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Abstract: Nano-graphene oxide (Nano-GO) is an extensively studied multifunctional carbon nanoma-
terial with attractive applications in biomedicine and biotechnology. However, few studies have been
conducted to assess the epithelial-to-mesenchymal transition (EMT) in the retinal pigment epithelium
(RPE). We aimed to determine whether Nano-GO induces EMT by regulating phospholipase D
(PLD) signaling in human RPE (ARPE-19) cells. The physicochemical characterization of Nano-GO
was performed using a Zetasizer, X-ray diffraction, Fourier-transform infrared spectroscopy, and
transmission electron microscopy. RPE cell viability assays were performed, and the migratory
effects of RPE cells were evaluated. RPE cell collagen gel contraction was also determined. Intracel-
lular reactive oxygen species (ROS) levels were determined by fluorescence microscopy and flow
cytometry. Immunofluorescence staining and western blot analysis were used to detect EMT-related
protein expression. Phospholipase D (PLD) enzymatic activities were also measured. Nano-GO
significantly enhanced the scratch-healing ability of RPE cells, indicating that the RPE cell migration
ability was increased. Following Nano-GO treatment, the RPE cell penetration of the chamber was
significantly promoted, suggesting that the migratory ability was strengthened. We also observed
collagen gel contraction and the generation of intracellular ROS in RPE cells. The results showed that
Nano-GO induced collagen gel contraction and intracellular ROS production in RPE cells. Moreover,
immunofluorescence staining and western blot analysis revealed that Nano-GO significantly regu-
lated key molecules of EMT, including epithelial-cadherin, neural-cadherin, α-smooth muscle actin,
vimentin, and matrix metalloproteinases (MMP-2 and MMP-9). Interestingly, Nano-GO-induced
RPE cell migration and intracellular ROS production were abrogated in PLD-knockdown RPE cells,
indicating that PLD activation played a crucial role in the Nano-GO-induced RPE EMT process. We
demonstrate for the first time that Nano-GO promotes RPE cell migration through PLD-mediated
ROS production. We provide preliminary evidence to support the hypothesis that Nano-GO has
adverse health effects related to RPE damage.

Keywords: nano-graphene oxide; retinal pigment epithelium; cell migration; epithelial-to-mesenchymal
transition; phospholipase D

1. Introduction

Since the introduction of graphene-based nanomaterials in a two-dimensional carbon
sheet in 2004, various applications of graphene oxide (GO) have been anticipated in many
scientific fields, such as sensing, electronics, optical energy, biomedicine, and biotechnol-
ogy [1–3]. Nano-graphene oxide (Nano-GO) is a granular material with sizes ranging
from 20 to 100 nm. With its unique properties, Nano-GO has revolutionized biomedi-
cal applications through targeted drug delivery and disease diagnosis [4,5]. However,
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Nano-GO has become a topic of growing concern for human health risks [6,7]. Similar
to other particulate matter, several studies have shown that GO is harmful to human
health [8–10]. Some studies have reported that GO induces reactive oxygen species (ROS),
which are capable of causing plasma membrane damage, mitochondrial injury, immune
responses, and programmed cell death [11–13]. It has been reported that GO may lead to
pro-inflammation, cell death, thrombus formation, and cancer metastasis, which appears to
be induced by increased ROS production [14–16]. Furthermore, GO has been demonstrated
to exert advantageous and disadvantageous effects on tumor progression. As a potential
tumor promoter, GO can promote the metastasis of human lung, breast, prostate, and
liver cancer [17,18]. Furthermore, despite recent studies demonstrating that GO treatment
upregulates epithelial-to-mesenchymal transition (EMT) in prostate, lung, breast, and liver
cancer, no studies have previously proven a link between Nano-GO and EMT in human
retinal pigment epithelium (RPE) cells.

