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Man-made environmental change may have significant impact on apex predators,
like marine mammals. Thus, it is important to assess the physiological boundaries
for survival in these species, and assess how climate change may affect foraging
efficiency and the limits for survival. In the current study, we investigated whether
the respiratory sinus arrhythmia (RSA) could estimate tidal volume (VT) in resting
bottlenose dolphins (Tursiops truncatus). For this purpose, we measured respiratory
flow and electrocardiogram (ECG) in five adult bottlenose dolphins at rest while breathing
voluntarily. Initially, an exponential decay function, using three parameters (baseline heart
rate, the change in heart rate following a breath, and an exponential decay constant) was
used to describe the temporal change in instantaneous heart rate following a breath.
The three descriptors, in addition to body mass, were used to develop a Generalized
Additive Model (GAM) to predict the inspired tidal volume (VTinsp). The GAM allowed us
to predict VTinsp with an average ( ± SD) overestimate of 3 ± 2%. A jackknife sensitivity
analysis, where 4 of the five dolphins were used to fit the GAM and the 5th dolphin used
to make predictions resulted in an average overestimate of 2 ± 10%. Future studies
should be used to assess whether similar relationships exist in active animals, allowing
VT to be studied in free-ranging animals provided that heart rate can be measured.

Keywords: electrocardiogram, spirometry, marine mammals, diving physiology, cardiorespiratory

INTRODUCTION

Marine mammals forage underwater to obtain food and therefore divide their time at the surface
to exchange gasses (O2 and CO2) with submersions to different depth and of varying durations.
Therefore, a better understanding of the metabolic costs associated with underwater foraging,
and proxies to assess energy use would help determine how environmental change may alter
survival. By increasing the duration underwater, the opportunity to encounter and obtain food,
and thereby the foraging efficiency, should be increased. Man-made environmental change such
as over-fishing and global warming could cause changes in prey diversity, availability and location
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(Perry et al., 2005), which may have detrimental effects on
apex marine predators like dolphins. Changes in prey type,
abundance, and distribution could result in increases in both
foraging duration and distance in order to obtain enough prey
for survival. Overfishing will reduce the probability to encounter
food, and movement of prey to deeper depths due to ocean
warming will increase the transit time and reduce the available
time at the prey patch. Longer foraging bouts, and/or deeper
dives may reduce the foraging efficiency and thereby cause
challenges to obtain sufficient food for survival (Perry et al.,
2005). Thus, understanding the cardiorespiratory traits required
by marine mammals to manage life in an extreme environment,
the physiological constraints imposed on these animals, and how
these limitations may affect physiology and survival are crucial.

When studying animals in the wild, measuring the metabolic
cost directly is challenging, and a number of proxies have been
proposed and tested. One method is to measure the resting
metabolic rate (RMR) by measuring the O2 consumption rate
(V̇O2) during rest (Williams et al., 1993; Yazdi et al., 1999;
Kastelein et al., 2000; Yeates and Houser, 2008; Noren et al.,
2013; Rechsteiner et al., 2013; Worthy et al., 2013; van der
Hoop et al., 2014; Fahlman et al., 2015), and a few studies have
determined the diving and foraging metabolic rate of marine
mammals during quasi-natural conditions (Kooyman et al., 1973;
Sparling and Fedak, 2004; Fahlman et al., 2008, 2013). While
RMR may not accurately reflect field metabolic rate (FMR), it
provides an index about the minimal metabolic requirements of
an individual or population against which FMR can be scaled
(Bejarano et al., 2017). One method to scale FMR is to estimate
FMR by validated metabolic proxies, such as heart rate (fH)
(Young et al., 2011), activity (Enstipp et al., 2011; Fahlman et al.,
2013), or respiratory frequency (f R) (Fahlman et al., 2016, 2017b;
Folkow and Blix, 2017). Combining these methods, the metabolic
costs for different populations and activities, such as resting,
traveling, and foraging, can be defined. The Fick principle states
that:V̇O2 = f R × VT × (1O2), where VT is tidal volume and
1O2 the O2 extracted from the air inhaled with each breath.
By assuming that VT and 1O2 are constant at steady state, it
should be possible to estimate V̇O2 from f R (Folkow and Blix,
1992; Christiansen et al., 2014; Fahlman et al., 2016). While
marine mammals are at the surface, f R can be assessed during
focal observations. However, this is not practical during long
periods at sea. In addition, studies have shown that both VT
and 1O2 change for different activities or during recovery from
exercise (Fahlman et al., 2016, 2017b; Folkow and Blix, 2017),
so the estimated V̇O2 could be improved by also estimating VT
and 1O2. Consequently, methods to assess pattern of breathing
(f R, VT) would provide significant advances to estimate FMR in
marine mammals.

