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Antimicrobial peptides (AMPs) are classically known as important effector molecules in

innate immunity across all multicellular organisms. However, emerging evidence begins to

suggest multifunctional properties of AMPs beyond their antimicrobial activity, surprisingly

including their roles in regulating neuronal function, such as sleep and memory

formation. Aging, which is fundamental to neurodegeneration in both physiological and

disease conditions, interestingly affects the expression pattern of many AMPs in an

infection-independent manner. While it remains unclear whether these are coincidental

events, or a mechanistic relationship exists, previous studies have suggested a close

link between AMPs and a few key proteins involved in neurodegenerative diseases. This

review discusses recent literature and advances in understanding the crosstalk between

AMPs and the nervous system at both molecular and functional levels, with the aim to

explore how AMPs may relate to neuronal vulnerability in aging.

Keywords: antimicrobial peptide (AMP), aging, neurodegeneration, neurodegenerative diseases, Alzheimer’s

disease, nervous system, neuropeptide

1. INTRODUCTION

Antimicrobial peptides (AMPs) are short, typically cationic peptides that are found in every
kingdom of life and were originally discovered as host defense peptides. As part of the innate
immune system, AMPs fight off pathogens such as bacteria, fungi, parasites, and enveloped
viruses, through their insertion and subsequent disruption of the membrane structure of microbe,
or having interactions with microbial intracellular/intraviral components, or a combination of
both (Raheem and Straus, 2019; Benfield and Henriques, 2020). Their ability to directly act
upon and kill pathogens makes them an ideal target for use as therapeutic anti-infectives, and
a potential alternative to traditional antibiotics, resulting in numerous rational design studies
to create synthetic AMPs (Mahlapuu et al., 2016, 2020; Cardoso et al., 2020). With over
3000 characterized AMPs to date (Antimicrobial Peptide Database, 2021, https://aps.unmc.edu/),
AMPs are typically classified according to their structure and source, but other classifications
include their amino acid composition or activity against different types of pathogens (Huan
et al., 2020). For example, in human, some of the most prevalent and well-studied AMPs
are the defensins, and the cathelicidin LL-37, which have a beta-sheet or alpha-helix motif,
respectively (Wang, 2014). LL-37 is expressed ubiquitously in tissues throughout the body
including epithelial cells, immune cells, and the nervous system (Dürr et al., 2006; Lee et al.,
2015), while other AMPs have the greatest abundance in barrier tissues where exposure to
microbes is frequent, such as the skin, airways, and intestinal epithelium (Laube et al., 2006;
Kenshi and Richard, 2008; Muniz et al., 2012). For an in-depth discussion of the mechanisms
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of actions in the immune system and classification of various
AMPs, which is out of the scope of current discussion, see the
following reviews (Huan et al., 2020; Zhang et al., 2021).

AMPs have immense functional diversity. In addition to their
antimicrobial function, a number of AMPs can act as anti-
cancer, anti-biofilm, anti-diabetic, and wound healing agents
(Mangoni et al., 2016; Di Somma et al., 2020; Tornesello
et al., 2020; Soltaninejad et al., 2021). Surprisingly, recent
work begins to suggest a potential alternative role of AMPs
as signaling molecules to regulate cell behaviors in various
tissues. In this review, we highlight and focus on recent
advances in understanding the alternative roles of AMPs in the
nervous system, particularly within the context of aging and
neurodegenerative diseases, and summarize the open questions
of this rapidly expanding field.

2. AMPS AND NERVOUS SYSTEM

Although classically thought of as the first line of defense between
the environment and our own barrier tissues, emerging evidence
suggests an intricate link between AMPs and the nervous system.
For example, psychological stress dramatically downregulates
the expression of cathelin-related AMP (CRAMP) in the skin
of mice, increasing their susceptibility to cutaneous infections,
and transforming growth factor-beta signaling from neurons
non-cell autonomously regulates the AMP cnc-2 expression in
the skin of Caenorhabditis elegans (C. elegans) (Aberg et al.,
2007; Zugasti and Ewbank, 2009) (Table 1). Additionally, work
by E et al. (2018) and Sinner et al. (2021) reveals that a skin-
expressed AMP, neuropeptide-like protein 29 (NLP-29), has
specific functions in inducing neurodegeneration and promoting
sleep in C. elegans. Together, these data suggest the involvement
of AMPs in the bidirectional interactions between the nervous
system and non-neuronal tissues. In this section we explore the
cellular andmolecular mechanisms underlying such interactions,
by specifically discussing the roles of AMPs in modulating
neuroinflammation, their similarity to neuropeptides, and their
functions in the central nervous system (CNS).