RPE is a critical cellular component of retinal function and integrity. RPE performs
diverse functions, such as protection of the retina against photo-oxidation, the formation
of the outer blood-retinal barrier, transport of nutrients, oxygen, and ions to the retina,
and production of a wide range of growth factors and cytokines, phagocytosis, and retinal
remodeling [19,20]. In numerous degenerative retinal diseases, RPE dysfunction leads to
disrupted polarization and loss of barrier function, causing proliferative vitreoretinopathy,
inherited rod-cone degeneration, inherited macular degeneration, and age-related macular
degeneration [21,22]. Additionally, RPE dysfunction is known to trigger the EMT process.
EMT is related to RPE morphogenesis and degenerative retinal disease, which induces
substantial changes in RPE cell morphology, migration, contraction, and related gene
expression. EMT facilitates the acquisition of migratory mesenchymal capacities and
the loss of epithelial-specific properties and leads to structural and functional injury to
the retina [23–25]. Ultimately, the EMT process of RPE is a common feature shared by
proliferative vitreoretinopathy and age-related macular degeneration pathogenesis. During
the EMT process, the expression of intercellular adhesion molecules, including E-cadherin
(epithelial-cadherin), is downregulated, while that of mesenchymal markers, including N-
cadherin (neural-cadherin), α-smooth muscle actin (α-SMA), and vimentin, is upregulated,
which in turn induces the migration abilities of RPE [26–28].

Despite several studies on the toxicological mechanisms of GO, there is still a lack of
understanding regarding the effects of nano-sized GO treatment on RPE function. However,
the effect of Nano-GO on RPE cells was not the only goal of this study. An important goal
was to investigate the effects of Nano-GO on EMT and explore the underlying molecular
mechanism in induced human RPE cells. Our results provide essential systematic evidence
for understanding the biological activity of Nano-GO in human RPE (ARPE-19) cells.

2. Materials and Methods
2.1. Nano-GO Characterization

The Nano-GO (1 mg/mL) used in this study was purchased from UniNano Tech Co.,
Ltd. For size and zeta potential determination, Nano-GO was diluted with deionized water
and 10 µg/mL was analyzed using a Zetasizer (Malvern Nano ZS90 series, Malvern, UK).
For the X-ray diffraction (XRD) pattern, the Nano-GO was dried using a freeze-drying
method and the Nano-GO was determined using an X-ray diffractometer (PANalytical,
Almelo, The Netherlands). Fourier-transform infrared (FTIR) spectra of Nano-GO were
acquired using an FTIR spectrophotometer (Spectrum GX; Perkin Elmer, Inc., Boston,
MA, USA). The surface morphology of Nano-GO was examined using a Hitachi H-7600
transmission electron microscope (TEM, Hitachi High-Technologies Corp., Tokyo, Japan).

2.2. Human RPE Cell Culture and Treatment

Human RPE (ARPE-19) cells were acquired from American Type Culture Collections
(ATCC, Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium/F12
(DMEM, Invitrogen-Gibco, Carlsbad, CA, USA) supplemented with 10% heat-inactivated
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fetal bovine serum (FBS) (Invitrogen-Gibco, Carlsbad, CA, USA), 10 units/mL penicillin,
and 100 units/mL streptomycin (PS) (Invitrogen-Gibco, Carlsbad, CA, USA) in a humidi-
fied atmosphere of 95% air and 5% CO2 at 37 ◦C. All experiments were carried out 24 h after
seeding in 48-well plates at a density of 2.0 × 104 RPE cells/well or in 6-well plates at a
density of 5.0 × 105 RPE cells/well. RPE cells were pre-treated with various concentrations
(0–200 µg/mL) of Nano-GO. An equal volume of vehicles was used as the control.

2.3. RPE Cell Viability

RPE cells seeded in 24-well plates at a density of 4.0 × 104 RPE cells/well were
treated with various concentrations (0, 10, 20, 40, 80, 100, and 200 µg/mL) of Nano-GO for
24 h, 48 h, and 72 h. RPE cell viability was analyzed using the Cell Counting Kit-8 assay
(Sigma-Aldrich, St. Louis, MO, USA). All procedures were conducted according to the
manufacturer’s recommendations.