Proxies to estimate FMR from breaths should accurately
predict f R andVT during continuous recording from free ranging
animals (Fahlman et al., 2016; Rojano-Doñate et al., 2018). Such
data would allow an assessment of how changes in foraging effort
(duration, activity, etc.) alter respiratory function, and estimated
FMR. A number of studies have assessed lung function in marine
mammals under human care (Olsen et al., 1969; Kerem et al.,
1975; Matthews, 1977; Kooyman and Cornell, 1981; Fahlman

et al., 2015, 2018a,b, 2019; Fahlman and Madigan, 2016), and
at least in the bottlenose dolphin (Tursiops truncatus) these data
are representative of their wild counterparts, in both shallow and
deep diving ecotypes (Fahlman et al., 2018a,b). Such data are
important to establish baseline lung function from animals with
known health under controlled situations, and provide methods
that will allow proxies to be validated that can predict respiratory
effort in free ranging animals.

Estimating lung function of wild populations remains difficult.
One alternative proxy could be to use the changes in fH associated
with each breath, the Respiratory Sinus Arrhythmia (RSA) (de
Burgh Daly, 1986). While RSA is universally present in a number
of air-breathing vertebrates such as the toad, horse, dog, seal,
and dolphin (Scholander, 1940; Hayano et al., 1996; Cooper
et al., 2003; Noren et al., 2004; Harms et al., 2013; Zena et al.,
2017; McDonald et al., 2018; Yaw et al., 2018; Piccione et al.,
2019), and even in air-breathing fish (Grossman and Taylor,
2007), its physiological significance is debated (Hayano et al.,
1996; Yasuma and Hayano, 2004). It has been suggested that RSA
improves gas exchange by enhancing the ventilation-perfusion
matching and reduces cardiac work (Yasuma and Hayano, 2004;
Ben-Tal et al., 2012, 2014). The RSA causes fH acceleration during
inspiration, and deceleration during expiration (Mortola et al.,
2015). Thus, continuous recordings of fH could allow detection
of f R, which when appropriately validated provide ways to
estimate field metabolic rate (Fahlman et al., 2016; Rojano-Doñate
et al., 2018). Considering recent progress in the development
of biologging system that allow continuous recording of the
electrocardiogram (ECG) in free-ranging cetaceans (Elmegaard
et al., 2016; McDonald et al., 2018), we speculated that RSA may
provide a novel method to estimate VT in bottlenose dolphins.
Currently, there is limited availability of commercial data loggers
that can measure continuous ECG, and custom built devices range
from units with implantable electrodes used in pinnipeds or diving
birds (Thompson and Fedak, 1993; Woakes et al., 1995; McDonald
and Ponganis, 2014), to those that are attached externally using
suction cups (Noren et al., 2004; Elmegaard et al., 2016).

In the current study, we tested the hypothesis that RSA can
estimate VTinsp in resting bottlenose dolphins by recording fH
and respiratory flow while resting at the surface. Our results
provide evidence that using the RSA as a proxy allows us
to estimate the average VTinsp of individual dolphins with an
average (±SD) overestimation of 2± 10% with the data recorded.

