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Abstract

TBX5 has been linked to Holt-Oram syndrome, with congenital heart defect (CHD) and atrial fibrillation (AF) being 
two major cardiac phenotypes. However, the prevalence of a TBX5 variation in patients with CHD and AF remains 
obscure. In this research, by sequencing analysis of TBX5 in 178 index patients with both CHD and AF, a novel 
heterozygous variation, NM_000192.3: c.577G>T; p.(Gly193*), was identified in one index patient with CHD and 
AF as well as bicuspid aortic valve (BAV), with an allele frequency of approximately 0.28%. Genetic analysis 
of the proband’s pedigree showed that the variation co-segregated with the diseases. The pathogenic variation 
was not detected in 292 unrelated healthy subjects. Functional analysis by using a dual-luciferase reporter assay 
system showed that the Gly193*-mutant TBX5 protein failed to transcriptionally activate its target genes MYH6 
and NPPA. Moreover, the mutation nullified the synergistic transactivation between TBX5 and GATA4 as well as 
NKX2-5. Additionally, whole-exome sequencing analysis showed no other genes contributing to the diseases. This 
investigation firstly links a pathogenic variant in the TBX5 gene to familial CHD and AF as well as BAV, suggesting 
that CHD and AF as well as BAV share a common developmental basis in a subset of patients.
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Introduction
As the most prevalent type of human birth defect, 

congenital heart defect (CHD) occurs in about 1% of all 
live neonates, accounting for nearly a third of all forms of 
developmental abnormalities (Benjamin et al., 2019; Oliveira-
Brancati et al., 2020). Although minor CHD may resolve 
spontaneously (Benjamin et al., 2019), serious CHD may lead 
to poor health-related quality of life (Amedro et al., 2018, 
2019; Boukovala et al., 2019), reduced exercise capacity 
(Müller et al., 2018; Abassi et al., 2019; Smith et al., 2019), 
abnormal nervous develop ment or brain injury (Peyvandi et 
al., 2018, 2019; Khanna et al., 2019), hemorrhagic or ischemic 
stroke (Bokma et al., 2018; Giang et al., 2018; Pedersen et al., 
2019), pulmonary hypertension (Brida and Gatzoulis, 2018; 
Dimopoulos et al., 2018; Kaemmerer et al., 2018; Pascall and 
Tulloh, 2018), acute kidney injury or renal dysfunction (Lui 
et al., 2017; Gist et al., 2018), infective endocarditis (Jortveit 
et al., 2018; Tutarel et al., 2018; Cahill et al., 2019), cardiac 
dysfunction or congestive heart failure (Gilbert et al., 2018; 

Lal et al., 2018; Sabanayagam et al., 2018; Chan et al., 2019), 
ventricular or supraventricular dysrhythmia (Labombarda et 
al., 2017; Barry et al., 2018; Hernández-Madrid et al., 2018; 
Fuchs et al., 2019), and death (Lynge et al., 2018; Moore et 
al., 2018; Yu C et al., 2018). Although vast advance in cardiac 
surgery allows over 90% of CHD newborns to survive into 
adulthood, it results in an increasing adult CHD population, 
and mow CHD adults outnumber CHD children (Bouma and 
Mulder, 2017; Benjamin et al., 2019). Moreover, the late 
complications and mortality substantially increase in adult 
CHD patients (Bouma and Mulder, 2017; Spector et al., 
2018; Trusty et al., 2018). Despite clinical importance, the 
etiologies of CHD in the majority of cases are still elusive.