2.4. RPE Cell Migration

RPE cell migration was performed using SPLScar Scratchers (24-well lid, SPL Life
Sciences, Pocheon, Korea). All procedures were performed according to the manufacturer’s
instructions. Straight-line scratches across RPE cells were made using SPLScar Scratchers
and then treated with Nano-GO (20 and 40 µg/mL) for 24 h and 48 h, photographed
from the straight-line scratch across RPE cells under a stereomicroscope (SMZ800, Nikon
Corporation, Tokyo, Japan). Images were captured using an attached IMT i-Solution
CAM 3 (IMT iSolution Inc., Vancouver, BC, Canada). The RPE cell migration assay was
performed using the CytoSelect 24-Well Cell Migration Assay (Cell Biolabs, San Diego,
CA, USA). All procedures were performed according to the manufacturer’s instructions.
RPE cells were treated with Nano-GO (20 and 40 mg/mL) for 24 h. Migratory cells were
fixed and stained with cell stain solution, and the whole area was photographed (upper
chamber) under a stereomicroscope (SMZ800, Nikon Corporation, Tokyo, Japan). Images
were captured using an attached IMT i-Solution CAM 3 (IMT iSolution Inc., Vancouver, BC,
Canada). Subsequently, the stained cells were extracted with an extraction solution and then
measured at 560 nm using an Omega Plate Reader (BMG Labtech, Ortenberg, Germany).

2.5. RPE Cell Collagen Gel Contraction

The RPE cell mechanical properties were determined using the CytoSelect 48-Well
Cell Contraction Assay (Cell Biolabs, San Diego, CA, USA). All procedures were performed
according to the manufacturer’s instructions. Briefly, RPE cells were resuspended in the
medium at 2.0 × 104 RPE cells/well. The RPE cell contraction matrix was prepared by
mixing two parts of RPE cells and eight parts of the collagen gel working solution, and
then 250 mL aliquots of the RPE cell collagen gel working solution were dispensed into a
48-well cell contraction plate. The RPE cell collagen gel working solution was polymerized
for 1 h at 37 ◦C and 5% CO2 and treated with Nano-GO (20 and 40 mg/mL). Subsequently,
the RPE cell contraction matrix was monitored for 12, 24, and 48 h at 37 ◦C and 5% CO2.

2.6. ROS Production in RPE Cells

Intracellular ROS levels were analyzed using 5- (and-6) -chloromethyl-2′,7′-
dichlorodihydrofluorescein diacetate acetyl ester (CM-H2DCFDA; Thermo Fisher Scientific,
Waltham, MA, USA). All procedures were performed according to the instructions set by
the manufacturer. In brief, after Nano-GO treatment, the RPE cells were rinsed with PBS
(phosphate-buffered saline) and incubated with CM-H2DCFDA for 30 min in the dark.
Thereafter, endogenous ROS levels were measured based on the fluorescence unit using
fluorescein isothiocyanate on a flow cytometer (Attune NxT Flow cytometer, Thermo Fisher
Scientific, Pasadena, CA, USA). Hydrogen peroxide (H2O2, 500 µM), which is known to
induce ROS production, was used as a positive control [27].
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2.7. Immunofluorescence Microscopy

RPE cells were incubated with E-cadherin (1:200), N-cadherin (1:100), vimentin (1:200),
and α-SMA (1:100) (Cell Signaling Technology, Beverly, MA, USA) overnight at 4 ◦C and
stained with a secondary antibody conjugated to Alexa Fluor 488 (1:500) dilution and
Texas Red-X (1:500) dilution (Thermo Fisher Scientific, Waltham, MA, USA) for 3 h in the
dark. Subsequently, the RPE cells were stained with DAPI (4′,6-diamidino-2-phenylindole),
which was coupled with nuclear acid staining to determine the cell status. RPE cells were
mounted, and images were taken using a Carl Zeiss fluorescence microscope (Carl Zeiss,
Oberkochen, Germany).