MATERIALS AND METHODS

Animals
The study protocols were approved by the Animal Care and
Welfare Committee of the Oceanogràfic Foundation (OCE-17-
16 and amendment OCE-29-18). Five adult male bottlenose
dolphins (T. truncatus), housed at Dolphin Quest – Oahu
(Honolulu, HI, United States), were used for all the experiments
(Table 1). All experiments were conducted in January 2018. The
dolphins were not restrained and could end the trial at any
point. Prior to initiating the study, the dolphins were desensitized
to the equipment and trained for novel research-associated
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TABLE 1 | Dolphin ID, body mass (Mb), total number of breaths analyzed (N),
average ( ± SD) tidal volume (VTinsp), and VTinsp range.

Dolphin ID Mb (kg) N VTinsp (l) VTinsp range (l)

9FL3 235.4 73 3.6 ± 1.0 1.6 − 6.2

01L5 154.6 91 3.2 ± 0.5 2.1 − 4.2

83H1 139.6 53 3.3 ± 0.8 1.8 − 5.6

9ON6 184.1 53 3.9 ± 0.6 2.7 − 5.6

6JK5 206.8 27 4.9 ± 1.2 2.7 − 6.9

behaviors using operant conditioning. Each trial consisted of the
animal staying stationary in the water, allowing placement of
the equipment. The animals were breathing while continuous
measurements were made. Because of familiarity with these
procedures, we assumed that the experimental data collected on
lung function (respiratory flow) and fH were representative of a
relaxed physiological state.

Data Acquisition
A custom-made Fleisch type pneumotachometer (Mellow
Design, Valencia) utilizing a low-resistance laminar flow matrix
(Item # Z9A887-2, Merriam Process Technologies, Cleveland,
OH, United States) was placed over the blow-hole of the
dolphin (Fahlman et al., 2015). Differential pressure across
the flow matrix was measured using a differential pressure
transducer (ML311 Spirometer Pod, ADInstruments, Colorado
Springs, CO, United States), connected to the pneumotachometer
with two, 310 cm lengths of 2 mm I.D., firm walled, flexible
tubing. The pneumotachometer was calibrated using a 7.0 l
calibration syringe (Series 4900, Hans-Rudolph Inc., Shawnee,
KS, United States). The signal was integrated and the flow
determined assuming a linear response between differential
pressure and flow. The linear response of the pneumotachometer
was confirmed by calibrating with the 7.0 l syringe immediately
before and after each trial, through a series of pump cycles at
various flows. The pump cycles allowed the relationship between
differential pressure and flows for the expiratory and inspiratory
phases to be determined. All gas volumes were converted to
standard temperature pressure dry (STPD) (Quanjer et al., 1993).
Exhaled air was assumed saturated at 37◦C, inhaled air volume
was corrected for ambient temperature and relative humidity,
and VT was calculated by integrating the flow as previously
detailed (Fahlman et al., 2015).

The electrocardiogram (ECG) was recorded using three
gold-plated electrodes mounted inside a silicone suction cup
connected to a custom-built data recorder (UUB/1-ECGb, UFI,
Morro Bay, CA, United States). The three electrodes were placed
on the ventral surface: red on the right side close to the pectoral
fin, yellow opposite on the left side, and green on the right
side approximately 30 cm more caudally from the red. The
suctions cups were filled with conducting gel (Redux Gel, Parker
Laboratories) before being placed on the skin. Next, the animal
rolled over to ensure the suction cups stayed in place.

The respiratory flow and ECG were recorded at 400 Hz
using a data acquisition system (Powerlab 8/35, ADInstruments,
Colorado Springs, CO, United States), and displayed on a

computer running LabChart (v. 8.1, ADInstruments, Colorado
Springs, CO, United States). Initially, the electrodes were adjusted
to assure a clear ECG trace. Next, the pneumotachometer was
placed over the blow-hole and the animal allowed to breathe
spontaneously for up to 10 min.

