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Background. The pathogenesis of sepsis is mediated in part by bacterial endotoxin, which stimulates macrophages/
monocytes to sequentially release early (e.g., TNF, IL-1, and IFN-c) and late (e.g., HMGB1) pro-inflammatory cytokines. Our
recent discovery of HMGB1 as a late mediator of lethal sepsis has prompted investigation for development of new
experimental therapeutics. We previously reported that green tea brewed from the leaves of the plant Camellia sinensis is
effective in inhibiting endotoxin-induced HMGB1 release. Methods and Findings. Here we demonstrate that its major
component, (-)-epigallocatechin-3-gallate (EGCG), but not catechin or ethyl gallate, dose-dependently abrogated HMGB1
release in macrophage/monocyte cultures, even when given 2–6 hours post LPS stimulation. Intraperitoneal administration of
EGCG protected mice against lethal endotoxemia, and rescued mice from lethal sepsis even when the first dose was given
24 hours after cecal ligation and puncture. The therapeutic effects were partly attributable to: 1) attenuation of systemic
accumulation of proinflammatory mediator (e.g., HMGB1) and surrogate marker (e.g., IL-6 and KC) of lethal sepsis; and 2)
suppression of HMGB1-mediated inflammatory responses by preventing clustering of exogenous HMGB1 on macrophage cell
surface. Conclusions. Taken together, these data suggest a novel mechanism by which the major green tea component,
EGCG, protects against lethal endotoxemia and sepsis.
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INTRODUCTION
Sepsis is a systemic inflammatory response syndrome resulted from

a microbial infection. As a continuum of increasing clinical

severity, severe sepsis is defined as sepsis associated with one or

more acute organ dysfunctions [1]. Despite recent advances in

antibiotic therapy and intensive care, sepsis is still the most

common cause of death in the intensive care units, claiming

approximately 225,000 victims annually in the U.S. alone. The

pathogenesis of sepsis is attributable, at least in part, to dys-

regulated systemic inflammatory responses characterized by

excessive accumulation of various proinflammatory mediators

such as interleukin (IL)-1 [2], interferon (IFN)-c [3], nitric oxide

[4,5], and macrophage migration inhibitory factor (MIF) [6].

We recently discovered that a ubiquitous protein, high mobility

group box 1 (HMGB1), is released by activated macrophages/

monocytes [7–10], and functions as a late mediator of lethal

endotoxemia and sepsis [7,11–13]. Circulating HMGB1 levels are

elevated in a delayed fashion (after 16–32 h) in endotoxemic and

septic mice [7,11], and in patients with sepsis [7,14,15]. Adminis-

tration of recombinant HMGB1 to mice recapitulates many clinical

signs of sepsis, including fever [16,17], derangement of intestinal

barrier function [18], and tissue injury [19,20]. In contrast, anti-

HMGB1 antibodies or inhibitors (e.g., tanshinones, ethyl pyruvate,

nicotine, or stearoyl lysophosphatidylcholine) significantly protect

mice against LPS-induced acute tissue injury [19,20], and lethal

endotoxemia [7,11–13,21–23]. Notably, these anti-HMGB1 re-

agents are capable of rescuing mice from lethal experimental sepsis

even when the first doses are given 24 h after the onset of the disease

[11–13,21,23], indicating a wider window for HMGB1-targeted

therapeutic strategies. Therefore, agents proven clinically safe, and

yet still capable of attenuating HMGB1 release may hold potential in

the prevention and treatment of inflammatory diseases.

Throughout human history, herbal medicine has formed the basis

of folk remedies for various inflammatory ailments. The use of willow

bark extract to reduce pain and fever was documented by a Greek

physician (Hippocrates) in the 5th century BC, and the subsequent

discovery of salicylic acid as its pain/fever-relief active component

gave rise to the first synthetic anti-inflammatory drug, aspirin, and

the birth of the pharmaceutical industry. Brewed from the leaves of

the plant, Camellia sinensis, tea has been one of the most popular

beverages for almost fifty centuries. Its daily consumption

(,120 ml/person) is second only to water [24], and has been

associated with many important health benefits, such as reduction of

risk of oxidative stress and damage [25], atherosclerosis [25], cancer

[26], and cardiovascular diseases [27]. These healing properties of

green tea are attributable to its abundant polyphenolic compounds

known as catechins, such as (-)-epigallocatechin-3-gallate (EGCG), (-

)-epicatechin-3-gallate (EG), (-)-epigallocatechin (EGC), and (-)-

epicatechin (EC). Among them, EGCG accounts for 50-80% of

the total catechin, representing approximately 50 mg in a single cup

(100 ml) of green tea [28]. However, it was previously unknown if

green tea catechins can attenuate endotoxin-induced HMGB1

release or cytokine activities. In this study, we evaluated the capacity

of tea catechins in inhibiting endotoxin-induced HMGB1 release

and/or cytokine activities, and explored their therapeutic potential

in animal model of sepsis.
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METHODS