2.1. AMPs and Neuroinflammation
Inflammation of the brain and spinal cord is referred to as
neuroinflammation, and much of this response is generated
through the action of the CNS resident macrophages, known
as microglia. Neuroinflammation can be induced in response
to infection, injury, stress, and aging (DiSabato et al., 2016).
Although it is important in recovery and protection of the
nervous system, uncontrolled, excessive neuroinflammation can
lead to cellular damage (Cherry et al., 2014; Kielian, 2014) and
is implicated in a broad spectrum of neurological disorders,
from traumatic to chronic neurodegenerative and ischemic
brain damage.

Pattern recognition receptors (PRRs) are important mediators
of inflammation that respond to exogenous infectious ligands
(pathogen-associated molecular patterns, PAMPs), such as
lipopolysaccharide (LPS), and endogenous molecules that
are released during tissue/cellular damage (damage-associated
molecular patterns, DAMPs) (Amarante-Mendes et al., 2018).

Toll-like receptors (TLRs), a family of transmembrane proteins
that respond to a variety of PAMPs and DAMPs, are one of the
most well studied PRRs (Hanke and Kielian, 2011; Kawasaki and
Kawai, 2014). When activated, TLRs, which are expressed in both
non-immune cells and immune cells including microglia, can
lead to an increase in a series of inflammatory signalingmolecules
(Kawasaki and Kawai, 2014) as well as AMPs in human and mice
(Thoma-Uszynski et al., 2001; Hertz et al., 2003; Rivas-Santiago
et al., 2008).

Clinically, the levels of the AMPs LL-37 and defensins
increase in the cerebrospinal fluid (CSF) in response to a
bacterial meningitis challenge, and the CSF of patients with
bacterial meningitis has antimicrobial activities against both
Gram-positive and -negative bacteria (Maffei et al., 1999;
Brandenburg et al., 2008), suggesting AMPs may directly
contribute to the killing of pathogens in the nervous system.
Interestingly, however, AMPs can be both anti-inflammatory
and pro-inflammatory in the nervous system, depending on
the context. In support of the anti-inflammatory properties of
AMPs, intracerebroventricular infusion of CRAMP decreases
the mortality rate in a mouse model of bacterial meningitis,
likely associated with the reduction in the abundance of pro-
inflammatory cytokines, tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6), specifically in the hippocampus (Dörr et al.,
2015). Ligand binding and activation of TLR2 and TLR4 typically
causes an increase in pro-inflammatory cytokines (Akira and
Takeda, 2004; Kawasaki and Kawai, 2014). Cationic AMPs
have been shown to bind and sequester free bacterial LPS
and lipoteichoic acid (LTAs) to prevent the activation of TLR2
and TLR4 (Scott et al., 1999; Sun and Shang, 2015), possibly
explaining by what mechanism AMPs may mediate an anti-
inflammatory response in the nervous system. Paradoxically, the
CRAMP treatment in the meningitis model increases the mRNA
levels of TLR2 and TLR4 (Dörr et al., 2015). On one hand,
this could be anti-inflammatory, as high expression of TLRs can
serve as soluble decoys to bind excess PAMP ligands (Iwami
et al., 2000; Lai and Gallo, 2008), which would decrease pro-
inflammatory signaling. Alternatively, this could also suggest a
pro-inflammatory role of AMPs, as higher levels of TLR2 and
TLR4 may lead to an increased sensitivity to bacterial challenge,
enhancing pro-inflammatory signaling. In support of these pro-
inflammatory properties, LL-37 may be secreted from human
neuronal cells upon stress or damage, to stimulate glial cells to
release pro-inflammatory cytokines and chemokines, which in
turn decreases neuronal viability in vitro (Lee et al., 2015). This
raises the possibility that LL-37 acts as a signaling molecule to
activate glial cells within the CNS.

Although it is unknown which receptor(s) mediates LL-37-
induced glial activation, in other cell types LL-37 has been
shown to activate a variety of G protein-coupled receptors
(GPCRs), receptor tyrosine kinases, ligand-gated ion channels,
or TLRs (Larrick et al., 1991; Elssner et al., 2004; Brandenburg
et al., 2010; Verjans et al., 2016) which may be potential
targets. Previous evidence shows that LL-37 can function as
chemoattractant to neutrophils and eosinophils in other tissues
through its interactions with formyl peptide receptors, a class
of GPCRs involved in chemotaxis (Tjabringa et al., 2006;
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TABLE 1 | Selected AMPs discussed in this review.

