammary carcinoma cells in vivo (27).
Deregulation of ECM target genes was reported in mouse
cell line models with differential tumorigenicity and
metastatic potential (28,29). The human signatures being

enriched for pathway target genes show that there is a
slight prevalence for blood cell neoplasm studies showing
overlap with phosphorylation cascade genes (C2), that the
interferon pathway targets (C3) are overlapping with
studies employing interferon treatment of cells, and that
studies with overlap to ECM genes (C4) are concerned
with tumor progression and metastasis. Even though
human signatures enriched in pathway targets cannot
provide an independent proof, taken together with the
overlapping murine signatures, it appears that the cancer
signaling pathways identified in this study do reflect
biologically relevant phenomena and that the approach
presented here, in conjunction with more extended



datasets, can help identifying critical regulators of the
oncogenic process.

DISCUSSION

Here we present and illustrate the utility of a repository
of cancer-related gene expression signatures, PubLiME.
As opposed to other repositories of microarray data such
as ArrayExpress, GEO, CIBEX and Oncomine, PubLiME
stores gene identifiers of genes found differentially
regulated in microarray experiments but no numerical
data. This approach facilitates cross-platform annotation
of gene expression signatures needed for efficient meta-
analysis by enormously simplifying database design.

The meta-analysis of PubLiME content presented here
is based on using purely qualitative data. No reference is
made to any numeric detail and no distinction is made
between up and down-regulation of genes. There are three
main reasons for proceeding this way: First, the concept of
up or down-regulation requires the definition of a base line
condition relative to which changes are measured. This is
feasible when few conditions are analyzed. During meta-
analysis of hundreds of conditions, there will be many
base-line conditions defined by different studies. Since
current gene expression technology does not provide copy
numbers of RNAs, the relative expression levels of genes
in different base-line conditions cannot be obtained.
Therefore, we just consider whether a gene displays
changing expression levels in a given set of conditions.
Secondly, the interpretation of the direction of change can
be very misleading in the absence of a detailed numerical
model of the underlying gene network, which is currently
unavailable. For example, we observed counter-intuitive
up-regulation of BCL2 by E2F1 even though E2FI
induces apoptosis (16). Thirdly, genes are often repre-
sented in a many-to-many relationship on different array
platforms. During meta-analysis, it is necessary to define
summary measures, which is nontrivial because one has to
reconcile often contradictory readouts of different probes
measuring the same gene. If one gene is measured by
two probes in, say, 200 different conditions, there are
2299 — 1.60694E + 60 different readouts to be reconciled
for a single gene!

Considering these potential complications, we explored
the possibility of detecting biologically meaningful asso-
ciations of genes from co-occurrence patterns of gene
combinations in different gene expression signatures. The
hypothesis tested here is that downstream target genes of
cancer signaling pathways should significantly co-occur in
gene expression signatures identified in diverse conditions
impacting the activity of cancer signaling pathways. We
have adopted a combination of co-occurrence analysis of
genes in different signatures with a graph-based approach
aimed at identifying strongly interconnected communities
of co-occurring genes. We found that such communities
do exist and that the genes constituting those communities
share considerable similarities in biological function as
determined by analyzing gene annotations, cis-regulatory
modules enriched in their promoter regions, and over-
lapping signatures in independent mouse experiments.

Nucleic Acids Research, 2007, Vol. 35, No.7 2353

The analysis of occurrence frequencies of genes in
PubLiME signatures revealed a highly nonuniform
distribution which cannot be attributed to different
numbers of times a gene was present on a microarray
platform. Among the most frequently occurring genes we
found many oncogenes raising concerns that the
PubLiME signatures are biased because researchers may
tend to focus on known cancer genes. However, PubLiME
signatures represent the outcome of statistical analyses of
microarray studies listing signatures of median length 52.
Researcher bias would require the favorite gene to be
explicitly added to those signatures if it was not already
present. Second, among the most frequently occurring
genes there are many which are not among the most
widely studied cancer genes such as Clusterin (24
signatures), TNFAIP3 (25 signatures), CD24 (20 signa-
tures) or genes with unknown function such as C5orf13
(12 signatures). Third, the most frequently occurring genes
are characterized by higher expression levels, expression
in a larger number of tissues, and larger CpG islands
covering their annotated transcription start site. CpG
islands are associated with alternative start sites of
transcription (15). Indeed, genes with more annotated
alternative transcripts have a higher occurrence rate in
PubLiME signatures. It is tempting to speculate that the
occurrence rate of genes in signatures is partly determined
by the number of alternative promoters that respond to
different afferent signals. In any case, these evidences
make it seem unlikely that the nonuniform distribution of
occurrence probabilities is due to researcher bias for
favorite cancer genes.