Cardiogenesis undergoes a highly complex biological 
process, and both environmental and genetic pathogenic factors 
can perturb this finely regulated process, leading to CHD (Patel 
and Burns, 2013; Pierpont et al., 2018; Shabana et al., 2020). 
The well-established environmental factors underlying CHD 
include maternal conditions (such as innutrition, viral infection 
and endocrine disorder) and exposures to toxic chemicals, 
therapeutic drugs, or ionizing radiation during pregnancy (Patel 
and Burns, 2013). However, increasing studies underscore 
the genetic defects underpinning CHD, and variations in 
over 70 genes, encompassing those encoding transcription 
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factors, signaling molecules, and sarcomeric proteins, have 
been involved in CHD (Bashamboo et al., 2018; Cantù et al., 
2018; Jaouadi et al., 2018; Li et al., 2018a,c; Lombardo et al., 
2018; Manheimer et al., 2018; Pierpont et al., 2018; Qiao et 
al., 2018; Razmara and Garshasbi, 2018; Stephen et al., 2018; 
Xu et al., 2018; Yu Z et al., 2018; Alankarage et al., 2019; 
Gao et al., 2019; Kalayinia et al., 2019, 2020; Ma et al., 2019; 
Wang J et al., 2019, Wang Z et al., 2019; Watkins et al., 2019; 
Zhu et al., 2019; Faucherre et al., 2020; Shabana et al., 2020; 
Zhao et al., 2020). Among the recognized CHD-causative 
genes, the majority code for cardiac transcription factors, 
encompassing TBX5, GATA4, and NKX2-5 (Li and Yang, 
2017). Nevertheless, the genetic determinants underlying 
CHD in a large proportion of cases remain to be unveiled.

Interestingly, TBX5 variations have recently been 
involved in atrial fibrillation (AF), the most common sustained 
cardiac arrhythmia (January et al., 2014). Postma et al., (2008) 
reported that a TBX5 gain-of-function mutation caused an 
atypical Holt-Oram syndrome (HOS), with AF being the 
predominant clinical phenotype. Ma et al., (2016) identified 
multiple loss-of-function mutations in TBX5 in multiple 
patients affected with AF. Wang et al., (2016) found a novel 
loss-of-function mutation in TBX5 in a case with AF. Guo et 
al., (2016) uncovered a new TBX5 loss-of-function mutation 
in an index patient with idiopathic AF. These observational 
results highlight the pronounced genetic heterogeneity of 
CHD and AF, which makes it justifiable to investigate the 
prevalence of TBX5 variations in patients with both CHD 
and AF, and unveil the molecular mechanism of CHD and 
AF resulted from novel TBX5 variations.

Material and Methods

Study participants

This study subjects comprised 178 unrelated adult 
patients suffering from both CHD and AF, who were 
consecutively recruited between February 2015 and March 
2019 from the Chinese Han population. Diagnosis of CHD 
and various kinds of AF was made as described previously 
(Wang et al., 2016; Li et al., 2018b; Ma et al., 2019). The 
patients with rheumatic heart disease, ischemic heart disease, 
essential hypertension, or other recognized risk factors for AF 
were excluded. The patients with AF occurred after cardiac 
surgery were also ruled out from the present investigation. If 
available, the relatives of the probands were also enrolled. The 
control individuals were 292 unrelated adult healthy persons, 
who were enlisted from the same geographic area during 
the same time period. The healthy controls were matched 
with the affected individuals for ethnicity, sex and age. All 
study participants were subject to comprehensive medical 
evaluation, including familial histories, medical histories, 
physical examination, trans-thoracic echocardiogram, standard 
12-lead electrocardiogram, and routine biological tests. 
This investigation was conducted in accordance with the 
ethical principles stated in the Declaration of Helsinki. The 
protocol used in this study was reviewed and approved by the 
Human Ethics Committee of the Shanghai Chest Hospital, 
Shanghai, China. Informed consent was obtained from the 
study participants prior to sample collection.