AMP and AMP-

like protein

Host organism Structural motif Charge Tissue expressed in Functions Orthologues

LL-37 Human Alpha helix +6 Lung, colon, esophagus, skin,

eyes, CNS,

immune cells, epithelia

(Dürr et al., 2006; Lee et al.,

2015)

Host defense, nucleic acid presentation,

immunomodulation,

chemotaxis (Kahlenberg and Kaplan, 2013)

Rat, mouse, chicken, rabbit,

dog,

vertebrates

(Scheenstra et al., 2020)

hBD-1,2,3 Human Alpha helix and

beta sheets

+4-11 Skin, lung, trachea,

eyes, colon, CNS, testis,

immune cells (Pazgier et al.,

2006)

Host defense, wound healing, chemokine,

angiogenesis (Ghosh et al., 2019)

Plants, vertebrates,

invertebrates, insects

(Pazgier et al., 2006)

PACAP Human Alpha helix +11 Nervous system (Hirabayashi

et al., 2018)

Neuropeptide, proliferation, metabolism, apoptosis,

differentiation,

immune system, potential host defense

(Sherwood et al., 2000; Lee et al., 2021)

Vertebrates, invertebrates,

Drosophila, chicken,

lizard, frog, fish (Montero et al.,

2000)

NLP-29 C. elegans Predicted alpha

helix

+6 Skin (Pujol et al., 2008) Host defense, wound healing, sleep, neuronal aging

(Pujol et al., 2008; E et al., 2018; Sinner et al., 2021)

Nematode

CNC-2 C. elegans Predicted alpha

helix

+3 Skin (Zugasti and Ewbank, 2009) Host defense against fungal infection (Zehrbach

et al., 2017)

Nematode

Metchnikowin Drosophila Alpha helix +2 Fat body, epithelia Host defense, mortality following TBI, potentially

cytotoxic, potentially

involved in sleep

(Dissel et al., 2015; Badinloo et al., 2018; Swanson

et al., 2020)

Insect (Buonocore et al., 2021)

Nemuri Drosophila Predicted alpha

helix

+14 N.D. Accumulates in CNS Host defense, sleep (Toda et al., 2019) Insect, sequence similarity

to fish cathelicidins (Toda et al.,

2019)

Drosocin Drosophila Predicted alpha

helix

+5 Fat body, epithelia Host defense, lifespan, potentially involed in

sleep (Lazzaro and Clark, 2003; Dissel et al., 2015;

Loch et al., 2017)

Insect (Buonocore et al., 2021)

AttacinA Drosophila Predicted alpha

helix

+3 Fat body, epithelia Host defense, lifespan (Badinloo et al., 2018;

Buonocore et al., 2021)

Insect (Buonocore et al., 2021)

Cecropin A1 Drosophila Predicted alpha

helix

+8 Fat body, epithelia Host defense, lifespan, potential cytotoxicity

(Badinloo et al., 2018)

Insect (Buonocore et al., 2021)

Diptericin B Drosophila Unknown +7 Head fat body Host defense, memory formation (Barajas-Azpeleta

et al., 2018)

Insect (Buonocore et al., 2021)

GNBP-like3 Drosophila Unknown +5 Nervous system Host defense, memory formation (Barajas-Azpeleta

et al., 2018)

Insect

NDA-1 Hydra Vulgaris Predicted beta

sheet

N.D Nervous system Neuropeptide, modulates microbiome

(Augustin et al., 2017)

N/A Hydra Specific

CNC-2, caenacin-2; CNS, central nervous system; GNBP, Gram-negative bacteria-binding protein; hBD, human beta-defensin; N.D., not determined; N/A, not available; NLP-29, neuropeptide-like protein 29; PACAP, pituitary

adenylate-cyclase-activating polypeptide.
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FIGURE 1 | A schematic representation of proposed interplays between non-neuronal AMPs and neurons. The expression of AMPs from non-neuronal cells (such as

epidermal and intestinal epithelial cells) typically increases in infections, which can be induced by exogenous infectious stimuli or endogenous molecules that are

released subsequently by damaged cells binding to pattern recognition receptors (TLRs, etc.). Aging has recently been shown as another critical factor to induce the

expression of multiple AMPs at both transcriptional and translational levels, across different species, in an infection-independent manner. Overproduced AMPs are

secreted from non-neuronal cells and interact with neighboring neurons by binding and activating their specific neuronal cell surface receptors, including GPCRs, and

possibly other receptors as well, such as receptor tyrosine kinases or ligand-gated ion channels. This ligand-receptor binding activates the downstream signaling that

eventually leads to neurodegeneration-associated function decline and/or neuronal cell death. It is tempting to speculate that certain AMPs may affect neuronal health

in a receptor-independent manner, for instance by disrupting neuron membranes in a similar fashion to their mechanism of action in killing pathogens. Although the

cholesterol in higher eukaryotic cell membranes generally protects the cells from attacking by endogenous AMPs (Matsuzaki, 2009), age-related changes in

biophysical properties of plasma membranes (Ledesma et al., 2012) presumably can increase the susceptibility to a direct toxic interaction with the overproduced