Microarray studies are inherently error prone due
to uncertainties in probe specificities and sensitivities,
varying methods of analysis and sample impurities. Gene
annotation is another potential source of error. Thus,
robustness of meta-analysis with respect to noise is a valid
concern. We found our approach to be robust because
even in the presence of 20% of mis-assigned genes per
signature, the modularity of the graph and the
communities identified hardly changed (Supplementary
Figure S4). We believe that the robustness is a result of
module sizes bigger than two applied in this analysis. Since
an edge is drawn between two genes when they are part of
the same significant co-occurrence module, for module
size two there is only one module (the one composed of
the two genes under analysis) that determines the presence
or absence of an edge. For module sizes larger than two,
every pair of genes is part of many modules and only one
of them needs to be significant for an edge to be drawn.
Thus, even though moderate levels of noise will impact the
significance of a considerable number of modules, only
extreme levels of noise will eliminate all of them. Noise
resistance is also illustrated by the fact that communities
identified at highly stringent large module sizes (4-10)
contained fewer genes (as expected) but the genes that
were part of the same community at large module size did
hardly ever change community at module size three
(see supplementary file ‘community_composition.xIs’).
The second reason for noise tolerance is the relatively
large number of signatures stored in PubLiME (233
human, 40 mouse). For a co-occurrence module to be
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considered in further analysis, it is required to occur
significantly in at least five different signatures. Thus, the
modules analyzed for community formation have been
validated by independent studies.

The identification of significant co-occurrence modules
applied here is based on the abstraction of distinct list-
entry pairs where a list is represented by gene expression
signatures composed of genes as entries, or by promoters
listing transcription factor motifs. The co-occurrence
probability of combinations of entries (modules) is
calculated using a generalized form of the Binomial
Distribution with trial-specific probabilities. This distribu-
tion is needed because of list length heterogeneity which
causes the occurrence probabilities of entries to be list-
specific. It is based on the Binomial Distribution because
for every list analyzed there is a binary outcome (module
present or not present). Therefore, the analysis can be
thought of as a binomial trial where at each throw of a
die a different but distorted die is used. We have shown
that this approach is proficient in identifying significant
co-occurrence modules of genes in signatures and of cis-
regulatory modules in promoters. However, the abstract
nature of list-entry pairs renders it applicable to a wider
range of applications. For example, it would be interesting
to analyze gene expression signatures in conjunction with
ChIP on chip data for oncogenic transcription factors,
which could be accomplished by transforming ChIP on
chip data to a list-entry format where all the gene
promoters bound by a transcription factor are listed
using the same gene identifiers as those used in gene
expression signatures.

Although the communities identified here are charac-
terized by considerable stability, the analysis could be
improved significantly by the availability of more gene
expression signatures in PubLiME. Therefore, we encour-
age microarray researchers to submit their signatures for
deposition in PubLiME. As mentioned previously, ChIP
on chip data would be equally welcome and suitable to
improve the definition of cancer signaling pathways and
their downstream targets. The possibility of assembling
cancer signaling pathways on-the-fly, without the need for
preconfigured gene lists, could enable a novel, interactive
way of microarray data analysis where a researcher can
build pathways using his signature in conjunction with all
other signatures in the repository, discover how his
signatures impact pathway communities and which com-
munity the genes regulated in his signature belong to.

In conclusion, we show that genes occur in a strongly
nonrandom fashion in published gene expression signa-
tures. Co-occurrence analysis can be used to identify
co-occurrence modules of genes that are strongly over-
represented. A graph-based approach aimed at the
identification of interconnected communities can be
applied to co-occurrence modules of genes to show that
they are forming distinct communities. The genes making
up separate communities are enriched for regulators of cell
cycle, apoptosis, phosphorylation cascades, extracellular
matrix, immune and interferon response regulators and
some of them are forming communities of unknown
function. For the majority of communities, promoter
searches for enriched cis-regulatory modules support the

conclusion that the communities identified here reflect
biologically relevant sets of co-regulated genes whose
expression is altered in human cancer. As such, the
identified communities may provide marker genes useful
for clinical applications as well as hitherto unknown

regulators of cancer signaling pathways that may
constitute novel entry points for pharmacological
intervention.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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