2.8. Western Blotting

RPE cells were harvested and lysed using M-PER (Mammalian Protein Extraction
Reagent, Thermo Fisher Scientific, Waltham, MA, USA). All procedures were performed
according to the instructions set by the manufacturer. All protein concentrations were
determined using a Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA) as per the
instruction manual. The gel was separated using Mini-PROTEAN Precast Gels (Bio-Rad,
CA, USA) and transferred onto a Hybond polyvinylidene difluoride membrane (Amersham
Biosciences, Piscataway, NJ, USA). Immunodetection was performed using E-cadherin,
N-cadherin, vimentin, α-SMA, MMP-2, MMP-9, and α-tubulin (Cell Signaling Technology,
Beverly, MA, USA) in the SignalBoost Immunoreaction Enhancer Kit assay (Sigma–Aldrich,
St. Louis, MO, USA). The protein bands were observed using an enhanced Pierce ECL
Western Blotting Substrate (Thermo Fisher Scientific, Waltham, MA, USA) and quantified
as the ratio of the target protein band intensity to the α-tubulin band intensity.

2.9. siRNA Transfection

RPE cells were transfected with human small interfering RNA (siRNA) against PLD1,
PLD2, and control siRNA using the X-tremeGENE siRNA Transfection Reagent (Sigma–
Aldrich, St. Louis, MO, USA) according to the instructions set by the manufacturer. The
total amount of siRNA used for each well was normalized to that of the scrambled RNA
(control siRNA).

2.10. PLD Enzyme Activity in RPE Cells

PLD enzyme activity was detected using the Amplex Red Phospholipase D Assay Kit
(Thermo Fisher Scientific, Waltham, MA, USA). All procedures were performed according
to the manufacturer’s instructions. In brief, the RPE cells were washed with PBS and
extracted using three freeze-thaw cycles in a lysis solution. Samples were mixed with the
Amplex Red reaction buffer and PLD enzymatic activity was detected using the FLUOstar
Omega Multi-Mode Microplate Reader (BMG Labtech).

2.11. Statistical Analysis

All assays were independently repeated at least three times. All statistical parameters
are presented as the mean ± standard error of the mean (SEM). Statistical analyses were
performed using one-way analysis of variance (ANOVA) followed by Dunn’s post-hoc test.
A value of p < 0.01 or p < 0.05 was considered significant.

3. Results
3.1. Zetasizer, XRD, and FTIR Analyses of Nano-GO

Nano-GO was characterized using a Zetasizer, X-ray diffractometer, and FTIR spec-
trometer, as previously reported. Zetasizer analysis was performed to study the size
distribution and zeta potential of Nano-GO to confirm the optimal hydrodynamic diameter
and effective surface charge that improve the stability of colloidal dispersions. Our results
showed that the optimal hydrodynamic diameter was 87.8 ± 0.7 nm (Figure 1A), and
the optimal zeta potential was −33.7 ± 1.2 mV with a single peak (Figure 1B), which
indicates stable dispersion via interparticle electrostatic repulsion. The XRD pattern of the
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Nano-GO showed characteristic peaks that were consistent with the formation of oxide
groups, such as epoxide, carbonyl, and hydroxide groups. Based on the XRD pattern, peaks
were observed at 10.07◦, which are indicative of the (001) planes (Figure 1C). As reported
earlier, these peaks indicate the chemical oxidation of graphite to GO [29]. Additionally,
the functional group analysis of Nano-GO using an FTIR spectrophotometer characterized
an alkoxy C–O stretch at 1031 cm−1, epoxy C–O stretch at 1227 cm−1, aromatic C = C
stretch at 1608 cm−1, carboxyl C = O stretch at 1719 cm−1, C–H stretch at 2893 cm−1, and
hydroxy–OH groups at 3359 cm−1 (Figure 1D). The TEM images of Nano-GO are presented
in Figure 1E.
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Figure 1. Physicochemical characterization of Nano-GO. Zetasizer showing the size distribution
(A) and zeta potential (B) of Nano-GO. (C) Representative XRD pattern of Nano-GO. (D) FTIR spectra
of Nano-GO. (E) TEM images of Nano-GO (scale bar; 200 nm).