AMPs in aging. (Illustration created with Biorender.com) Solid lines denote the mechanisms supported by experimental evidence from literature; dashed lines denote

potential mechanisms proposed for future investigation to clarify. AMP, antimicrobial peptide; ER, endoplasmic reticulum; GPCR, G protein-coupled receptor; LTA,

lipoteichoic acid; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-B; ROS, reactive oxygen species; TLR, Toll-like receptor.

Hemshekhar et al., 2018) which are expressed in microglia as
well (Iribarren et al., 2005). It is an open question of whether
expression of LL-37 alsomaintains its chemoattractant properties
in its neuroinflammatory context. Curiously, LL-37 and other
AMPs can form large crystalline complexes with endogenous
or foreign dsDNA, dsRNA, ssDNA, and ssRNA, which then
amplify inflammation through their interactions with TLR3,
TLR9, and TLR7/8 [see (Lee et al., 2019) for a comprehensive
review]. This surprising role in interacting with nucleic acids, and
subsequent presentation to TLRs that mediate pro-inflammatory
responses, further complicates the mechanisms of action of
AMPs in neuroinflammation. The apparent diversity in whether

AMPs act as “pro” or “anti” inflammatory molecules implies
that AMPs may play a critical role in maintaining the immune
homeostasis within the nervous system, and also emphasizes the
importance of context and experimental setup when interpreting
previous literature.

2.2. AMPs and Neuropeptides
Neuropeptides are an evolutionarily ancient and diverse set
of messengers released from the nervous system that are
critical in cell-to-cell signaling. After released from neurons,
the majority of neuropeptides act upon one or more GPCRs
on the surface of the target cell to initiate downstream
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signaling (Russo, 2017). Neuropeptides are present both in
the CNS and peripheral nervous system (PNS) and have
various functions in regulating emotion, pain, digestion, and
behavior (Holzer and Farzi, 2014; Kash et al., 2015; Russo,
2017). Intriguingly, neuropeptides and AMPs have remarkable
structural similarities, including amphipathicity, net cationic
charge, amino acid composition, and size (Brogden et al.,
2005). Furthermore, multiple neuropeptides, including but not
limited to human Neuropeptide Y (NPY), substance P, and
α-Melanocyte stimulating hormone, demonstrate antimicrobial
activity in in vitro assays (Kowalska et al., 2002; Hansen
et al., 2006; Lee and Herzog, 2009; Shireen et al., 2009).
In mammals, one particularly noteworthy neuropeptide with
antimicrobial properties is pituitary adenylate cyclase-activating
polypeptide (PACAP) (Table 1). It has been well established
that PACAP promotes differentiation of neural progenitor cells
(Hirose et al., 2006), cell survival, and neurite growth (Gonzalez
et al., 1997; Shioda et al., 2006; Kaneko et al., 2018). However,
a recent study shows that, upon infection by Staphylococcus
aureus or Candida albicans, PACAP is specifically induced in
mouse brain, implying a multi-functional purpose of these
neuropeptides in the intersections of immune and nervous
systems (Shioda et al., 2006; Kaneko et al., 2018; Lee et al.,
2021). Although it currently remains unknown whether many
of these neuropeptides’ in vitro antimicrobial activity translates
to in vivo function, at least one neuropeptide with antimicrobial
properties, NDA-1, from the model organism Hydra vulgaris
contributes to the killing of Gram-positive bacteria to specifically
shape a balanced microbiome on their body surface (Augustin
et al., 2017) (Table 1). This shared function between AMPs
and neuropeptides suggests possible evolutionary conservation
of their roles and mechanisms of action in the innate
immune system. Much like AMPs, neuropeptides also have
immunomodulatory roles (Souza-Moreira et al., 2011; Chen
et al., 2020). Considering approximately 100 neuropeptides out
of the 1,000+ small peptides predicted in the human genome
have been studied (Russo, 2017), it is likely we will identify
more neuropeptides with antimicrobial function in the future,
potentially blurring the lines of how these peptides are defined
and classified. Thus, it is tempting to speculate that AMPs may
serve as the non-neuronal tissue analogues to neuropeptides to
act as signaling molecules, mediators of the immune system,
and neuromodulators.