Genetic analyses

Blood samples were collected from each study subject. 
Genomic DNA of each test subject was purified from blood 
cells with the Wizard Genomic DNA Purification Kit (Promega, 
Madison, WI, USA). The coding exons and splicing donors/
acceptors of TBX5 were amplified from each study participant’s 
genomic DNA by polymerase chain reaction (PCR) for a 
variation scan by PCR-sequencing. The PCR primers were 
designed as described elsewhere (Zhang et al., 2015). Each 
PCR mixture was prepared in a thin-walled PCR tube with a 
total volume of 25 μL containing 50 ng of genomic DNA, 0.2 
mM dNTPs (Qiagen, Hilden, Germany), 1 × Buffer (Qiagen), 
1 × Q solution (Qiagen), 0.5 μM of each primer, and 0.02 U/μL 
of HotStar Taq DNA Polymerase (Qiagen). PCR was carried 
out on a Veriti® 96-Well Thermocycler (Applied Biosystems, 
Foster, CA, USA). The PCR program was set as follows: initial 
pre-denaturation at 95 °C for 15 min followed by 35 thermal 
cycles of denaturation at 95 °C for 30 s, annealing at 62 °C for 
30 s and extension at 72° C for 1 min, with final extension at 
72 °C for 8 min. The amplified products were fractionated by 
electrophoresis on a 1.2% agarose gel, and isolated utilizing 
the QIAquick Gel Extraction Kit (Qiagen). The purified 
amplicons were subjected to PCR-sequencing under an ABI 
3730 XL DNA Analyzer (Applied Biosystems), with the 
BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied 
Biosystems) following the manufacturer’s instructions. The 
detected sequence variant was validated by bi-directional 
re-sequencing of an independent PCR-generated amplicon 
from the same subject. For an identified TBX5 variation, the 
1000 Genomes Project database (http://www.1000genomes.
org), the Genome Aggregation Database (https://gnomad.
broadinstitute.org), and the Single Nucleotide Polymorphism 
database (http://www.ncbi.nlm.nih.gov/snp) were queried to 
check its novelty.

In addition, in order to rule out the potential causative 
effects of other genes on the diseases, whole-exome sequencing 
(WES) analysis of the mutation carrier’s family members 
was performed as described previously (Xu et al., 2019). In 
brief, 2 μg of DNA from each family member was utilized to 
construct an exome library with the SureSelectXT Human All 
Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA), 
which was sequenced on the Solexa Genome Analyzer (GA) 
IIx platform (Illumina, San Diego, CA, USA), according to 
the manufacturer’s protocols. Raw image files were processed 
by the Illumina pipeline to call bases and generate the reads 
set. By using SOAPaligner, reads were aligned with the 
human reference genome. Variations of single nucleotide 
polymorphisms, insertions and deletions were identified by 
Genome Analysis Toolkit. The identified variants in known 
genes were classified according to the recommended guidelines 
(Xu et al., 2019). The candidate disease-causing variations 
found by WES were checked by Sanger sequencing.

Expression plasmid constructs and site-targeted 
mutagenesis 

The wild-type TBX5 expression plasmid TBX5-
pcDNA3.1 was constructed as described elsewhere (Zhang 
et al., 2015). The mutant-type TBX5-pcDNA3.1 was produced 
via PCR-based site-targeted mutagenesis with a complimentary 
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pair of primers and the QuickChange II XL Site-Directed 
Mutagenesis Kit (Stratagene, La Jolla, CA, USA) according to 
the manufacturer’s protocol. The mutant was selected by DpnI 
(NEB, Hitchin, UK) and was fully sequenced to confirm the 
desired mutation and to exclude any other unwanted sequence 
variations. The eukaryotic expression vectors GATA4-
pSSRa and NKX2-5-pEFSA, and the natriuretic peptide 
precursor A-luciferase (NPPA-luc) reporter vector, which 
expresses Firefly luciferase, were kind gift from Dr. Ichiro 
Shiojima, at the Department of Cardiovascular Science and 
Medicine, Chiba University, Japan. The α-myosin heavy chain 
6-luciferase (MYH6-luc) reporter plasmid, which expresses 
Firefly luciferase, was created as described previously (Chen 
et al., 2017).