3.2. Nano-GO Promoted RPE Cell Migration

The Nano-GO characterization was consistent with that obtained in a previous study.
The human RPE cells ARPE-19 have generally been used to evaluate RPE studies [30]. To
investigate whether Nano-GO exhibited EMT progression in RPE cells, we first assessed
the cytotoxic effects of Nano-GO treatment using the Cell Counting Kit-8 assay. As shown
in Figure 2A, the cell viability was slightly reduced to 81.3 ± 0.6% at 80 µg/mL for 24 h,
and this level of reduced cell viability gradually increased with time and concentration,
up to 200 µg/mL. At 200 µg/mL Nano-GO for 48 and 72 h, the cell viability was inhibited
to approximately 80%. However, Nano-GO treatment did not exert cytotoxicity at 20 and
40 µg/mL for 24 h, 48 h, and 72 h. Consequently, the RPE cells were treated with Nano-GO
at 20 and 40 µg/mL for 24 h and 48 h in the subsequent experiments. Recent evidence sug-
gests that the EMT process of RPE cells is an important step in numerous intraocular fibrotic
disorders, including proliferative vitreoretinopathy and age-related macular degeneration.
In this EMT process, RPE cells lose epithelial characteristics through cell migration ability,
production of extracellular matrix, and expression of mesenchymal markers [21,28,31]. The
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RPE cell migration assay was performed to evaluate the ability of Nano-GO to induce RPE
cell motility. The RPE cell migration showed that the straight-line gap was repopulated by
RPE cells. The straight-line gap of the control group was slightly repopulated by the RPE
cells, while a remarkable straight-line gap closure was observed in the Nano-GO group
(20 and 40 µg/mL) with more rapid gap coverage by 24 h and complete coverage by 48 h
(Figure 2B). We found that RPE cell motility progressively increased following treatment.
We further investigated RPE cell migration during Nano-GO treatment for 24 h. After
treating RPE cells with 20 and 40 µg/mL of Nano-GO, the transwell assay showed that
the RPE cells which moved to the lower membrane of the chamber were significantly and
dose-dependently greater with the Nano-GO treatment than in the control (Figure 2C). The
migratory RPE cells were extracted with extraction solution and then quantified at the
optical density OD560. We found that Nano-GO (20 and 40 µg/mL) significantly increased
the cell migration to 140.1% and 226.8%, respectively (Figure 2D), suggesting that Nano-GO
induced the migratory capability of RPE cells. This result suggests that Nano-GO treatment
resulted in high RPE cell mobility.
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Figure 2. Effect of Nano-GO on RPE cell migration. (A) RPE cells were treated with Nano-GO (0, 10,
20, 40, 80, 100, and 200 µg/mL) for 24, 48, and 72 h. RPE cell viability was measured using the Cell
Counting Kit-8 assay. (B) RPE cells were treated with Nano-GO (20 and 40 µg/mL) for 24 or 48 h.
Migratory RPE cell images were taken at 0, 24, and 48 h after scratching was applied. The lines show
the boundaries of the transferred RPE cells (scale bar; 100 µm). Transwell migration assay. RPE cells
were allowed to move through the membrane for 24 h in the presence or absence of Nano-GO (20 and
40 µg/mL). Representative images of migrated RPE cells (C) and quantification (D) are shown (scale
bar; 50 µm). All data are presented as the mean ± SEM (n = 3). * p < 0.05 and ** p < 0.01 compared to
the Control.
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3.3. Nano-GO Induced RPE Cell-Mediated Collagen Gel Contraction

Collagen gel contraction through RPE cells is a hallmark of degenerative retinal
diseases and plays a critical role in the development of the EMT process [24]. To determine
whether Nano-GO treatment could affect the RPE cell-mediated collagen gel contraction,
Nano-GO (20 and 40 µg/mL) was added to the 3-dimensional collagen gel and observed at
12 h, 24 h, and 48 h. Figure 3A shows that treatment of RPE cells with Nano-GO (20 and
40 µg/mL) resulted in a marked contraction of collagen gel. The areas of collagen gel
were significantly reduced to 76.1% and 36.8% of the initial area after 48 h, respectively
(Figure 3B). These collagen gel contractions were clearly driven by the Nano-GO-treated
RPE cells because the gels without Nano-GO retained a larger area. This gel-contracting
effect of Nano-GO was similar to that observed in RPE cell migration.
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3.4. Nano-GO Induced Intracellular ROS Production in RPE Cells