We used the ECG analysis routine in LabChart to
automatically detect the time between R-R peaks using the
following settings; typical QRS width = 80 ms, R-waves = 300 ms,
pre-P baseline = 120 ms, maximum PR = 240 ms, maximum
RT = 400 ms. The detected R peaks were then manually verified
and the instantaneous heart rate (ifH) determined from the time
between R-R peaks.

Data Processing, Statistical Analysis and
Modeling
All data were analyzed using R (version 3.4.3 – © 2017 The R
Foundation for Statistical Computing) through RStudio (version
1.1.383 – © 2009–2017 RStudio, Inc.). Initially the temporal
changes in ifH were described for each breath. We used a function
that fit the exponential decay with time following the beginning
of the inspiration for each breath:

ifH= Base Heart Rate+ e−Decay rate×Time (1)

×Initial change in heart rate

Equation 1 was fit for each breath using the “L-BFGS-B”
method of the “optim” function (Byrd et al., 1995), which
optimizes parameters between imposed bounds to restrain
parameters to physiologically relevant values. Breaths with fewer
than seven beats after the inhalation were excluded (44 breaths).

Next the three parameters from Eq. 1 (Base Heart Rate, Decay
rate, and initial change in heart rate) for each breath, and body
mass (Mb) were fit against inhaled VT (VTinsp) using a loess
Generalized Additive Model (GAM) (Cleveland, 1979; Hastie and
Tibshirani, 1990), with the span fixed at 0.34.

To assess the sensitivity of the model, we generated five
different GAMs by excluding all observations from one dolphin
each time. The data from the excluded dolphin was then used to
predict VTinsp. The error was computed using the formula:

Prediction error =
(
Predicted−Measured

)
Measured

× (−100) (2)

where a positive value represents an overestimated prediction.

TABLE 2 | Dolphin ID, average fit parameters for Equation 1 [base heart rate (fH),
decay, initial jump (1fH)], and average inspired tidal volume (VTinsp).

Dolphin ID Base fH Decay 1fH Average VTinsp

9FL3 34.1 0.0362 37.2 3.6

01L5 37.9 0.0486 46.2 3.2

83H1 39.7 0.0523 46.8 3.3

9ON6 41.2 0.0311 50.5 3.9

6JK5 48.6 0.0280 49.2 4.9

Mean (±SD) 40.3 ± 5.4 0.0393 ± 0.0108 46.0 ± 5.2 3.8 ± 0.7
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RESULTS

Data Used for the Analysis
A total of 297 breaths were analyzed following removal of breaths
with less than seven heart beats between breaths (Table 1). Only
spontaneous breaths were used for the analysis, which limited
the range of VT’s. In addition, as not all inspired and expired
volumes are similar for each breath, we only used the VTinsp
for the analysis.

The average (±SD) VTinsp was 3.8 ± 0.7 l (range: 1.6–6.9 l,
see Table 1 for individual variation), and the average duration
between breaths was 15.3 ± 10.7 s (range: 4–129 s). The average

ifH was 74 ± 24 beats min−1 (range: 27–293 beats · min−1).
The average fit parameters for Equation 1 for each dolphin are
reported in Table 2.

Predicting VT From Instantaneous fH
Figure 1 shows a representative ECG trace, ifH, and respiratory
flow in a dolphin over 3 breaths. The average conditions for
estimating VTinsp are reported in Table 2, and the GAMs
overestimated VTinsp by an average 3 ± 2% (range of individual
average error: 0.3 to 7.4%, Figure 2). A sensitivity analysis was
performed to assess how the prediction changed with changes in
each variable (Figure 3). The decay rate andMb had less influence

FIGURE 1 | Representative data showing respiratory flow, ECG, and instantaneous heart rate (ifH) in a bottlenose dolphin during (A) 3 breaths, or (B) zoomed in for
the 2nd breath.
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on the model output as compared with base fH and the initial
change in fH.

By removing one dolphin, fitting the GAMs with the four
dolphins, and then predicting VTinsp for the 5th dolphin resulted
in an average (±SD) overestimation of 2 ± 10%, (range of
individual average error: −10 to 18%, Figures 4A,B). The error
for individual breaths ranged from 107 to −45%, with 95%
confidence limits ranging between 12 to −7% (median: 12 to
−10%, Figure 4B).