2.3. AMPs and CNS Function
Although many AMPs are expressed where interactions with
microbes is frequent, as discussed above, a growing experimental
body of work suggests AMPs also exist in the CNS. Because
of their lack of an adaptive immunity, the fruit fly Drosophila
melanogaster has become a powerful tool for understanding
the role of innate immunity components, especially AMPs
in modulating the CNS (Imler and Bulet, 2005; Hanson and
Lemaitre, 2020). Using this model organism, studies have
discovered two AMPs functioning as necessary components
of long-term memory formation. An mRNA sequencing-based
screen has identified Diptericin B (DptB) as being significantly
upregulated following different paradigms of behavioral training

(Barajas-Azpeleta et al., 2018) (Table 1). Subsequent knockout
of DptB demonstrates that it is required for long-term memory
formation, while it is produced in the fat tissues of the head,
suggesting that AMPs do not need to be produced by neural
tissues to regulate CNS functions. This study also identifies
Gram-negative bacteria-binding protein like 3 (GNBP-like3) as
a neuronally expressed AMP that is also involved in modulating
memory formation. Other examples of AMPs that have been
shown to regulate CNS function in Drosophila include Nemuri,
which induces sleep, and Metchnikowin, which appears to
promote mortality following traumatic brain injury (Toda et al.,
2019; Swanson et al., 2020) (Table 1). This evidence further
highlights the possibility that AMPs may serve as essential
signaling molecules in the CNS to regulate behaviors and
maintain organismal homeostasis.

Inmammals, it remains unclear whether these regulatory roles
of AMPs in CNS functions are conserved, besides particitpating
in neuroinflammation. Nevertheless, the expression of the
human LL-37 homologue rCRAMP (rat CRAMP) has been
detected within the CNS of murine models in an infection-
independent manner (Maxwell et al., 2003; Bergman et al., 2005).
Similarly in human, LL-37 has constitutive expression in the
substantia nigra and sensory cortex (Lee et al., 2015), and human
beta defensin-1 in the choroid plexus (Nakayama et al., 1999),
despite the absence of apparent brain infections, brain injuries
or other CNS disorders. What physiological role this expression
in the mammalian CNS has, as of yet, remains undetermined,
but we speculate that these or other AMPs are multifunctional
and not limited to their microbicidal action. Behaviorally, in
mice, psychological stress can reduce the expression of beta
defensins in the skin, and depression can reduce alpha defensin
expression in the intestine (Aberg et al., 2007; Suzuki et al., 2021).
A postmortem study shows that human patients who died by
suicide have decreased LL-37 expression in both dorsolateral
prefrontal cortex and anterior cingulate cortex, which are critical
for mood regulation (Bae et al., 2006), when compared to those
who died by other causes (Postolache et al., 2020). Such evidence
indicates an important correlation between AMPs and CNS
functions in mammals, while it remains an area of investigation
of whether they are parallel events or if there is a causal
relationship. We posit that, considering other model organisms
have AMPs whose actions in the nervous system originate from
non-neuronal tissues (Barajas-Azpeleta et al., 2018; E et al., 2018),
similar regulatory mechanisms may be conserved in mammals
as well. Further work is necessary to uncover whether AMPs
in human function in a physiological context to modulate CNS
functions.

3. IMPLICATION OF AMPS IN
NEURODEGENERATIVE DISEASES

Neurodegeneration, the process of progressively losing the
structure or function of neurons, is the key pathophysiological
feature of neurodegenerative diseases such as Alzheimer’s disease
(AD), Huntington’s disease, amyotrophic lateral sclerosis, and
Parkinson’s disease (PD). In each of these diseases, it is typical
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to see accumulation of proteins, such as amyloid beta (Aβ) or tau
in AD, or alpha-synuclein in PD, in an altered conformation.