Since ROS production leads to severe EMT, intracellular ROS levels are considered
to be potential mediators of degenerative retinal diseases [27,28]. Several studies have
suggested that Nano-GO induces endogenous ROS production [7,8,32]. We sought to
confirm whether endogenous ROS levels were increased in Nano-GO-treated RPE cells. To
do this, we analyzed the intracellular fluorescence intensity of the probe CM-H2DCFDA
using fluorescence microscopy and flow cytometry. The fluorescence microscopy results
indicated that the CM-H2DCFDA staining images displayed slight staining in the control
RPE cells, which were markedly stained in Nano-GO (20 and 40 µg/mL; Figure 4A). The
flow cytometry results showed that the intracellular fluorescence intensity was 9.8% in the
control, whereas the groups treated with 20 and 40 µg/mL Nano-GO had an intensity of
51.0% and 86.2%, respectively. Hydrogen peroxide (H2O2), a generator of ROS production,
was added to the positive control. We used 500 µM H2O2, which was verified without
affecting the cell viability, as previously reported. The positive control also significantly
increased the intracellular fluorescence intensity in the flow cytometry assay. Our data
showed that the Nano-GO treatment significantly increased intracellular ROS production
compared to the control (Figure 4B).

3.5. Immunofluorescence Staining and Western Blot Analysis of Nano-GO in RPE Cells

Numerous organic molecules have been found to be involved in regulating the RPE
EMT process. In particular, E-cadherin, as an intercellular adhesion molecule, can attenuate
the EMT process, while N-cadherin, α-SMA, and vimentin can promote EMT as mes-
enchymal molecules [25,26]. The protein expression levels and subcellular localization of
E-cadherin, N-cadherin, vimentin, and α-SMA were determined through immunofluores-
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cence microscopy. A normal protein expression of E-cadherin, an epithelial marker, was
detected in control RPE cells, but this protein expression was significantly reduced through
treatment with Nano-GO (Figure 5A). Furthermore, Nano-GO at 40 µg/mL significantly
induced the protein expression of N-cadherin (Figure 5B), α-SMA (Figure 5C), and vi-
mentin (Figure 5D) as mesenchymal markers. To further investigate the protein expression
of E-cadherin, N-cadherin, vimentin, and α-SMA in RPE cells, these cells were treated
with Nano-GO (20 and 40 µg/mL). Compared with the control, the RPE cells treated with
Nano-GO showed a significantly suppressed E-cadherin protein expression. In contrast,
the protein levels of N-cadherin, vimentin, and α-SMA were upregulated after treatment
with Nano-GO (Figure 5E). Concurrently, matrix metalloproteinases (MMP-2 and MMP-9),
a family of zinc-dependent endopeptidases, can also break down the extracellular matrix to
facilitate the EMT process. Several studies have shown that an induced matrix metallopro-
teinase expression is associated with EMT progression. Therefore, the ability of Nano-GO
to upregulate the protein expression of MMP-2 and MMP-9 in RPE cells was investigated.
Nano-GO at 40 µg/mL led to the induction of the protein expression of MMP-2 and MMP-9
in RPE cells (Figure 5E). Together, these results suggest that Nano-GO facilitates the RPE
EMT process via the regulation of EMT-related molecules.
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flow cytometer-based image (upper panel) and quantitative analysis (lower panel) indicates fluores-
cence intensity using CM-H2DCFDA staining. All data are presented as the mean ± SEM (n = 3).
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3.6. Nano-GO Mediated RPE EMT Process Associated with PLD