DISCUSSION

The main objective with the current study was to determine if
the changes in fH associated with RSA can be used to predict the
VTinsp in the bottlenose dolphin. For this purpose, we collected
continuous ECG and respiratory flow in bottlenose dolphins.
A jackknife method to resample the data showed that RSA, in
addition to Mb, can be used to predict the average VTinsp of an
individual dolphin to within 2 ± 10% of the measured value,
and all individual average prediction errors were less than 20%.
This shows that the GAMs should be able to predict the average
VTinsp of individual dolphins using data from another population
of bottlenose dolphins. If future studies can verify a similar
relationship in active animals, RSA could be a useful proxy to
estimate VTinsp from free-ranging marine mammals as methods
to continuously measure fH are developed.

The average ifH reported in the current study was similar
to those reported in previous studies in the bottlenose dolphin
(ranging from 60 to 105 beats min−1) (Noren et al., 2004, 2012;
Houser et al., 2010), when the fH is calculated without accounting
for the RSA. However, in our past study, using trans-thoracic
echocardiography to measure fH and stroke volume, it was

FIGURE 2 | Predicted vs. measured inspired tidal volume (r2 = 0.45). The
GAMs model is used to generate the predicted volume, and measured
volume is the inspired tidal volume measured using the pneumotachometer,
red line is the line of unity.

FIGURE 3 | Sensitivity analysis of each variable used to predict inspired tidal
volume by the Generalized Additive Model when one (or two) factor(s) changes
while others are fixed. Inspired volumes are in liters. (A) Inspired volume as a
function of body mass. (B) Inspired volume as a function of the initial change
in heart rate. The initial jump is the parameter of the GAM that explains the
most variation in inspired volume of the four parameters. (C) Inspired volume
as a function of the decay. The decay is the parameter that explains the
lowest variation in the GAM. (D) Inspired volume as a function of the base
heart rate. The base heart rate is the variable that has the second most
influence on the inspired volume predicted by the GAM. (E,F) Inspired volume
as a function of two parameters (E) body mass and initial change in heart rate;
(F) decay and base heart rate. These figures illustrate the covariance of the
parameters that have consequences for the predicted inspired volume.
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FIGURE 4 | (A) Boxplot of prediction error [error = (predicted–measured)/
measured × 100] from jackknife sensitivity analysis, where the data from one
dolphin (Animal ID) is removed to generate the GAMs and the resulting GAMs
model is used to predict VTinsp for that dolphin. (B) Plot of error in prediction
of a single dolphin VT when building the GAM using data from the other four
dolphins. Gray = 9FL3; Red = 01L5; Blue = 83H1; Green = 9ON6;
Orange = 6JK5; Red line is identity line.

pointed out that estimating fH without accounting for the RSA
will result in average surface fH values that are confounded by
the f R (Miedler et al., 2015). This is particularly problematic in
marine mammals, with an f R ranging from 1 to 5 breaths ·min−1

(Piscitelli et al., 2013; Fahlman et al., 2017a). Consequently,
estimating resting fH without accounting for the RSA will
overestimate the resting fH. As these resting fH’s have been used
to assess the magnitude of the cardiovascular changes associated
with diving they would erroneously overestimate the magnitude
of the dive response (Fahlman et al., unpublished). The average
base fH in the current study (Table 2, 40 ± 5 beats min−1)
was similar to those reported in our past study in the bottlenose
dolphin (fH = 41 ± 9 beats min−1) (Miedler et al., 2015), where
the RSA was accounted for. Consequently, the base fH reported
in the current study is a more appropriate value for the resting

fH in the bottlenose dolphin. If this value is used, it provides
an interesting perspective as that value is similar to the diving
bradycardia reported in previous studies (Noren et al., 2012).
Thus, we propose that future studies should evaluate the resting
fH in voluntary diving animals after correcting for the RSA.