Although early hypotheses attempting to explain AD etiology
implicate Aβ as the causative agent of the disease (Hardy and
Higgins, 1992), multiple other hypotheses since propose other
pathways, generating much debate (Du et al., 2018). More
recently, a hypothesis known as the Antimicrobial Protection
Hypothesis, which is extensively reviewed elsewhere (Moir et al.,
2018), has garnered attention. Briefly, this hypothesis asserts that
the expression and aggregation of Aβ is a response to pathogens,
and Aβ oligomerization is protective against microbes, acting as
an AMP. This hypothesis is based on the evidence that synthetic
Aβ has antimicrobial properties against common pathogens
in vitro, and that brain homogenates from AD patients have
significantly higher antimicrobial activity than that from age-
matched non-AD controls in an Aβ level-dependent manner
(Soscia et al., 2010). Additionally, overexpression of Aβ in
C. elegans protects them from Candida albicans infection,
and overproduced Aβ in the transgenic 5xFAD mouse model
promotes the animal survival against Salmonella Typhimurium
infection, with the evidence showing colocalization of Aβ

deposition and the invading bacteria (Kumar et al., 2016). Early
cell culture studies also show that Aβ has the potential to bind
and cause aggregates of viral particles, specifically influenza and
herpes simplex virus-1 (HSV-1) (White et al., 2014; Bourgade
et al., 2015, 2016). Also in 5xFAD mice, infection with HSV-
1 promotes Aβ aggregation, and these aggregates appear to
capture HSV-1 in ex vivo mouse brain tissue slices, as well as
in human stem cell-derived neural cell culture (Eimer et al.,
2018). However, recently repeated experiments with the same
AD mouse model contradict these results. Bocharova et al.
hypothesize that Aβ does not entrap viral particles, or protect
against viral infection, and that such inconsistent observations
may be explained by sex-specific expression of Aβ in 5xFADmice
or non-physiologically relevant levels of HSV-1 dosing used in
the experiments (Bocharova et al., 2021). As such, the question of
whether Aβ is protective, either in physiological or pathological
contexts, remains vague. Elucidating the role of the antimicrobial
properties of Aβ in human may lead to a more complete
understanding of the factors causing AD and progression of AD
and aid in the development of further therapeutic strategies.

Considering the aforementioned immunomodulatory roles of
AMPs, both in the CNS and in other tissues, if Aβ was also a
component of the innate immune system, one would expect Aβ

to mediate inflammation in physiological conditions. Indeed, in
vitro experiments show thatmicroglia exposed to non-aggregated
Aβ at low concentrations become reactive, and in turn express
the AMPLL-37 as part of a pro-inflammatory response (Maezawa
et al., 2011; Xu et al., 2018). Additionally, similar to human
LL-37 being a chemoattractant to immune cells utilizing FPRL1
as a receptor (Yang et al., 2000), Aβ is a chemoattractant to
mouse microglia by acting at the murine homologue of this
GPCR (Tiffany et al., 2001). In human, Aβ ’s action upon the
FPRL1 receptor causes internalization of Aβ into macrophages
(Cui et al., 2002) and promotes inflammation (Schröder et al.,
2020). Such interactions may provide context for the elusive
role of the amyloid protein under physiological conditions.

Much like the other AMPs discussed, Aβ can cause both
pro or anti-inflammatory signaling depending on the context.
On the anti-inflammatory side, in vitro studies demonstrate a
direct interaction of LL-37 and Aβ , and that these interactions
are protective, as LL-37 binding to Aβ decreases microglial-
mediated toxicity against neuronal cells (De Lorenzi et al., 2017).
Altogether, the current data suggests that Aβ may be an integral
component of our innate immune system, and that there may
be a balance between its interactions with other AMPs during
the chronic neuroinflammation typical of AD and thus the
progression of AD.

In other neurodegenerative diseases, the characteristic
proteins also demonstrate antimicrobial action. In relation to
PD, alpha-synuclein has in vitro antimicrobial activities against
Escherichia coli, Staphylococcus aureus, and fungi (Park et al.,
2016). In addition, the expression of alpha-synuclein in mice
is also protective against RNA viruses from developing brain
infections (Beatman et al., 2016). In a Drosophila model of
the neurodegenerative disease ataxia-telangiectasia, ataxia-
telangiectasia mutated (ATM) kinase results in increased AMP
gene expression in glial cells, specifically through the NF-κB
pathway (Petersen et al., 2012, 2013). Also, Drosophila carrying
the mutant form of huntingtin, had impaired expression of a
few AMPs, including DptB, Attacin, and cecropin A (Table 1),
following bacterial infection (Lin et al., 2019), further suggesting
a delicate interrelationship between the innate immune system
and some of the key proteins in neurodegenerative diseases.
The correlative and common elements between AMPs and
neurodegenerative diseases warrants further investigation into
whether AMPs are the drivers of the diseases, or misregulated as
a consequence of the progression of diseases.