Cell culture
Murine macrophage-like RAW 264.7 cells were obtained from the

American Type Culture Collection (ATCC, Rockville, MD), and

primary peritoneal macrophages were isolated from Balb/C mice

(male, 7–8 weeks, 20–25 grams) at 2–3 days after intraperitoneal

injection of 2 ml thioglycollate broth (4%) as previously described

[8,12,23]. Murine macrophages were pre-cultured in RPMI 1640

medium (Gibco BRL, Grand Island, NY) supplemented with 10%

fetal bovine serum (FBS) and 2 mmol/L glutamine. Human

peripheral blood mononuclear cells (HuPBMCs) were isolated

from the blood of healthy donors (Long Island Blood Bank,

Melville, NY) by density gradient centrifugation through Ficoll

(Ficoll-Paque PLUS, Pharmacia, Piscataway, NJ), and cultured in

RPMI 1640 supplemented with 10% heat-inactivated human

serum/2 mM L-glutamine as previously described [8,12].

LPS stimulation
Adherent macrophages or monocytes were gently washed with,

and cultured in, serum-free OPTI-MEM I medium two hours

before stimulation with bacterial endotoxin (lipopolysaccharide,

LPS, E. coli 0111:B4, Sigma-Aldrich). At 16 hours after LPS

stimulation, levels of TNF, nitric oxide, and HMGB1 in the

culture medium were determined as previously described [8,12].

Chemical sources and stock solutions
Epigallocatechin gallate (EGCG, C22H18O11), catechin (C,

C15H14O6), or ethyl gallate (C9H10O5) were obtained from the

Sigma (St. Louis, MO), and 10 mM stock solutions were prepared

in water.

Animal models of endotoxemia and sepsis
This study was approved and performed in accordance with the

guidelines for the care and use of laboratory animals at the Feinstein

Institute for Medical Research, Manhasset, New York. Endotoxemia

was induced in Balb/C mice (male, 7–8 weeks) by intraperitoneal

injection of bacterial endotoxin (LPS, 15 mg/kg) as previously

described [7,12,23]. Sepsis was induced in male Balb/C mice (7–

8 weeks, 20–25 g) by cecal ligation and puncture (CLP) as previously

described [12,23]. EGCG was administered intraperitoneally into

mice at indicated doses and time points, and mice were monitored for

survival for up to two weeks. In parallel experiments, mice were

euthanized to collect blood at 52 h (following two doses of EGCG at

+24 and +48 h) after CLP, and assayed for serum levels of TNF,

HMGB1, and other cytokines. In other parallel experiments, blood

was collected from 3–5 normal healthy mice, or septic mice

appearing dying (i.e., in a moribund state, as judged by: 1) unresponsive to

external stimuli; 2) inability to maintain upright position; and 3) agonal breathing]

or non-dying (i.e., in a non-moribund state, as indicated by: 1) responsive to

external stimuli; 2) ability to maintain upright position; and 3) normal breathing]

at 52 h post CLP, and serum levels of cytokines were determined.

TNF ELISA
The levels of TNF in the culture medium or serum were determined

using commercial enzyme linked immunosorbant assay (ELISA) kits

(Catalog no. MTA00, R & D Systems, Minneapolis, MN) with

reference to standard curves of purified recombinant TNF at various

dilutions as previously described [12,23].

Nitric oxide assay
The levels of nitric oxide in the culture medium were determined

indirectly by measuring the NO22 production with a colorimetric

assay based on the Griess reaction [12,23]. NO22 concentrations

were determined with reference to a standard curve generated

with sodium nitrite at various dilutions.

HMGB1 Western blotting analysis
The levels of HMGB1 in the culture medium or serum were

determined by Western blotting analysis as previously described

[7,8,12,23]. The relative band intensity was quantified by using

the NIH image 1.59 software to determine HMGB1 levels with

reference to standard curves generated with purified HMGB1.

Cytokine antibody array
Murine cytokine antibody array (Cat. No. M0308003, RayBiotech

Inc., Norcross, GA, USA), which detects 62 cytokines on one

membrane, was used to determine the profile of cytokines in the

culture medium or serum as previously described [12]. Briefly, the

membranes were sequentially incubated with equal volume of cell-

conditioned culture medium, or murine serum (after 1:10 dilution),

primary biotin-conjugated antibodies, and horseradish peroxidase–

conjugated streptavidin. After exposing to X-ray film, the relative

signal intensity was determined using the NIH image 1.59 software,

and expressed as % of positive controls on the same membrane.

Cell Viability Assays
Cell viability was assessed by trypan blue exclusion assays as

previously described [8]. Briefly, trypan blue was added to cell

cultures at a final concentration of 0.08%. After incubation for

5 min at 25uC, cell viability was assessed by the percentage of dye-

excluding cells in five 406microscope fields.