Phosphatidic acid (PA) is a bioactive signaling lipid and cell membrane component
that plays a pivotal role in many physiological processes, including cell growth, migra-
tion, survival, transformation, membrane trafficking, cytoskeletal reorganization, and
differentiation. PLD is the only enzyme that hydrolyzes phosphatidylcholine (PC) to
PA and choline-free polar head groups [33–35]. PLD is expressed in many different cell
types, including macrophage, colon, breast, gastric, and RPE cells. Recently, interesting
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relationships have been established between PLD and RPE cells. Dysregulated PLD has
been suggested to play a key role in RPE EMT progression in several forms of retinal
degeneration [36–38]. Therefore, we determined whether the Nano-GO-mediated EMT
process is associated with PLD and whether it is mediated by PLD1 and PLD2. An siRNA
system was used to reduce the activation of PLD1 and PLD2. Compared with the si-control
group treated with Nano-GO (40 µg/mL), the RPE cells transfected with small interfer-
ing phospholipase D1 or D2 (si-PLD1 or si-PLD2) had significantly downregulated PLD
enzymatic activity (Figure 6A). Subsequently, we performed RPE cell migration assays
to clarify whether the Nano-GO-induced PLD enzymatic activation was caused by RPE
cell migration in Nano-GO-treated RPE cells. We measured the migratory properties of
RPE cells treated with 40 µg/mL of Nano-GO and compared the results with those of RPE
cells transfected with si-PLD1 or si-PLD2. Interestingly, compared to treatment with the
si-control group treated with Nano-GO (40 µg/mL), transfection with si-PLD1 or si-PLD2
significantly reversed the Nano-GO-induced migratory capabilities of RPE cells (Figure 6B).
To elucidate the involvement of PLD signaling in intracellular ROS generation in Nano-GO-
treated RPE cells, siRNA against PLD1 and PLD2 was used. The knockdown of PLD1 and
PLD2 blocked the Nano-GO-induced ROS production (Figure 6C). Therefore, our results
strongly suggest that Nano-GO-mediated RPE cell migration and ROS production are
highly dependent on PLD signaling.
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Figure 5. Effect of Nano-GO on protein expression of E-cadherin, N-cadherin, vimentin, α-SMA,
MMP-2, and MMP-9. RPE cells were immunostained for E-cadherin (A), N-cadherin (B), α-SMA (C),
and vimentin (D) in the absence or presence of Nano-GO (20 and 40 µg/mL, for 24 h). Immunofluo-
rescence images were taken using a 63× oil objective (scale bar; 10 µm). (E) Representative western
blotting-based image (right panel) and quantitative analysis (left panel) show the protein expression
of E-cadherin, N-cadherin, vimentin, α-SMA, MMP-2, and MMP-9 in RPE cells. DAPI was used to
determine the nuclei. All data are presented as the mean ± SEM (n = 3). * p < 0.05 and ** p < 0.01
compared to the Control.
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Figure 6. Effect of Nano-GO on RPE cell migration and ROS production through the PLD signal. RPE
cells were treated with si-Control, si-PLD1, or si-PLD2, and then treated with Nano-GO (40 µg/mL)
for 24 h. (A) PLD enzymatic activity was assessed using the Amplex Red Phospholipase D Assay
Kit (B) RPE cell migration was assessed via cell migration assay (scale bar; 50 µm). (C) Intracellular
ROS production was assessed via CM-H2DCFDA using flow cytometry. All data are presented as the
mean ± SEM (n = 3). * p < 0.05 and ** p < 0.01 compared to the Control.

4. Discussion

The retina is constantly exposed to detrimental nanomaterials and pathogens. Re-
cent studies have demonstrated that Nano-GO might modulate the EMT process in lung,
breast, prostate, and liver cancer [7,17]. To the best of our knowledge, no data regarding
the influence of Nano-GO on the RPE EMT process are currently available. Due to the
limited availability of primary cells, the immortalized human retinal epithelial cell line
ARPE-19 was used to further explore and expand on existing research related to the RPE
EMT process. ARPE-19 cells retain many of the functions and morphology of normal
human retinal epithelial cells and are proposed to be valuable in vitro models for study-
ing degenerative retinal disease, and for investigating the consequences of exposure to
detrimental nanomaterials. Regarding cytotoxicity, our results showed that only higher
concentrations and longer exposure times of Nano-GO significantly decreased cell viability.
However, Nano-GO (20 and 40 µg/mL for 24 h, 48 h, and 72 h) did not significantly lower
the cytotoxicity of human RPE cells. Other studies applying the same or similar Nano-GO
concentrations on human RPE cells obtained equivalent results, and proliferative effects
were even sometimes observed, while higher Nano-GO doses were cytotoxic. We used
these concentrations to assess whether Nano-GO could affect RPE cell migration as an EMT
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process. We found that Nano-GO stimulated the RPE cell migration ability, depending on
the concentration, especially at a concentration of 40 µg/mL.