4. AMPS AND AGING

4.1. AMP Expression in Development and
Aging
It has been the general consensus that AMPs are expressed at
a relatively low, but constitutive level, especially in tissues that
interact with the environment where microbial interactions are
frequent. In the presence of infection, PAMPs on microbial
surfaces typically activate specific receptors, such as TLRs, that
lead to activation of transcription factors that increase the
abundance of AMPs (Krisanaprakornkit et al., 2000; Rivas-
Santiago et al., 2008; Gombart, 2009) (Figure 1). However,
recent evidence has begun to implicate age as a factor in
regulating the expression of AMPs as well. There appear to
be two major increases in AMP expression that occur over
the course of an organism’s life. First, at the beginning of
life, AMP expression seems to increase in the developing
embryo or fetus, as evidenced in Hydra, mouse, chicken,
and human (Gallo et al., 1997; Meade et al., 2009; Fraune
et al., 2010; Gschwandtner et al., 2014). It is thought that
the overexpression of AMPs “prepares” an embryo for its first
encounter with microbes upon birth. However, considering
the sterile environment of the chicken egg, the conserved
nature of this expression, and the aforementioned alternative
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roles of AMPs in signaling, there may be a potential
non-antimicrobial biological role of these peptides during
embryogenesis. Consistent with this hypothesis, human fetal
keratinocytes that are cultured in the presence of antibiotics
still show strong AMP expression compared to that of neonatal
or adult keratinocytes, suggesting an innate, young age-
dependent expression mechanism (Gschwandtner et al., 2014).
This developmental increase is followed by a marked decrease to
a low or basal level of expression.

As organisms age, AMP expression again deviates from its
baseline. Expression patterns of individual AMPs may differ,
but in general, AMPs tend to gradually increase over the
course of aging. One proposed mechanism of this apparent
increase of AMP expression in aging populations is partially
attributed to a compromised barrier between host and microbe,
causing increased inflammation due to increased interactions
with microbe-secreted signaling molecules. In support of this,
many AMPs become dysregulated in aged mice, and these
changes are associated with microbiome changes in the small
intestine (Tremblay et al., 2017). In Drosophila, several studies
show that aging specifically causes an increase in numerous
AMPs (Kounatidis et al., 2017; Badinloo et al., 2018; Hanson
and Lemaitre, 2020; Swanson et al., 2020; Wang et al., 2020).
Surprisingly, flies grown in germ-free conditions still have age-
dependent activation of AMP expression. Similarly, aging also
causes a dramatic increase in AMP expression in other model
organisms despite the absence of infection. Recently, we have
found that the expression of the skin-expressed AMP NLP-
29 gradually but significantly enhances over the course of
aging in C. elegans, even with the treatment of antifungals
and antibiotic compounds, suggesting the increase is specifically
age dependent (E et al., 2018). Paradoxically, overexpression
of certain AMPs (Attacin, Metchnikowin, cecropin A1, and
Defensin) in Drosophila can impart cytotoxicity of muscle and
fat cells, cognitive decline, and decreased lifespan (Kounatidis
et al., 2017; Badinloo et al., 2018), while overexpression of
other AMPs, such as Drosocin, extends Drosophila lifespan by
specifically protecting the intestinal epithelium (Loch et al.,
2017) (Table 1). These data suggest that individual AMPs
may have context-specific and multifaceted physiological roles
in aging.
To date, relatively few research studies have focused on
elucidating the expression pattern of AMPs over the adult
lifespan in human. It has been reported that the mRNA levels
of human beta defensin 2 is elevated in peripheral blood
mononuclear cells in aged populations (Castan̄eda-Delgado et al.,
2013), while this observation may not be accurately reflected at
the serum level (Castan̄eda-Delgado et al., 2017) (Table 1), as it
is unclear whether any aging-associated defects complicate the
peptide secretion process. However, it is noteworthy that, Aβ ,
which has recently been demonstrated as an AMP, gradually and
significantly increases its level inmultiple brain regions of human
subjects over a healthy adult lifespan (Rodrigue et al., 2012).
While these data suggest that the age-dependent expression
pattern of AMPs observed in other organisms appear to be
conserved in human to a certain extent, further research will
be required to provide more comprehensive information on

how AMPs are involved in human physiological aging at the
functional level.