Expression and purification of recombinant HMGB1
The cDNA encoding for rat HMGB1 was cloned onto a pCAL-n

vector, and the recombinant plasmid was transformed into E. coli

BL21 (DE3) pLysS cells as previously described [7]. Recombinant

HMGB1 containing a ,3 kDa calmodulin-binding peptide tag

(CBP-HMGB1 fusion protein, 33 kDa) was expressed in E. coli,

and purified to remove contaminating endotoxin using polymyxin

B column as previously described [7,29,30]. Recombinant

HMGB1 preparations were tested routinely for LPS content by

the chromogenic Limulus amebocyte lysate assay (Endochrome;

Charles River), and endotoxin content was below detection limit

(,500 pg endotoxin per microgram of rHMGB1). Recombinant

HMGB1 was biotinylated using a Pierce EZ-Link Sulfo-NHS-LC-

Biotinylation Kit (Cat. # 21430) following the manufacturer’s

protocol. The sulfonated NHS esters are cell membrane-imperme-

able, and are therefore suitable for cell-surface binding/uptake

studies. Subsequently, the biotinylated protein was purified by gel

filtration chromatography using Sephadex G-25 column.

Fluorescence Immunostaining
RAW 264.7 cells were grown to subconfluence, and incubated with

biotinylated HMGB1, in the absence or presence of EGCG (10 mM)

for various period of time. Subsequently, cells were fixed with 2%

formalin for 10 min, and permeabilized with 0.1% Triton X-100 in

PBS (1 min, room temperature). After extensive washing with PBS,

cells were incubated sequentially with antigen-affinity-purified rabbit

anti-HMGB1 antibodies, and goat anti-rabbit secondary antibodies

conjugated with green Alexa fluor 488 (Molecular Probes, Eugene,

OR). To visualize exogenous HMGB1, cells were co-incubated with

streptavidin-conjugated Alexa fluor 594 or Alexa fluor 488

(Molecular Probes). Images were captured using a fluorescence

microscope (Carl Zeiss Microimaging).
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Streptavidin pull-down assays
Cell lysates were incubated with streptavidin agarose beads (Cat.#
15942-050, Invitrogen) for 1.5 h at 4uC on a rotating platform.

After centrifugation, agarose beads were washed six times with

16PBS, and bound proteins were eluted with Laemmili sample

buffer (Cat. # 161-0737, Bio-Rad), and analyzed by SDS-PAGE

and Western blotting with anti-HMGB1 antibodies.

Statistical Analysis
Data are expressed as mean6SD of two independent experiments

in triplicates (n = 2). One-way ANOVA was used for comparison

among all different groups. When the ANOVA was significant,

post-hoc testing of differences between groups was performed

using Tukey’s test. The Kaplan-Meier method was used to

compare the differences in mortality rates between groups. A

P,value less than 0.05 was considered statistically significant.

RESULTS

Tea epigallocatechin gallate (EGCG) dose-

dependently attenuated endotoxin-induced release

of HMGB1, but not nitric oxide
We previously discovered that green tea brewed from the leaves of

the plant, Camellia sinensis, is effective in inhibiting endotoxin-

induced HMGB1 release [31]. To determine active components in

green tea, we examined its components for HMGB1-inhibiting

activities in murine macrophage-like RAW264.7 cells. A major tea

catechin, EGCG, dose-dependently abrogated endotoxin-induced

HMGB1 release, with an estimated IC50,1.0 mM (Fig. 1A). In

contrast, at concentrations that abrogated endotoxin-induced

HMGB1 release, EGCG only partially attenuated endotoxin-

induced TNF secretion (Fig. 1B), but did not inhibit endotoxin-

induced nitric oxide release (Fig. 1C).

We further confirmed its HMGB1-inhibiting activities using

primary murine peritoneal macrophages (MuMACs), as well as

human peripheral blood mononuclear cells (huPBMCs). In primary

MuMACs, EGCG also abrogated LPS-induced HMGB1 release,

but similarly failed to inhibit LPS-induced nitric oxide release

(Fig. 2A). In primary huPBMCs, EGCG effectively abolished LPS-

induced HMGB1 release (Fig. 2B), and partly attenuated LPS-

induced TNF secretion (Fig. 2B). Taking together, these data

suggest that EGCG is capable of effectively inhibiting LPS-induced

HMGB1 release in both macrophage and monocyte cultures.

