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Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes that is characterized by an early onset, autosomal 
dominant mode of inheritance and a primary defect in pancreatic β-cell function. MODY represents less than 2% of all diabetes 
cases and is commonly misdiagnosed as type 1 or type 2 diabetes mellitus. At least 13 MODY subtypes with distinct genetic eti-
ologies have been identified to date. A correct genetic diagnosis is important as it often leads to personalized treatment for those 
with diabetes and enables predictive genetic testing for their asymptomatic relatives. Next-generation sequencing may provide 
an efficient method for screening mutations in this form of diabetes as well as identifying new MODY genes. In this review, I dis-
cuss a current update on MODY in the literatures and cover the studies that have been performed in Korea.
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INTRODUCTION

Maturity-onset diabetes of the young (MODY) is a monogenic 
form of diabetes that is characterized by an early onset, autoso-
mal dominant mode of inheritance and a primary defect in 
pancreatic β-cell function. In 1974, it was first described by 
Tattersall [1] with a mild form of diabetes in three families who 
had a dominant mode of inheritance. In the 1990s, advances in 
molecular genetics and the availability of large pedigrees aided 
in the identification of genes that are responsible for this form 
of diabetes. MODY has been well characterized in European 
and North American populations. MODY is a common form 
of monogenic diabetes and it may account for 1% to 2% of all 
diabetes cases in Europe [2]. Although MODY has been identi-
fied in Asian populations, the prevalence is not known. In this 
review, I summarize a current update of MODY and cover the 
studies that have been conducted in Korean MODY subjects.

CLASSIFICATION OF MODY AND 
PHENOTYPIC CHARACTERISTICS

Genetic heterogeneity of MODY
Even though MODY is well known as a monogenic disorder, it 
is not a single entity but represents genetic, metabolic, and clin-
ical heterogeneity [3]. Genes that are known to cause MODY 
are: hepatocyte nuclear factor 4 α (HNF4A; MODY1), glucoki-
nase (GCK; MODY2), HNF1A (MODY3), pancreatic and duo-
denal homeobox 1 (PDX1; MODY4), transcription factor 2 
(TCF2) or HNF1B (MODY5), neurogenic differentiation 1 
(NEUROD1; MODY6), Kruppel-like factor 11 (KLF11; MODY 
7), carboxyl ester lipase (CEL; MODY8), paired-box-containing 
gene 4 (PAX4; MODY9), insulin (INS; MODY10), B-lympho-
cyte kinase (BLK; MODY11), adenosine triphosphate (ATP)-
binding cassette, sub-family C (CFTR/MRP), member 8 
(ABCC8; MODY12), and potassium channel, inwardly rectify-
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ing subfamily J, member 11 (KCNJ 11; MODY13). The 13 
MODY genes thus far identified do not account for all cases of 
MODY; thus, additional genes responsible for MODY exist and 
remain to be identified.
 Mutations in the GCK, HNF1A, HNF4A, and HNF1B genes 
are the most common causes of MODY, and they respectively 
account for 32%, 52%, 10%, and 6% of cases in the UK [4]. 
However, the disease-causing mutations in Asian and Cauca-
sian MODY patients are different. In Korea, only 10% of 40 
MODY or early onset type 2 diabetes mellitus (T2DM) patients 
had known MODY gene defects (HNF1A 5%, GCK 2.5%, and 
HNF1B 2.5%) among MODY 1-6 genes [5,6]. Only 10% to 
20% of MODY cases are caused by Known MODY genes in Ja-
pan and China [7,8]. So, more MODY genes should be discov-
ered in Asian countries. Genes causing MODY and their clini-
cal and molecular characteristics are summarized in Table 1.

MODY subtypes and their clinical characteristics
GCK-MODY (MODY2)
GCK is a glycolytic enzyme that catalyzes the conversion of 
glucose to glucose-6-phosphate and is referred to as the β-cell 
glucose sensor because it controls glucose-mediated insulin 
release. Heterozygous inactivating mutations in GCK cause 
GCK-MODY, also known as MODY2, which was first recog-
nized in 1992 [9]. A total of 620 mutations in 1,441 families 
have been identified so far to cause hypoglycemia and hyper-
glycemia [10]. GCK mutations have been reported throughout 
the world. In one study of Japanese patients with pediatric-on-
set MODY-type diabetes, GCK-MODY was reportedly the 
most common form (approximately 48%) [11]. This propor-
tion was similar to a report in European population [12]. 
However, only a small proportion (<5%) of MODY cases were 
caused by GCK-MODY in Korea and China [6,8]. 
 The clinical disease manifests as mild fasting hyperglycemia 