Nano-GO has been reported to upregulate oxidative stress in macrophages, lym-
phocytes, and embryonic fibroblast cells [39,40]. Normal ROS production is essential for
maintaining normal physiological functions in human RPE cells. However, ROS production
abnormally increases in response to the RPE EMT process. Our results similarly show that
Nano-GO can modulate intracellular ROS production in human RPE cells, especially in the
RPE EMT process. Our studies have shown that Nano-GO modulate EMT-related biomark-
ers (E-cadherin, N-cadherin, vimentin, and α-SMA) in human RPE cells. E-cadherin is
essential for the maintenance of epithelial cells in human RPE cells, and its downregulation
is related to EMT in human RPE cells. Our results also indicate that downregulation of
E-cadherin by Nano-GO can induce EMT and may lead to increased human RPE cell
migration. N-cadherin, vimentin, and α-SMA act as mesenchymal molecular patterns
leading to the RPE EMT process.

PLD is involved in many biological processes, including cell proliferation, differentia-
tion, and migration [33–35]. Numerous studies have shown that PLD plays a role in various
pathophysiological processes, such as inflammation, metabolic syndrome, nonalcoholic
fatty liver disease, and Alzheimer’s disease. At the same time, PLD is also one of the key
molecules involved in the EMT process in other tissues [36–38]. Our research confirms
the value and function of PLD in an RPE cells. Compared with previous studies, our
study was further validated by identifying possible signaling pathways and exploring
significant differences. Nano-GO has been demonstrated to be involved in the regulation
of several physiological and pathological processes, such as tumor growth, progression,
and metastasis. We also found that human RPE cells had PLD gene expressions and PLD
enzymatic activity that were further induced by Nano-GO treatment. The EMT process
of Nano-GO in human RPE cells appears to be associated with PLD signals. Nano-GO
was found to affect PLD enzymatic activity the knockdown of PLD1 and PLD2 suppressed
migration compared to Nano-GO-treated RPE cells, as well as reducing the intracellular
ROS generation when compared to Nano-GO on its own. These PLD1 and PLD2 knock-
down patterns might explain the human RPE EMT process when considered alongside
the study showing that the human RPE EMT process with Nano-GO seems to signal by
means of PLD signals. It should be emphasized that activation of the PLD signal in an RPE
cell guarantees participation in response to the RPE EMT process. The crosstalk between
the EMT process initiated by PLD signal activation is still unknown, and this might be
interesting to explore in future studies. Notably, we found that the Nano-GO-mediated
RPE EMT process was associated with the enhancement of PLD activation.

5. Conclusions

Our study was designed to test our hypothesis that Nano-GO promotes EMT by
regulating PLD signaling in RPE cells. Human RPE cells undergo EMT-like pathological
changes, leading to conditions that can lead to degenerative retinal diseases. In Nano-
GO-treated RPE cells, we found that RPE cell migration was significantly upregulated.
Using the cell contraction assay, we also clarified the effect of Nano-GO-treated RPE cells
on collagen gel contraction. Similar results were observed where Nano-GO alleviated the
intracellular ROS production. Moreover, western blotting results showed that Nano-GO
downregulated E-cadherin and upregulated N-cadherin, vimentin, α-SMA, MMP-2, and
MMP-9 in treated RPE cells. To determine whether Nano-GO contributes to the EMT
process, a persistently knocked-down PLD system was used. The results showed that the
knockdown of PLD1 and PLD2 significantly reversed the EMT process of Nano-GO. These
findings contribute toward a deeper understanding of degenerative retinal diseases and
the pathogenic role of Nano-GO.
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