To better understand EGCG’s anti-inflammatory properties, we

employed cytokine antibody array to examine its effects on LPS-

induced release of multiple cytokines. At concentrations (15 mM)

that completely abrogated LPS-induced HMGB1 release, EGCG

did not affect LPS-induced release of G-CSF, IL-1a, P-selectin, or

LIX in primary MuMACs (Fig. 2C). Consistent with few previous

reports [32,33], cytokine antibody array analysis revealed a dramatic

suppression of LPS-induced release of TNF and IL-12 in primary

MuMACs (Fig. 2C). Furthermore, EGCG dramatically inhibited

LPS-induced release of IL-6, and a number of chemokines including

MIP-1a, MIP-1c, MIP-2, RANTES, KC, MCP1, and CXCL16

(Fig. 2C). Taken together, these experimental data suggest that

EGCG selectively inhibits LPS-induced release of HMGB1, TNF,

IL-6, IL-12, and chemokines, without affecting LPS-induced release

of G-CSF, P-selection, LIX, IL-1a or nitric oxide.

Delayed administration of EGCG still attenuated

endotoxin-induced HMGB1 release
As compared with early proinflammatory cytokines (such as TNF),

HMGB1 is released late following endotoxin stimulation [7]. It is

intriguing to consider whether EGCG could inhibit HMGB1 release

if added after LPS stimulation. Whereas concurrent administration

of EGCG was most effective in inhibiting LPS-induced HMGB1

release, significant inhibition was still achieved when it was added 2

to 6 h after LPS (Fig. 3). It thus becomes feasible to attenuate late-

acting proinflammatory mediators (such as HMGB1) by strategically

administering EGCG in a delayed fashion.

Determination of structure-function relationships
As a class of biologically active polyphenols, catechins contain two or

more aromatic rings (each carrying at least one aromatic hydroxyl)

connected with a carbon bridge (consisting of five carbons and one

oxygen, Fig. 4A). To gain insights into the structure-function

relationships, we compared the HMGB1-inhibiting activities

Figure 1. EGCG effectively abrogated endotoxin-induced HMGB1
release in murine macrophage-like RAW 264.7 cells. RAW 264.7 cells
were stimulated with LPS in the absence, or presence of EGCG at
indicated concentrations. At 16 hours after LPS stimulation, levels of
HMGB1 (Panel A), TNF (Panel B), or nitric oxide (NO, Panel C) in the
culture medium were determined by Western blotting, ELISA, and
Griess reaction, respectively. Note that at concentrations that com-
pletely abrogated LPS-induced HMGB1 release (Panel A), EGCG only
partially inhibited LPS-induced TNF secretion (Panel B), but preserved
suppress LPS-induced nitric oxide release (Panel C).
doi:10.1371/journal.pone.0001153.g001
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between EGCG and two relevant molecules: catechin and ethyl

gallate (Fig. 4A). Even at concentrations up to 10 mM, catechin or

ethyl gallate did not affect LPS-induced HMGB1 release (Fig. 4B),

indicating that functional groups of both catechin and gallate are

needed for EGCG’s HMGB1-inhibiting properties.

EGCG protected mice against lethal endotoxemia
In light of the capacity of EGCG in attenuating LPS-induced

HMGB1 release, we explored its efficacy in animal model of lethal

endotoxemia. By treating animals with three doses of EGCG at

20.5, +24, and +48 hours post intraperitoneal administration of

L.D.50 dose of LPS, we observed a significant improvement in

animal survival rate (from 50% to 76%, P,0.05, Fig. 5A),

confirming a previous observation that mixture of tea catechins

improved survival rate at 24 hour post onset of endotoxemia [32,33].

EGCG rescues mice from lethal sepsis
Although endotoxemia is useful for investigating the complex

cytokine cascades, more clinically relevant animal models are

necessary to explore therapeutic agents for the treatment of

Figure 2. EGCG effectively abrogated endotoxin-induced HMGB1 release in primary macrophage/monocyte cultures. Primary murine peritoneal
macrophages (Panel A, C), or human peripheral blood mononuclear cells (Panel B) were stimulated with LPS in the absence, or presence of EGCG
(15 mM). At 16 hours after LPS stimulation, levels of HMGB1 (Panel A, B), nitric oxide (Panel A), TNF (Panel B), or other cytokines (Panel C) in the
culture medium were determined by Western blotting analysis (Panel A, B, top), Griess reaction (Panel A, bottom), ELISA (Panel B, bottom), or
cytokine array (Panel C), respectively. Note that at concentrations that completely abrogated LPS-induced HMGB1 release, EGCG did not block LPS-
induced release of NO (Panel A), G-CSF (Panel C), IL-1a (Panel C), P-selectin (Panel C), or LIX (Panel C). In contrast, EGCG dramatically suppressed LPS-
induced release of TNF, sTNF-RII, chemokines (MCP1, MIPs, KC, and RABTES), IL-6, IL-12, and CXCL16 in primary murine macrophages (Panel C). Shown
in Panel C was a representative cytokine array of two independent experiments with similar results.
doi:10.1371/journal.pone.0001153.g002
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human sepsis. One well-characterized, standardized animal model