Cell culture, plasmid transfection  
and luciferase analysis

COS-7 cells (derived from the Cell Bank of the Chinese 
Academy of Sciences, Shanghai, China) were grown in DMEM 
supplemented with 10% fetal bovine serum (Invitrogen, 
Carlsbad, CA, USA), as well as penicillin (100 U/mL) and 
streptomycin (100 μg/mL), in an atmosphere with 5% CO2 
at 37 °C. COS-7 cells were seeded in 24-well plates, at a 
density of 2 × 105 per cell before transfection. Plasmids were 
transfected into cells 24 h after plating with the Lipofectamine 
3000 reagent (Invitrogen) according to the product description. 
To balance transfection efficiency, the internal control plasmid 
pGL4.75 (Promega), which expresses the Renilla luciferase, 
was co-transfected. Specifically, COS-7 cells were transiently 
transfected with empty pcDNA3.1 (1.0 μg), or wild-type 
TBX5-pcDNA3.1 (1.0 μg), or mutant TBX5-pcDNA3.1 
(1.0 μg), or wild-type TBX5-pcDNA3.1 (0.5 μg) plus empty 
pcDNA3.1 (0.5 μg), or wild-type TBX5-pcDNA3.1 (0.5 μg) 
plus mutant TBX5-pcDNA3.1 (0.5 μg), together with MYH6-
luc (1.5 μg) and pGL4.75 (0.04 μg). To analyze the synergistic 
transactivation, the same amount (0.6 μg) of each expression 
vector (empty pcDNA3.1, wild-type TBX5-pcDNA3.1, mutant 
TBX5-pcDNA3.1, NKX2-5-pEFSA, GATA4-pSSRa) was 
used singly or in combination, in the presence of NPPA-
luc (1.0 μg) and pGL4.75 (0.04 μg). The transfected cells 
were cultured for 48 h, and then were harvested and lysed. 
The Firefly luciferase and Renilla luciferase activities were 
measured under the GloMax-96 Microplate Luminometer 
(Promega) by utilizing the Dual-Glo Luciferase Assay 
System (Promega), following the manufacturer’s manual. 
The activity of the promoter was presented as fold activation 
(ratio) of Firefly luciferase relative to Renilla luciferase. Each 
transfection experiment was conducted in triplicate for three 
times, and the results for promoter activity were given as mean 
± standard deviation (SD) of three experiments in triplicate.

Statistics

Differences in promoter activities between two groups 
were compared using the Student’s t-test, or one-way ANOVA 
with Tukey’s post hoc test, when indicated, with a p<0.05 
indicating significant difference.

Results

Baseline characteristics of the study patients
In this investigation, a total of 178 unrelated cases 

suffering from CHD and AF (105 males, with a mean age of 
33 years at initial diagnosis of AF) were clinically analyzed in 
contrast to a total of 292 unrelated control people (173 males, 
with a mean age of 33 years). The included cases had both 
echocardiograph-documented CHD and electrocardiogram-
documented AF, while the controls had normal echocardiographs 
and electrocardiograms, with no evidence of cardiac diseases. 
All the 178 patients had positive family histories of CHD 
and AF; whereas none of the 292 control individuals had a 
positive family history of CHD or AF. No study participants 
had known traditional pathogenic factors for CHD or AF. There 
was no significant difference between case and control groups 
in gender, age or ethnicity. The baseline features of the 178 
cases affected with CHD and AF are summarized in Table 1.

Detection of a causative TBX5 mutation
By sequencing the whole coding regions and flanking 

introns of the TBX5 gene, a heterozygous variation, 
NM_000192.3: c.577G>T; p.(Gly193*), was detected in 
one out of the 178 patients affected with CHD and AF, with 
an allele frequency of ~0.28% in the patient population. The 
variation carrier had positive family histories of CHD and 
AF as well as bicuspid aortic valve (BAV). Genetic studies 
of the variation carrier’s available family members revealed 
that the variation co-segregated with ASD and AF as well as 
BAV, which were transmitted as autosomal dominant traits. 
In addition, two family members (II-1 and III-1) had also 
congenital VSD. The sequence chromatograms illustrating 
the heterozygous TBX5 variation of c.577G>T and its wild-
type control sequence are given in Figure 1A. The schematic 
diagrams showing the structural domains of wild-type and 
mutant TBX5 proteins are illustrated in Figure 1B. The 
pedigree structure of the family with CHD and AF as well 
as BAV is shown in Figure 1C. The phenotypic characteristics 
as well as mutational status for TBX5 of the affected family 
members are presented in Table 2. The nonsense mutation 
was absent from 296 control people, and was not found in 
the 1000 Genomes Project database, the Genome Aggregation 
Database, or the Single Nucleotide Polymorphism database 
(accessed on May 6, 2020), indicating its novelty. Besides, 
similar with previous studies (Al-Qattan and Abou Al-Shaar, 
2015; Chen et al., 2017), no more c.577G>T variation was 
detected in either cases or controls. Thus, the allele frequency 
of TBX5 variation identified in this study was 1/356 (0.28%) 
in patients and 0/584 (0%) in controls.