Table 1. Clinical and molecular characteristics of MODY subtypes

MODY gene Chromosomal 
location

Frequency 
(% from MODYs) Pathophysiology Other features Treatment

HNF4A 20q13 5 β-Cell dysfunction Neonatal hyperinsulinemia, low 
   triglycerides 

Sensitive to sulfonylurea

GCK 7p13 15–20 β-Cell dysfunction 
   (glucose sensing defect)

Fasting hyperglycemia from 
   newborn

Diet

HNF1A 12q24 30–50 β-Cell dysfunction Glycosuria Sensitive to sulfonylurea

PDX1/IPF1 13q12 <1 β-Cell dysfunction Homozygote: pancreatic agenesis Diet or OAD or insulin

HNF1B 17q12 5 β-Cell dysfunction Renal anomalies, genital anomalies, 
   pancreatic hypoplasia

insulin

NEUROD1 2q31 <1 β-Cell dysfunction Adult onset diabetes OAD or insulin

KLF11 2p25 <1 β-Cell dysfunction Similar to type 2 diabetes mellitus OAD or insulin

CEL 9q34 <1 Pancreas endocrine and 
   exocrine dysfunction

Exocrine insufficiency, lipomatosis OAD or insulin

PAX4 7q32 <1 β-Cell dysfunction Possible ketoacidosis Diet or OAD or insulin

INS 11p15 <1 Insulin gene mutation Can also present PNDM OAD or insulin

BLK 8p23 <1 Insulin secretion defect Overweight, relative insulin 
   secretion defect

Diet or OAD or insulin

ABCC8 11p15 <1 ATP-sensitive potassium 
   channel dysfunction

Homozygote: permanent neonatal 
   diabetes; heterozygote: transient 
   neonatal diabetes

OAD (sulfonylurea)

KCNJ11 11p15 <1 ATP-sensitive potassium 
   channel dysfunction

Homozygote: neonatal diabetes Diet or OAD or insulin

MODY, maturity-onset diabetes of the young; HNF4A, hepatocyte nuclear factor 4 α; GCK, glucokinase; PDX1, pancreatic and duodenal ho-
meobox 1; IPF1, insulin promoter factor 1; OAD, oral antidiabetic agents; NEUROD1, neurogenic differentiation 1; KLF11, Kruppel-like fac-
tor 11; CEL, carboxyl ester lipase; PAX4, paired-box-containing gene 4; INS, insulin; PNDM, permanent neonatal diabetes; BLK, B-lympho-
cyte kinase; ABCC8, ATP-binding cassette, subfamily C (CFTR/MRP), member 8; ATP, adenosine triphosphate; KCNJ11, potassium channel, 
inwardly rectifying subfamily J, member 11.
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(5.5 to 8.0 mmol/L, glycosylated hemoglobin range 5.8% to 
7.6%) from birth that demonstrates slight deterioration with 
age. Patients are usually asymptomatic, so many are first dis-
covered during routine screening such as during pregnancy. 
Severe hyperglycemia and microvascular complications are 
rare in GCK diabetes [13]. Clinical features of the Japanese pa-
tients with GCK-MODY were similar to those that had been 
previously reported for Caucasians, although 25% of patients 
demonstrated signs of insulin resistance [14].
 Patients with GCK-MODY do not require treatment out-
side pregnancy because glucose-lowering therapy is ineffective 
and there is a lack of long-term complications [15]. In preg-
nancy, insulin may be required to prevent fetal overgrowth. 
The fetal growth in pregnancy is dependent on whether the 
mutation is inherited [16]. Management of pregnant women 
with GCK-MODY is based on fetal growth scans which are 
surrogates for fetal genotype.

HNF1A-MODY (MODY3)
HNF1A is a homeodomain-containing transcription factor, 
which is expressed in the liver, kidney, intestine, and pancreat-
ic β-cells. Hnf1a-knockout mice developed diabetes because 
of impaired glucose-induced insulin secretion [17]. Mutations 
in HNF1A are the most common cause of MODY in Europe, 
North America, and Asia [18]. In Asia, 5% to 20% of MODY 
cases are caused by HNF1A mutations. A total of 414 different 
HNF1A mutations in 1,247 families have been discovered 
[19]. Although mutations are located throughout the minimal 
promoter, exons and flanking intronic regions, they are more 
often detected in exons 2 and 4. A novel missense mutation 
(R263L) of HNF1A was found in a Korean MODY family and 
reportedly caused diabetes through defective glucose sensing 
and insulin secretion [20]. 
 Heterozygous HNF1A mutations result in progressive β-cell 
dysfunction that leads to diabetes in early adult life. These mu-
tations demonstrate high penetrance; 63% of carriers develop 
diabetes by 25 years of age, and almost all carriers develop dia-
betes by the age of 55 [21]. Carriers develop glycosuria even 
before diabetes because of decreased renal glucose reabsorp-
tion [22]. Because hyperglycemia may be severe and worsens 
over time, the risks of microvascular and macrovascular com-
plications are similar to type 1 diabetes mellitus (T1DM) and 
T2DM [23]. Therefore, tight glycemic control and close moni-
toring for diabetic complications are required in these patients. 
 Patients with HNF1A-MODY are sensitive to sulfonylurea 