of sepsis is induced by CLP. In light of the late and prolonged

kinetics of HMGB1 accumulation in experimental sepsis [11], we

reasoned that it might be possible to rescue mice from lethal sepsis

even if EGCG is administered after the onset of sepsis. The first

dose of EGCG was given 24 h after the onset of sepsis, a time

point at which mice developed clear signs of sepsis (including

lethargy, diarrhea, and piloerection). Repeated administration of

EGCG beginning twenty-four hours after the onset of sepsis

(followed by additional doses at 48, and 72 hours post sepsis)

conferred a dose-dependent protection against lethal sepsis

(N = 22-32 mice per group, Fig. 5B), significantly increasing

animal survival rate from 53% to 82% (P,0.05), supporting

a therapeutic potential for EGCG in the treatment of sepsis.

EGCG attenuates sepsis-induced systemic HMGB1

accumulation
To gain insight into its protective mechanism, we evaluated the

effects of EGCG on the systemic accumulation of various cytokines

by cytokine antibody array, ELISA, and Western blotting analysis.

Delayed administration of EGCG did not affect the circulating levels

of most cytokines (Fig. 6A), but significantly attenuated circulating

levels of IL-6 (83.564.5% of positive controls, ‘‘CLP+Saline’’; versus

20.0611.0% of positive controls, ‘‘CLP+EGCG’’; n = 2, P,0.01)

and KC (26.5613.5% of positive controls, ‘‘CLP+Saline’’; versus

11.468.6% of positive controls, ‘‘CLP+EGCG’’; n = 2, P,0.05). To

evaluate the significance of IL-6 and KC in predicting outcome of

lethal sepsis [34], we compared their circulating levels in dying (in

a moribund state) versus non-dying (in a non-moribund state) septic

mice at 52 h post CLP. Circulating levels of IL-6 and KC, as well as

Figure 3. Delayed administration of EGCG still significantly attenu-
ated endotoxin-induced HMGB1 release. Murine macrophage-like
RAW 264.7 cells were stimulated with LPS, and EGCG (10 mM) was
added at 0, 2, 6, and 12 hours post LPS stimulation. Levels of HMGB1
levels in the culture medium were determined at 16 hours after LPS
stimulation, and expressed (in arbitrary unit, AU) as mean6S.D. of two
independent experiments (N = 2). Shown in the lower panel was
a representative Western blot. *, P,0.05 versus controls (‘‘+ LPS alone’’).
doi:10.1371/journal.pone.0001153.g003

Figure 4. EGCG, but not catechin or ethyl gallate, effectively
abrogated endotoxin-induced HMGB1 release. Macrophage cultures
were stimulated with LPS in the absence, or presence of epigalloca-
techin gallate (EGCG), catechin (C), or ethyl gallate (G) (Panel A), and
assayed for HMGB1 release by Western blotting analysis (Panel B) at
16 h post LPS stimulation. Note that epigallocatechin gallate, but not
catechin or ethyl gallate, abrogated LPS-induced HMGB1 release.
doi:10.1371/journal.pone.0001153.g004

Figure 5. EGCG significantly protects mice against lethal endotox-
emia (Panel A) and lethal sepsis (Panel B). Balb/C mice were subjected
to lethal endotoxemia (LPS, 15 mg/kg, i.p., Panel A), or sepsis (induced
by CLP, Panel B). At 20.5, +24, and +48 hours post the onset of
endotoxemia, or +24, +48, +72 hours post the onset of sepsis, animals
were intraperitoneally administered with saline (0.2 ml/mouse), or
EGCG (0.2 ml/mouse, at indicated doses), and animal survival was
monitored for up to two weeks. The Kaplan-Meier method was used to
compare the differences in mortality rates between groups. *, P,0.05
versus saline.
doi:10.1371/journal.pone.0001153.g005
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MIP-2, sTNFR-I and G-CSF, in dying septic mice (‘‘+ CLP,

moribund’’, Fig. 6B, middle panel) were markedly higher than

those in healthy mice (‘‘-CLP’’, Fig. 6B, left Panel), but

dramatically lower than those in non-dying septic mice (‘‘+ CLP,

non-moribund’’, Fig. 6B, right panel). It confirms the notion that

plasma levels of IL-6, KC, MIP-2, and TNF soluble receptor I

(sTNFR-I) were reliable predictors of lethal outcome in experimental

[34,35], or clinical sepsis [36].

Although delayed administration of EGCG did not attenuate

circulating TNF levels at 52 h after the onset of sepsis (Fig. 6C,
left panel), it did significantly attenuate circulating levels of

HMGB1 (Fig. 6C, right panel, P,0.05), suggesting that EGCG

confers protection against lethal sepsis partly by attenuating

systemic HMGB1 accumulation.