Additionally, WES analysis of the genomic DNAs 
from two affected family members (II-4 and III-4) and one 
unaffected family member (II-3) of the proband who harbored 
an identified TBX5 mutation was carried out, and an average 
of 12,973 exonic variants ranging from 11,652 to 14,395 
was detected for each family member. A total of 742 exonic 
variants were shared by both affected subjects, of which 262 
were autosomal, heterozygous non-synonymous, nonsense, 
and splice site variants. After filtered, only the variation 
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Table 1 – Demographic and baseline clinical characteristics of the 178 patients with familial congenital heart disease and atrial fibrillation.

Variable n or mean % or range

Demographics

Male 105 59

Age at initial diagnosis of AF (years) 33 ± 15 14–57

Age at enrollment (years) 45 ± 9 18–65

Distribution of different forms of CHD

ASD 68 38

VSD 43 24

VSD + ASD 25 14

VSD + PDA 17 10

TOF 11 6

ASD + PDA 10 6

TOF + ASD 4 2

Clinical classification of AF

Paroxysmal 63 35

Persistent 46 26

Longstanding persistent 39 22

Permanent 30 17

Medical history

History of cardiac surgery for CHD 51 29

History of catheter ablation for AF 30 17

Data are given as means with standard deviations, number, or percentage. CHD, congenital heart defect; AF, atrial fibrillation; VSD, ventricular septal 
defect; ASD, atrial septal defect; PDA, patent ductus arteriosus; TOF, tetralogy of Fallot.

Figure 1 – A new TBX5 mutation responsible for familial heart defect and atrial fibrillation. (A) Sequence chromatograms illustrating the TBX5 heterozygous 
mutation from the proband (mutant) and its homozygous wild-type control from a healthy individual (wild type). An arrow points to the heterozygous 
nucleotides of G/T or the homozygous nucleotides of G/G. (B) Schematic drawings showing the structural domains of the TBX5 proteins. NH2, amino-
terminus; NLS1, nuclear location signal 1; TBX, T-box; TAD, transcriptional activation domain; NLS2, nuclear location signal 2; COOH, carboxyl-terminus. 
(C) Pedigree structure of the family suffering from congenital heart defect and atrial fibrillation. Family members are recognized by generations as well 
as numbers. Circles mean female members; squares, male family member; closed symbols, affected members; open symbols, unaffected members; the 
symbol with a slash, the deceased member; the arrow beside the closed square, the index patient; “+”, carriers of the TBX5 mutation; “–”, non-carriers.
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Table 2 – Phenotypic features and TBX5 mutation status of the family members with congenital heart defect and atrial fibrillation as well as bicuspid 
aortic valve.

Individual Gender Age (years) Cardiac phenotype TBX5 mutation p.(Gly193*)

I-1 M 65* ASD, BAV, AF NA

II-1 M 50 ASD, BAV, AF, VSD +/–

II-4 F 48 ASD, BAV, AF +/–

II-10 F 40 ASD, BAV, AF +/–

III-1 M 24 ASD, BAV, AF, VSD +/–

III-4 M 22 ASD, BAV, AF +/–

M, male; F, female; ASD, atrial septal defect; BAV, bicuspid aortic valve; AF, atrial fibrillation; VSD, ventricular septal defect; NA, not available;  
+/–, heterozygote. 
* Age at death.

c.577G>T in TBX5 was verified by Sanger sequencing and 
demonstrated to co-segregate with CHD and AF as well as 
BAV in the family.

No transactivational function of the mutant TBX5 
protein

As shown in Figure 2, the same amount (1.0 μg) of wild-
type and Gly193*-mutant TBX5 plasmids transcriptionally 
activated the MYH6 promoter by ~12 fold and ~1 fold, 
respectively (comparison between wild type and mutant: t = 
8.07389, p = 0.00128). When half the amount of wild-type 
and Gly193*-mutant TBX5 plasmids (each 0.5 μg) was used, 
the resultant transcriptional activity was ~6-fold (comparison 
between wild type plus empty plasmid and wild type plus 
mutant: t = 3.91627, p = 0.01730).