therapy, which is recommended as first line treatment. An ob-
servational study suggests that patients with HNF1A-MODY 
can be switched safely from insulin to a sulfonylurea [24]. In a 
series of 43 diabetic patients, 34 switched from insulin to a 
sulfonylurea after HNF1A-MODY diagnosis, and 24 remained 
on sulfonylurea for 39 months with excellent glycemic control 
[25]. Good control may be maintained for many years, al-
though most patients eventually progress to insulin treatment.

HNF4A-MODY (MODY1)
This was the first MODY to be described. HNF4A is a tran-
scription factor that is expressed in the liver, intestine, kidney, 
and pancreatic islets. It is involved in the regulation of genes 
that are required for glucose transport and metabolism [26]. 
HNF4A mutations represent less than 10% of MODY cases in 
Europe, and more than 103 mutations in 173 families have 
been identified so far [19]. The clinical profile of heterozygous 
HNF4A mutations is similar to HNF1A MODY. It is estimated 
that 10% to 29% of HNF1A-negative patients actually have 
HNF4A mutations [27]. Patients with HNF4A diabetes are 
seldom diagnosed before adolescence. Heterozygous HNF4A 
mutations result in significant fetal macrosomia by increasing 
insulin secretion in utero and subsequent neonatal hypoglyce-
mia [28]. Glycosuria does not present in HNF4A MODY, and 
low apolipoproteins (apoA11, apoCIII, and apoB) can be a di-
agnostic clue [29]. A similar response to sulfonylureas has 
been observed in patients with HNF4A-MODY [27].

PDX1-MODY (MODY4)
PDX1 (also known as insulin promoter factor 1 [IPF1]) is a 
homeodomain-containing transcription factor that acts in 
pancreas development and insulin gene expression [30]. Ho-
mozygous mutations can cause permanent neonatal diabetes 
due to pancreas agenesis [31]. Heterozygous PDX1 mutations 
lead to β-cell dysfunction and MODY. PDX1-MODY is a very 
rare cause of MODY and was first described in 1997 [32].

HNF1B-MODY (MODY5)
HNF1B is encoded by the TCF2 gene, which is expressed in 
the liver, kidney, intestine, stomach, lung, ovary, and pancreat-
ic islets and influences their embryonic development [33]. 
This form of diabetes is caused by heterozygous mutations in 
HNFIB, and is characterized by progressive nondiabetic renal 
dysfunction of variable severity, pancreatic atrophy and genital 
abnormalities [34-36]. It is also called RCAD (renal cysts and 
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diabetes syndrome). More than 65 mutations have been de-
tected to date. Exon or complete gene deletions account for 
approximately half of cases [37]. A heterozygous P159L HNF1B 
mutation in a Korean family reportedly has functional conse-
quences on glucose metabolism [38].
 Birth weight can be significantly reduced by 900 g due to re-
duced insulin secretion in utero [35]. Half of carriers develop 
diabetes. Spontaneous de novo mutations occur relatively fre-
quently; thus, a positive family history should not be required 
for diagnosis [39]. HNF1B-MODY phenotypes are different 
from HNF1A-MODY because diabetes develops due to both 
insulin resistance and defective insulin secretion. Patients with 
HNF1B-MODY do not respond well to sulfonylureas and usu-
ally require early insulin therapy [40]. 

NEUROD1-MODY (MODY6)
NEUROD1 is a basic-loop-helix transcription factor that is in-
volved in pancreatic and neuronal development. Heterozygous 
NEUROD1 mutations lead to diabetes as children or adults 
while mutations in both alleles result in neonatal diabetes with 
neurological abnormalities and learning disabilities [41-43].

KLF11-MODY (MODY7)
KLF11 is a zinc-finger transcription factor that is expressed in 
pancreatic islet cells. KLF11 binds to and activates the insulin 
promoter in mouse insulinoma cell lines in a high-glucose con-
dition, which indicates that KLF11 is a glucose-inducible regu-
lator of the insulin gene [44]. Two rare variants of KLF11 gene 
were identified in three families with early onset T2DM [45]. 