EGCG inhibits HMGB1-induced cytokine release
To elucidate additional mechanisms underlying EGCG-mediated

protection, we determined whether EGCG inhibits HMGB1-

mediated inflammatory response. Indeed, EGCG dose-depen-

dently inhibited HMGB1-induced TNF release in murine

macrophage-like RAW 264.7 cells (Fig. 7A, top panel). Despite

the fact that EGCG failed to inhibit LPS-induced nitric oxide

(Fig. 1C), it dose-dependently suppressed HMGB1-induced

release of nitric oxide in RAW 264.7 cells (Fig. 7A, bottom

panel), or primary MuMACs (Fig. 7B), supporting the notion that

LPS and HMGB1 use distinct mechanisms to activate innate

immune cells [29,37]. Furthermore, EGCG effectively inhibited

HMGB1-induced release of IL-6 release, even when it was given

2–4 hours after HMGB1 stimulation (Fig. 7C, and data not

Figure 6. EGCG attenuates sepsis-induced systemic accumulation of IL-6, KC, and HMGB1. Balb/C mice were subjected to lethal sepsis by CLP, and
intraperitoneally administered with control saline (0.2 ml/mouse) or EGCG (4.0 mg/kg) at +24, +48 hours post CLP. At 52 hours post the onset of
sepsis, serum levels of cytokines (Panel A, B, C), or HMGB1 (Panel C) were determined by cytokine antibody array (Panel A, B), ELISA (Panel C), or
Western blotting analysis (Panel C), respectively. In parallel experiments, serum were pooled from 3 normal mice (-CLP), 3 septic mice approaching
moribund state (52 h post CLP), 3 septic mice in non-moribund state (52 h post CLP), and assayed for cytokine profile by antibody array (Panel B).
Serum levels of HMGB1 or TNF (Panel C) were expressed as mean6SD (n = 8–10). *, P,0.05 (ANOVA, Tukey test).
doi:10.1371/journal.pone.0001153.g006
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shown). Taken together, these data suggest that EGCG confers

protection against lethal sepsis partly by inhibiting HMGB1

cytokine activities.

EGCG prevents clustering of exogenous HMGB1 on

macrophage cell surface
Engagement of LPS to cell-surface receptor (such as CD14, TLR4)

induces clustering of ligand/receptor complexes (consisting of

TLR4, hsp70, hsp90, CXCR4, and GDF5) at the cell surface

[38], which is critical for signaling transduction, as receptor

clustering-disrupting agents (such as nystatin or MCD) prevent

LPS-induced cytokine production [38]. To gain insight into the

mechanism by which EGCG attenuates HMGB1-mediated cytokine

production, we first determined whether exogenous HMGB1

accumulates and clusters on macrophage cell surface. Biotin-labeled

recombinant HMGB1 was used to distinguish exogenous (CBP-

HMGB1 fusion) from endogenous HMGB1 protein. In the absence

of exogenous HMGB1, staining with streptavidin-conjugated Alexa

488 or Alexa594 revealed weak and diffuse background fluorescence

throughout the cytoplasmic region (Fig. 8A, 8B, ‘‘- HMGB1’’). At

2-6 h post HMGB1 treatment, staining with streptavidin-Alexa 594

showed strong, punctuate fluorescence predominantly on macro-

phage cell surface (Fig. 8A, ‘‘Streptavidin Alexa 594’’). These Alexa

594-associated red fluorescence co-localized with green fluorescence

produced with HMGB1-specific antibodies (Fig. 8A, ‘‘Anti-

HMGB1 Alexa 488’’, and ‘‘Overlay’’), indicating that exogenous

HMGB1 accumulates and clusters on macrophage cell surface in

a time-dependent fashion. Intriguingly, this HMGB1-induced self

clustering coincided with the kinetics of HMGB1-mediated cytokine

release (e.g., TNF), which begins at 4-6 h, and peaks around 16 h

post HMGB1 stimulation (data not shown).