No synergistic effect between mutant TBX5 and 
NKX2-5 as well as GATA4

As shown in Figure 3, wild-type and Gly193*-mutant 
TBX5 activated the NPPA promoter by ~7 fold and ~1 fold, 
respectively (comparison between wild type and mutant: t = 
9.24975, p = 0.00076). In combination with wild-type NKX2-
5, wild-type and Gly193*-mutant TBX5 activated the NPPA 
promoter by ~30 fold and ~5 fold, respectively (comparison 
between wild type and mutant: t = 9.36360, p = 0.00072); 
while together with wild-type GATA4, wild-type and Gly193*-
mutant TBX5 transcriptionally activated the NPPA promoter 
by ~22 fold and ~4 fold, respectively (comparison between 
wild type and mutant: t = 9.51139, p = 0.00068).

Discussion
In the current investigation, a novel heterozygous 

TBX5 variation, NM_000192.3: c.577G>T; p.(Gly193*), was 
discovered in a family with CHD and AF as well as BAV. The 
variation was absent in the 584 reference chromosomes as well 
as in such population databases as the 1000 Genomes Project 
database, the Genome Aggregation Database, and the Single 
Nucleotide Polymorphism database. Functional explorations 
showed that Gly193*-mutant TBX5 lost transcriptional activity 
on the MYH6 and NPPA promoters. Moreover, the mutation 
disrupted the synergistic transcriptional effect between TBX5 
and GATA4 as well as NKX2-5. Additionally, WES analysis 
showed no other genes contributing to the diseases of the 

family. These observational results indicate that the pathogenic 
variation in the TBX5 gene predisposes to CHD and AF as 
well as BAV.

In humans, TBX5 is located on chromosome 12q24.1, 
which encodes a 518-amino acid protein. The TBX5 protein 
harbors four functionally important domains, including a T-box 
domain (TBX; amino acids 56–236), which functions to bind 
target DNAs and interact with other proteins; a transcriptional 
activation domain (TAD; amino acids 339–379), which is 
responsible for transactivation of target genes; and two nuclear 
localization signals (NLS) including NLS1 (amino acids 78–
90) and NLS2 (amino acids 325–340), which were essential for 
nuclear localization (Steimle and Moskowitz1, 2017). Previous 
studies have corroborated that TBX5 is highly expressed 
in the hearts of humans and vertebrates, encompassing the 
endocardium, myocardium, and epicardium of embryonic 
and adult hearts, and its expression is much higher in atria 
than in ventricles during embryogenesis, where it plays a 
key role in cardiovascular morphogenesis and postnatal heart 
remodeling (Steimle and Moskowitz1, 2017). Recent research 
has validated that TBX5 transcriptionally regulates expression 
of many target genes, including NPPA, GJA5, MYH6 and 
SCN5A, separately or together with GATA4, GATA6, 
NKX2-5, MEF2C and TBX20 (Steimle and Moskowitz1, 
2017), and variations in TBX5 and its target genes as well 
as cooperative partners have been reported to result in CHD 
and/or AF in humans (Postma et al., 2008; Mahida, 2014; 
Guo et al., 2016; Ma et al., 2016; Wang et al., 2016; Li and 
Yang, 2017; Campbell and Wehrens, 2018). In the current 
investigation, the pathogenic variation detected in patients 
with familial CHD and AF as well as BAV was predicted 
to produce a truncating TBX5 protein with most functional 
domains lost, and functional explorations revealed that the 
mutant TBX5 protein failed to transcriptionally activate 
target genes. Moreover, the pathogenic variation ablated the 
synergistic transactivation between TBX5 and NKX2-5 as well 
as GATA4. These data indicate that TBX5 haploinsufficiency 
is a molecular mechanism of CHD and AF as well as BAV 
in a subset of patients.