CEL-MODY (MODY8)
CEL is expressed in mammary glands and pancreatic acinar 
cells. CEL, also called bile salt-stimulated lipase, is a major 
component of pancreatic juice and is responsible for the hy-
drolysis of cholesterol esters as well as a variety of other dietary 
esters. CEL-MODY was first identified by Raeder et al. [46] in 
2 Norwegian kindreds with autosomal dominant diabetes. 
Heterozygous mutations in the CEL gene result in pancreatic 
atrophy, fibrosis, and lipomatosis together with exocrine insuf-
ficiency and later endocrine dysfunction and diabetes [47].

PAX4-MODY (MODY9)
PAX4 is a transcription factor that is essential for differentiation 
of insulin-producing β-cells in the mammalian pancreas. PAX4 
gene mutations have been identified in Thai probands with 

MODY who did not have mutations in known MODY genes 
[48]. It has also been associated with ketosis-prone diabetes [49].

INS-MODY (MODY10)
While INS gene mutations are a common cause of neonatal di-
abetes, they are also rare causes of diabetes in childhood or 
adulthood [50]. Heterozygous INS gene mutations decrease 
proinuslin molecule folding or cause β-cell apoptosis in the 
endoplasmic reticulum [51]. The treatment is generally insulin, 
although some patients manage with oral antidiabetic drugs.

BLK-MODY (MODY11)
BLK is a non-receptor tyrosine-kinase of the src family of pro-
to-oncogenes, which acts as a stimulator of insulin synthesis 
and secretion in pancreatic β-cells via the transcription factors 
Pdx1 and Nkx6.1 [52]. Kim et al. [53] initially mapped this lo-
cus on chromosome 8p23 by a genomewide scan of 21 ex-
tended United States families segregating autosomal dominant 
MODY not caused by known MODY genes. They noted that 
there was a higher prevalence of obesity in individuals with 
diabetes that was linked to 8p23 than in diabetic individuals 
with MODY linked to other loci. Borowiec et al. [52] reported 
that mutations in BLK caused diabetes in three families.

ABCC8-MODY (MODY12) 
The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) 
subunit of the pancreatic β-cell ATP-sensitive potassium (K-
ATP) channel. Its activating homo- and heterozygous muta-
tions cause neonatal diabetes, but heterozygous mutations can 
also cause MODY in patients whose clinical features are simi-
lar to those with HNF1A/4A MODY [54]. The correct molec-
ular diagnosis is important, as these patients can be treated 
with sulfonylureas.

KCNJ11-MODY (MODY13)
The KCNJ11 gene encodes Kir6.2, a part of the K-ATP chan-
nel. Its activating homozygous mutations cause neonatal dia-
betes, but heterozygous mutations have been associated with a 
large spectrum of diabetes phenotypes in a French family [55]. 
The age at diagnosis varied from childhood to adulthood (13 
to 59 years), and the treatment varied from diet to OAD or in-
sulin. Of the 4 affected individuals, 2 maintained diabetes con-
trol with sulfonylurea therapy alone. Heterozygous KCNJ11 
mutations were identified in Chinese family with early onset 
T2DM [56].
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MODY STUDIES IN KOREA

Although MODY has been identified in Asian populations, the 
prevalence of MODY is not known in Korea. In a study of Kore-
an population, only 10% of 40 MODY or early onset T2DM pa-
tients had known MODY gene defects (HNF1A 5%, GCK 2.5%, 
and HNF1B 2.5%) among MODY 1-6 genes [5,6]. This result 
may be similar to reports from Japan and China [7,8]. The dif-
ferent genetic subtypes could possibly be responsible for Korean 
patients with MODY. Shim et al. [57] conducted whole-exome 
sequencing in Korean MODY families, and they could not find 
any Known MODY mutations but identified variants in protein 
tyrosine phosphatase, receptor type, D (PTPRD), synaptotag-
min-9 (SYT9), and Wolfram syndrome 1 (WFS1). Mutation 
studies performed in Korean MODY or early onset T2DM pa-
tients are summarized in Table 2 [58-61]. 