To further elucidate the mechanism by which EGCG attenuates

HMGB1-mediated cytokine production, we determined whether

Figure 7. EGCG attenuates HMGB1-induced release of proinflammatory mediators. Murine macrophage-like RAW 264.7 cells (Panel A, Panel C) or
primary murine peritoneal macrophages (Panel B) were stimulated with HMGB1 (2.0 mg/ml) in the absence, or presence of EGCG added at indicated
concentrations, and time points post HMGB1 stimulation. At 16 hours after HMGB1 stimulation, levels of TNF (Panel A, B, top), IL-6 (Panel C), nitric
oxide (Panel A, B, bottom) in the culture medium were determined by ELISA or Griess reaction (Panel A, B), respectively.
doi:10.1371/journal.pone.0001153.g007
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Figure 8. EGCG prevents HMGB1 accumulation/clustering on macrophage cell surface. Macrophage cultures were incubated with biotin-labeled CBP-
HMGB1 fusion protein (‘‘+ HMGB1’’, 2 mg/ml), in the absence (Panel A), or presence (Panel B, C) of EGCG (10 mM) for various period of time. To visualize
exogenous HMGB1, cells were stained with streptavidin-conjugated Alexa 594 (Panel A, ‘‘Streptavidin Alexa 594’’) or Alexa 488 (Panel B, ‘‘Streptavidin Alexa
488’’ ), or HMGB1-specific rabbit antibodies plus Alexa 488-conjugated goat-anti-rabbit antibodies (Panel A, ‘‘Anti-HMGB1 Alexa 488’’). Phase contras
images indicate macrophage cell morphology; overlay images show co-localization of red and green fluorescence (as yellow). Note anti-HMGB1 antibody-
specific immunostaining revealed the presence of both exogenous (on cell surface) and endogenous HMGB1 (in the nucleus) at 4–6 hours post HMGB1
incubation (Panel A, ‘‘Anti-HMGB1 Alexa 488’’). To determine the relative content of exogenous HMGB1, streptvidin-pulled down fraction or whole cell
lysate were immunoblotted with HMGB1-specific antibodies (Panel C). Note EGCG dramatically decreased levels of exogenous HMGB1 (indicated by the
33 kDa band corresponding to CBP-HMGB1 fusion protein) (‘‘rHMGB1’’).
doi:10.1371/journal.pone.0001153.g008
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EGCG affects HMGB1-induced self accumulation/clustering on

macrophage cell surface. Indeed, in the presence of EGCG

(10 mM), HMGB1-induced cell surface clustering, as indicated by

Alexa 488-associated cell surface fluorescence, was almost

completely eliminated (Fig. 8B), suggesting that EGCG prevents

HMGB1 accumulation on macrophage cell surface. To test this

possibility, we assayed macrophage whole-cell lysate or streptavi-

din pull-down fraction for content of exogenous HMGB1 by

Western blotting analysis. As expected, at 6 hours following

HMGB1 incubation, levels of exogenous HMGB1 in macrophage

whole-cell lysate or streptavidin-pulled-down fractions were

increased in the presence of exogenous HMGB1 (‘‘+rHMGB1’’,

Fig. 8C), but dramatically decreased in the presence of EGCG

(‘‘+rHMGB1+EGCG’’, Fig. 8C).

DISCUSSION
We recently discovered that green tea, brewed from the leaves of

the plant, Camellia sinensis, is effective in inhibiting bacterial

endotoxin-induced HMGB1 release [31], but the active compo-

nents responsible for its activities were previously unknown. Here

we report that a major component, EGCG, recapitulated

HMGB1-inhibiting activities of green tea, and dose-dependently

inhibited LPS-induced HMGB1 release in macrophage/monocyte

cultures. At concentrations that completely abrogated LPS-

induced HMGB1 release, EGCG did not affect LPS-induced

nitric oxide release, but only partially attenuated LPS-induced

TNF secretion. These data contradict with some reports [39,40],

but agree with several other observations [32,33]. The underlying

causes for this discrepancy are unknown, and may be partly

attributable to EGCG’s chemical properties, which can sponta-

neously dimerize to liberate immunostimulatory products (such as

hydrogen peroxide) [10,41].

The mechanism underlying EGCG-mediated suppression of

HMGB1 release remains elusive. For instance, it is not known

whether EGCG-mediated suppression of HMGB1 release is

dependent on its antioxidant activities, because some antioxidants

(e.g., catechin, ethyl gallate) failed to inhibit LPS-induced HMGB1

release. Similarly, it is not yet known whether EGCG inhibits LPS-

induced HMGB1 release through inhibiting LPS-induced cyto-

plasmic translocation, or post-translational modification (such as

acetylation or phosphorylation). Interestingly, it has been

suggested that EGCG can bind to lipid raft-associated cell surface

receptor (e.g., the 67 kDa laminin receptor, 67LR) to confer its

anti-cancer properties [42,43], or anti-inflammatory allergic

response [44,45]. LPS can induce clustering of ligand/receptor

complexes (containing hsp70, hsp90, CXCR4, GDF5 and TLR4)

within membrane macrodomain (lipid rafts), which transmit

signals to active macrophages to produce various proinflammatory

mediators [38]. Since receptor clustering-disrupting agents (such

as nystatin or MCD) can prevent LPS-induced cytokine pro-

duction [38], it will thus be interesting to determine whether

EGCG inhibits HMGB1 release via similar mechanisms.