It might be ascribed to the aberrant cardiovascular 
genesis that TBX5 deficiency contributes to CHD and AF. 
In mice, TBX5 is abundantly expressed in entire cardiac 
crescent, heart tube, left ventricle, vena cavae, common 
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Figure 2 – Functional failure of TBX5 caused by the mutation. Activation of α-myosin heavy chain 6 promoter-driven luciferase in cultured COS-7 cells 
by wild-type or Gly193*-mutant TBX5, singly or together, revealed that the Gly193*-mutant TBX5 protein had no transcriptional activity. Transfection 
experiments for each plasmid were carried out in triplicates and the results are expressed as means with standard deviations. Here ## and # indicate 
p<0.01 and p<0.02, respectively, in comparison with wild-type TBX5.

Figure 3 – Disrupted synergistic transactivation between mutant TBX5 and NKX2-5 as well as GATA4. The synergistic transactivation of the promoter of 
natriuretic peptide precursor A in cultured cells by TBX5 and NKX2-5 as well as GATA4 was ablated by the Gly193* mutation. Transfection experiments 
for each plasmid were done in triplicates, with means and standard deviations shown. Here the symbols a, b and c all indicate p<0.001, in comparison 
with their wild-type counterparts.

atrium, and cardiac central conduction system, encompassing 
atrioventricular bundle and bundle branches (Bruneau et al., 
1999; Moskowitz et al., 2004). Homozygous deletion of Tbx5 
led to murine embryonic death because of failure to undergo 
cardiac looping as well as left ventricular and sinoatrial 
hypoplasia; while heterozygous Tbx5-bull mice showed 
ASD, VSD, left ventricular hypoplasia, endocardial cushion 
defect, and conduction system anomalies, encompassing 
atrioventricular conduction blocks and bundle branch blocks 
(Bruneau et al., 1999; Bruneau et al., 2001; Moskowitz et al., 
2004). In addition, in murine hearts Tbx5 haploinsufficiency 
also markedly reduced the transcription of multiple target 
genes, including Nppa and Cx40 (Bruneau et al., 2001). 

Moreover, adult-restricted Tbx5-mutant mice demonstrated 
spontaneous AF, and in Tbx5-deficient atrial cardiomyocytes, 
action potential abnormalities occurred due to a decreased 
SERCA2-mediated sarcoplasmic reticulum calcium uptake 
(Dai et al., 2019). In human beings, TBX5 is highly expressed 
in embryonic and postnatal hearts (Hatcher et al., 2000), and 
a number of TBX5 loss- or gain-of-function mutations have 
been causally linked to HOS, including CHD and AF as well 
as cardiac block (Al-Qattan and Abou Al-Shaar, 2015). Taken 
collectively, these findings suggest that genetically defective 
TBX5 enhances the susceptibility to CHD and AF in humans, 
and underscore that TBX5 dosage must be precisely regulated 
to avoid heart disorders.
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Notably, previous studies have causally linked TBX5 
variations to various cardiovascular malformations, including 
ASD, VSD, atrioventricular septal defect, pulmonary stenosis, 
hypoplastic left ventricle, mitral valve anomaly (Gharibeh 
et al., 2018). In the current investigation, the affected family 
members had also BAV, in addition to ASD, VSD and AF, 
thus expanding the phenotypic spectrum linked to mutant 
TBX5. Given that loss-of-function mutations in multiple 
transcriptional partners of TBX5 (Balistreri et al., 2019), 
encompassing GATA6 (Gharibeh et al., 2018; Xu et al., 2018), 
GATA4 (Yang et al., 2017; Li et al., 2018c), GATA5 (Padang 
et al., 2012; Bonachea et al., 2014; Shi et al., 2014), NKX2-5 
(Qu et al., 2014), and TBX20 (Luyckx et al., 2019), have been 
related to BAV, it is very likely that mutated TBX5 contributes 
to BAV by reducing expression of the target genes related to 
BAV morphogenesis in synergy with these partners.

Conclusions
This investigation causally links TBX5 loss-of-function 

mutation to CHD, AF and BAV for the first time, which 
highlights the key role of abnormal cardiovascular development 
in the pathogenesis of CHD, AF and BAV, implying potential 
implications for individualized prophylaxis and management 
of patients with CHD and AF as well as BAV.
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