While the current method clearly shows that RSA is useful
to estimate VTinsp, there are a number of limitations with the
current method. First of all, due to the limited data set, we
aimed to reduce the number of parameters used in the model.
To simplify the analysis the current method did not include the
duration between breaths. We analyzed each breath separately,
which was both time consuming and does not account for the
dependence between breaths. However, breathing and fH are
continuous data. Future studies could assess time-series methods
to predict VTinsp, which allows the dependence between breaths
to be considered. For Equation 1, there was considerable variation
in the fitted values for the base fH. When accounting for the
changes in fH associated with a breath there is usually minimal
variation in the base fH within one dolphin (Miedler et al., 2015).
The large variation could be related to varying duration between
breaths, which may alter the base fH. Thus, for breaths close
together the fH may not have reached the base fH before the
next breath, and may have influenced the fH variation for the
next breath. Based on the current analysis, this method cannot
accurately predict the VTinsp of individual breaths, but was able to
provide reliable average estimated VTinsp for each animal based
on the GAMs fitted to the other animals. This is similar to the
method using fH to estimate field metabolic rate, where the there
are limitations to estimate the metabolic cost for each dive, but
where large data sets are able to estimate the energy requirements
for different activities (Fahlman et al., 2004; Halsey et al., 2007;
Young et al., 2011). Given the limitations with the current data,
we propose that further development of this method may provide
an interesting approach to study cardiorespiratory physiology in
free-ranging marine mammals.

The VTinsp in the current study were of limited range
(average ± SD = 3.8 ± 0.7 l, range: 1.6–6.9 l). While variation
in the VTinsp during voluntary breaths is difficult to control,
animals under managed care can be trained to perform maximal
respiratory effort, which allows VT to vary over a much greater
range (Kooyman and Cornell, 1981; Fahlman et al., 2015). For
example, maximal respiratory efforts in dolphins in the weight
range of the current study would increase the VT range to around
20 l (Kooyman and Cornell, 1981; Fahlman et al., 2015). It would
also be useful to include females and individuals from other age
classes to increase the range of variation and allow the model to
be used for wild dolphin populations.

In addition, future studies should also assess whether this
method is robust enough to study active or free-ranging dolphins.
During natural dives f R and VT may both be highly variable
and irregular, and alterations in the relationship between RSA,
vagal tone, f R, and VT (de Burgh Daly, 1986; Ben-Tal et al.,
2014; Guillén-Mandujano and Carrasco-Sosa, 2014; Mortola
et al., 2016) may limit the accuracy of a model developed for
dolphins at rest. Thus, changes in activity state, e.g., exercise, rest,
travel, diving, may significantly influence autonomic tone and
alter the relationship.
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Finally, the GAM model does not provide an estimate of
uncertainty around the predicted values with new data (data
that were not in the dataset used to fit the model), nor does it
provide a prediction equation for the non-parametric part of the
model. To avoid these drawbacks, additional measurements with
a larger range of VTinsp, f R, and activity states would help define a
prediction equation that could be used in free-ranging dolphins.
In addition, we propose that this method could be used for other
cetaceans and marine mammal species that exhibit significant
RSA. If future studies are able to verify that this method is able to
estimate f R and VTinsp in actively swimming or diving dolphins
this method may provide a predictive procedure for free-ranging
mammals that may significantly enhance our knowledge of how
marine mammals partition energy use during diving, and how the
environment may limit foraging efficiency.

In summary, we show that that RSA can be used to accurately
predict the average VTinsp of individual resting bottlenose
dolphins with an average overestimated error of 2 ± 10%. While
a number of factors appear to alter RSA (de Burgh Daly, 1986),
the universal existence of RSA in vertebrates, and the suggestions
that it is independent of body size (Piccione et al., 2019), could
provide a method to study cardiorespiratory physiology in free
ranging marine vertebrates, from marine mammals, to birds and
reptiles, unraveling important mechanisms to understand the
ecophysiology of these species.
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