Once released, extracellular HMGB1 employs several cell

surface receptors (such as TLR2, TLR4, or RAGE) to activate

innate immune cells to produce pro-inflammatory cytokines [46–

49]. Indeed, fluorescence resonance energy transfer (FRET)

analysis has demonstrated a close physical interaction between

HMGB1 and TLR2 or TLR4 on macrophage cell surface within

5-15 minutes of HMGB1 incubation [47], long before subsequent

HMGB1-induced cytokine release. Intriguingly, we observed

a time-dependent accumulation of exogenous HMGB1 clustering

on macrophage cell surface within 2–6 hours of HMGB1

incubation, which correlates with the kinetics of HMGB1-induced

release of proinflammatory cytokines [29]. On the other hand,

EGCG dose-dependently inhibited cell surface clustering of

exogenous HMGB1, and consequently attenuated HMGB1-

induced release of proinflammatory mediators (e.g., TNF, IL-6,

and NO). Consistently, agents (e.g., catechin or ethyl gallate)

incapable of inhibiting HMGB1-cell surface clustering uniformly

failed to inhibit HMGB1-mediated cytokine production. We thus

propose that HMGB1 may induce potential ligand/receptor (e.g.,

TLR2, TLR4, or RAGE) clustering on macrophage cell surface,

which may be a prerequisite for HMGB1-mediated macrophage

activation. Given the diverse range of receptors (e.g., TLR2,

TLR4, or RAGE) involved in HMGB1 recognition [7,50,51], it is

intriguing to investigate whether binding of HMGB1 to different

receptors leads to combinational clustering of different receptors

(such as TLR2 or TLR4) within the lipid rafts [38,52,53].

Nevertheless, our present study suggests a novel mechanism by

which EGCG prevents HMGB1-mediated cytokine production–

potentially by interfering with HMGB1-induced ligand/receptor

clustering. Although EGCG-mediated suppression of HMGB1 cell

surface clustering may not account for its inhibitory effects on

LPS-induced HMGB1 release, it likely underlies its inhibitory

effects on cytokine activities of the secreted HMGB1.

In light of the capacity of EGCG in inhibiting LPS-induced

HMGB1 release and cytokine activities, we explored its efficacy in

animal models of lethal endotoxemia and sepsis (induced by cecal

ligation and puncture). Consistent with a previous observation that

green tea polyphenols confer protection at 24 h post onset of

endotoxemia [32], we found that EGCG promoted significant,

and long-lasting protection against lethal endotoxemia. More

importantly, delayed and repeated administration of EGCG,

beginning at 24 h after onset of sepsis, significantly rescued mice

from lethal sepsis, supporting a therapeutic potential of EGCG in

the clinical management of human sepsis.

The pathogenesis of lethal sepsis remains obscure, but is

mediated in part by excessive release of early (e.g., TNF and IL-1)

and late (e.g., HMGB1) proinflammatory cytokines. Appearing

relatively early in the circulation, TNF plays a protective role in

sepsis [54], and its circulating levels do not correlate with lethality

of experimental sepsis [34,35,55]. In contrast, dys-regulated

inflammatory response sustained by late-acting mediators (such

as HMGB1) may be more pathogenic in lethal sepsis. Because

EGCG could inhibit LPS-induced TNF release in vitro, we

strategically administered EGCG in a delayed fashion (at 24 h

post CLP) to preserve a potentially beneficial early TNF response.

Consequently, delayed administration of EGCG did not affect

circulating levels of TNF at late stage of sepsis, but specifically

attenuated systemic accumulation of HMGB1, as well as IL-6 and

KC-two most reliable surrogate markers of lethal sepsis [34,35]. In

contrast to HMGB1, IL-6 and KC may not critically important in

the pathogenesis of sepsis, because neither anti-IL-6 nor anti-KC

antibodies confer long-lasting protection against lethal sepsis

[56,57]. Therefore, we propose that EGCG rescues mice from

lethal sepsis partly through inhibiting systemic HMGB1 accumu-

lation, as well as HMGB1-induced release IL-6 and KC.

In conclusion, we demonstrated a major tea component,

EGCG, recapitulated green tea’s HMGB1-inhibiting activities,

and dose-dependently abrogated LPS-induced HMGB1 release in

macrophage/monocyte cultures. Its beneficial effects in experi-

mental sepsis were partly attributable to: 1) attenuation of systemic

accumulation of proinflammatory mediator (e.g., HMGB1) and

surrogate markers (e.g., IL-6 and KC) of lethal sepsis; and 2)

suppression of HMGB1-mediated inflammatory responses by

preventing accumulation of exogenous HMGB1 on macrophage

cell surface. The doses of EGCG given to septic mice (4 mg/kg,

i.e., 10 mM) are much higher than those readily available in
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humans (up to 1 mM) after ingestion of 1 cup of green tea 58.

However, concentrated forms of de-caffeinated green tea extracts

or purified EGCG are commercially available, and an individual

does not need to drink multiple cups of tea everyday to enjoy the

health benefits that green tea confers. It will be possible and

important to evaluate the therapeutic potential of tea catechins

(such as EGCG) for patients with lethal sepsis or other

inflammatory diseases in future studies.
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