4.2. Contribution of AMP in Neuronal Aging
While we still face numerous challenges in dissecting the etiology
and pathogenesis of neurodegenerative diseases, there is also
a fundamental gap in our understanding on how functional
aging of the nervous system is switched on. Emerging evidence
indicates that the degeneration of neurons can be regulated
by surrounding cells (microglia and astrocytes, etc.) at the
cellular and molecular levels (Glass et al., 2010). From a
broader perspective, a significant amount of evidence suggests
that some age-related neurodegenerative diseases, such as PD,
are not only CNS disorders but also have systemic pathology
and manifestations (Fasano et al., 2015), implying a close link
between the non-neuronal periphery and the nervous system
during aging. Several studies have highlighted the key roles of
AMPs in mediating the upstream signals from non-neuronal
tissues/cells to initiate neuronal aging. In Drosophila, reflected
by a dramatic age-dependent increase of multiple AMPs in the
brain, a conserved Relish/NF-κB immune signaling pathway
appears to be dysregulated in glial cells during functional
aging, and overactivation of the pathway can result in reduced
lifespan (Kounatidis et al., 2017). This dysregulation also seems
largely responsible for aging-associated neuropathology, as glial-
specific overexpression of individual AMP genes known to
be regulated by the NF-κB pathway is sufficient to cause the
neurodegeneration phenotypes seen in physiological aging (Cao
et al., 2013; Kounatidis et al., 2017). More strikingly, our
previous studies have discovered an unexpected function of
the skin-exclusive AMP, NLP-29, in causatively triggering the
aging-associated degeneration of sensory neurons in C. elegans,
without affecting the lifespan (E et al., 2018) (Table 1). This
process requires a neuronal receptor (neuropeptide receptor
12, NPR-12) specific to NLP-29, enabling the transmission
of neurodegeneration-initiating signals from the non-neuronal
tissues to neurons, via a ligand-receptor binding mechanism
(Figure 1). While we find that autophagic machinery is activated
downstream of the neuropeptide receptor NPR-12 to mediate
neurodegeneration [See (Wauson et al., 2014) for a review of
GPCRs in the regulation of autophagy] the role of autophagy
in neurodegeneration has been a controversial topic (Wong and
Cuervo, 2010) and remains to be comprehensively elucidated in
both physiological aging and disease conditions.

Although NLP-29 expression appears to be regulated by a
conserved mitogen-activated protein kinase (MAPK) immune
signaling pathway in response to pathogenic infections (Pujol
et al., 2008), it is unclear whether this pathway also contributes to
the age-dependent increase of this “neurodegeneration-causing
AMP” in wild-type C. elegans (E et al., 2018). One possible
source of internal signals that regulate such AMP increases
that have regulatory effects on the nervous system, are the
hallmarks of aging. These include but are not limited to increased
reactive oxygen species, endoplasmic reticulum stress triggered
by misfolded protein accumulation, and cellular senescence
(López-Otí?n et al., 2013; Childs et al., 2015), which may
also induce additional tissue/organ-specific changes on top of
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the burden generated by aging itself. While it remains to
be further investigated whether AMPs contribute to aging-
associated neurodegeneration in mammals, our current data
suggest that this mechanism may be evolutionarily conserved,
as ectopic expression of the C. elegans NPR-12/GPCR, in the
presence of the ligand NLP-29, stimulates rat cortical neurons to
degenerate in vitro (E et al., 2018). Considering the conservation
of aging-associated expression patterns of AMPs in other
organisms, we stress the necessity and importance of future
research to explore the crosstalk between AMPs and nervous
system inmammalian systems within the context of physiological
aging, which likely will add significantly to our understanding of
the biological root of neuronal aging.

5. PERSPECTIVES

In the many years since the discovery of AMPs, researchers
have continued to unveil novel functions of these pleotropic
molecules. The involvement of AMPs in physiological and
pathological aging appears to be a common theme across
multicellular organisms, and of recent note, AMPs have garnered
more interest in their roles as regulators of the nervous
system. Previous studies have highlighted a possibility that
AMPs may serve as important signaling molecules that originate
from non-neuronal tissues to mediate the progression of
aging, neurodegeneration (Figure 1), and subsequent changes
in organismal behaviors, while most of these studies investigate
such interactions in non-mammalian model systems. With
age-dependent increase of various AMPs being a conserved
phenomenon across different species in different tissues, as well
as the recent evidence implying antimicrobial-related function

of the characteristic proteins associated with neurodegenerative
diseases, there remain essential and critical questions to be
answered from a translational perspective. For instance, what are
the evolutionary reasons for AMPs to increase their expression
levels in functional aging? What molecular mechanisms regulate
AMP expression in the absence of pathogenic infections? Are
there any common features among the AMPs that can potentially
affect neuronal health in aging, such as requiring specific groups
of neuronal surface receptors to mediate the effects? Revealing
the mechanisms underlying these intricate phenomena will likely
lead to future identification of key biomarkers for preventative
health screenings and diagnostics for age-related neurological
disorders, and aid in the development of novel therapeutic
targets.
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