MODY DIAGNOSIS

Although MODY represents 1% to 2% of all diabetes, MODY 
diagnosis is very important for patients and their families. A 
correct molecular diagnosis can help identify an optimal treat-
ment strategy. Patients who have been on insulin therapy fol-
lowing T1DM diagnosis can be switched to oral agents (i.e., 
sulfonylureas) after a diagnosis of HNF1A-MODY or HN-
F4A-MODY, which will not only improve their quality of life 
but also often their glycemic control [24]. A molecular diag-
nosis of MODY can also affect patient prognosis. A patient 
with mild hyperglycemia in adolescence and a diagnosis of 

GCK-MODY, HNF1A-MODY, or T1DM will need different 
treatment and follow-up [13,23]. Finally, family members of 
affected MODY patients can be screened for their carrier sta-
tus to predict disease. Genetic testing should be recommended 
to all family members, while unaffected relatives should re-
ceive genetic counseling regarding the benefits and potential 
consequences of genetic diagnosis. 
 MODY can be diagnosed by direct sequencing with up to 
100% sensitivity [4]. Next generation sequencing strategies 
have been employed successfully to identify MODY gene mu-
tations using gene targeted and whole-exome sequencing 
[62,63]. However, molecular genetic testing is expensive and is 
only available in specialized laboratories. Furthermore, the 
clinical features of MODY often overlap with both common 
types of diabetes. In a UK report, more than 80% of patients 
with MODY are incorrectly diagnosed with T1DM and T2DM 
at presentation, and patients experienced a delay of 12 years 
from the time of receiving a diabetes diagnosis to receiving a 
MODY diagnosis [64].
 A targeted selection of individuals for molecular genetic 
testing is necessary to improve diagnostic yields especially in 
regions with limited resources. Various algorithms using clini-
cal and laboratory parameters have been proposed to choose 
individual candidates for molecular diagnosis [65,66] Shields 
et al. [66] developed a model that discovered that age at diag-
nosis below 30 years was the most useful discriminator be-
tween MODY and T2DM, and a family history of diabetes in-
creased the probability of MODY diagnosis by 23 times in those 
who had been initially labeled as T1DM. This model determines 

Table 2. MODY studies in Korean subjects

Gene Subjects Finding Reference

HNF1A 69 early onset T2DM One silent mutation [58]

HNF1A 16 early onset T2DM One missense (R236L) mutation [20]

HNF1A 22 early onset T2DM One mutation (promoter) [59]

HNF4A, GCK, HNF1A 23 MODY and 
   17 early onset T2DM

One HNF1A (P393fsdelC, promoter)
One GCK (R191W)
One HNF4A (T130I polymorphism)

[5]

HNF1A 25 early-onset T2DM Four promoter polymorphism [60]

HNF1A 96 GDM Five mutations ( 2 promoter, Arg278Gln, Pro300pro, IVS5 +106A>G) [62]

HNF1B 1 MODY One missense (P159L) mutation [38]

PTPRD, SYT9, WFS1 6 MODY Thr207Ile in PTPRD, Gln187Glu in SYT9, Val509Gly in WFS1 by 
   whole-exome sequencing

[57]

MODY, maturity-onset diabetes of the young; HNF1A, hepatocyte nuclear factor 1 α; T2DM, type 2 diabetes mellitus; GCK, glucokinase; GDM, 
gestational diabetes mellitus; PTPRD, protein tyrosine phosphatase, receptor type, D; SYT9, synaptotagmin-9; WFS1, Wolfram syndrome 1.
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the probability of MODY in young-onset diabetes (http://www.
diabetesgenes.org/content/mody-probability-calcualtor). 
 The cost and limitations of accessing genetic testing has 
prompted much efforts to discover nongenetic biomarkers that 
might identify appropriate candidates for molecular diagnosis. 
Because patients with HNF1A-MODY have significantly lower 
levels of high-sensitivity C-reactive protein (hs-CRP) than those 
with other types of diabetes (T2DM, T1DM, and GCK-MO-
DY), hs-CRP has been used as a marker for differential diagno-
sis [67-69]. A recent study raised the possibility of microRNAs 
as a biomarker of HNF1A-MODY [70]. Fig. 1 shows a diagnos-
tic algorithm that could be used to identify which young adult 
with diabetes should be referred for MODY genetic testing.

CONCLUSIONS

MODY is a common cause of monogenic diabetes that consti-
tutes 1% to 2% of all diabetes cases. Despite its low prevalence, 
identification of MODY genes has implications in diabetes 
pathogenesis. Various clinical characteristics of MODY can be 
explained by genetic heterogeneity. The advance of molecular 
genetics and clinical science has led to specific treatment for 
MODY subtypes. This is an excellent example of personalized 
medicine in the field of diabetes. Rapid MODY diagnosis is im-
portant for patients and their family members because it can 

provide for individualized treatment and prognosis predic-
tions. However, diagnosing MODY is a challenge for physicians 
and the vast majority of cases remain unidentified. A nation-
wide MODY registry and systematic approaches are required 
for the rapid diagnosis and appropriate management of MODY. 
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