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Abstract

Background: South American leaf blight (SALB) of rubber has been the main constraint to production in its neotropical
centre of origin since commercial plantations were first established. The fungal causal agent was identified and described
more than a century ago but its precise placement within the Ascomycota still remains uncertain. Indeed, such is the
ambiguity surrounding the pathogen that each of the spore morphs would, according to their present classification, be
placed in different ascomycete families: the Microcyclus sexual morph in the Planistromellaceae and the two purported
asexual morphs - Fusicladium and Aposphaeria – in the Venturiaceae and Lophiostomataceae, respectively. Given the
historical importance of the fungus and the ever-menacing threat that it poses to rubber production in the Palaeotropics –
and, thus to the rubber industry and to the global economy – its phylogeny, as well as its biology, should be resolved as a
matter of urgency.

Methods and Results: Here, six genomic regions (LSU rRNA, mtSSU, MCM7, EF-1a, Act and ITS) were used for reconstructing
the molecular phylogeny of the SALB fungus based on material collected throughout Brazil. The analyses support the
classification of the fungus in the family Mycosphaerellaceae s. str. (Capnodiales, Dothideomycetes) and place it firmly
within the clade Pseudocercospora s. str., now accepted as one of the distinct genera within Mycosphaerellaceae. The new
combination Pseudocercospora ulei is proposed and the life cycle of the fungus is confirmed, based on both experimental
and phylogenetic evidence, with the Aposphaeria morph shown to have a spermatial rather than an infective-dispersal
function.

Conclusions: Because the phylogeny of the SALB fungus has now been clarified, new insights of its epidemiology and
genomics can be gained following comparison with closely-related, better-researched crop pathogens.
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Introduction

South American leaf blight (SALB) of the rubber tree Hevea
brasiliensis (Willd. ex A. L. Juss.) Muell.-Arg., caused by

Microcyclus ulei (Henn.) Arx (Ascomycota), is recognized as the

most serious threat to the natural rubber industry worldwide [1–

4]. Epidemics of SALB led to the failure of rubber plantations in

tropical America in the early 20th century, as epitomized by the

demise of Fordlandia in the Lower Amazon region of Brazil

despite enormous investment in research and development [5,6].

Currently, the world supply of natural rubber is highly dependent

on the plantations established in Southeast Asia [3]. The

magnitude of the threat represented by the SALB fungus is

highlighted by Money [7] who described the relevance of natural

rubber as an irreplaceable prime matter for the world’s industry in

a plethora of applications besides tires, machinery belts and

condoms and as an industry itself providing the livelihood of 30

million people, concluding that ‘‘Nothing else (but M. ulei) has the

power to terminate the global flow of latex.’’ Because of the

potential serious economic consequences, there are strict quaran-

tine measures in place to prevent SALB from establishing in the

rubber tree production areas in the Palaeotropics, especially in

Southeast Asia, a SALB-free zone [3,8]. The fungus infects young

leaves, stems and fruits of Hevea brasiliensis, as well as H.
benthamiana Muell.-Arg., H. spruceana (Benth.) Muell.-Arg., H.
guianensis Aublet and H. camporum Ducke [2], resulting in

defoliation and, potentially, after repeated outbreaks in tree death.

The fungus was first observed and collected by E. Ule in 1900 in

the Upper Amazon region of Peru and Brazil and was later

described by Hennings [9]. Initially, two spore morphs were

recognised: the sexual morph, Dothidella ulei; and a supposed

asexual pycnidial morph, Aposphaeria ulei. The hyphomycete
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asexual morph was described soon after by J. Kuyper in Surinam

in 1911 as Fusicladium macrosporum. In 1917, G. Stahel observed

the connection of hyphae from different fungal structures within

the leaf tissue and linked the sexual and asexual morphs of the

fungus and renamed the former as Melanopsammopsis ulei [1].

Much later, von Arx (in [10]) transferred this to the genus

Microcyclus and suggested a close relationship with the genus

Mycosphaerella, based on the morphology of the hyphomycete

Passalora-type morph. Subsequently, he suggested that Fusicla-
dium should only be used for asexual morphs belonging to the

family Venturiaceae rather than to the Mycosphaerellaceae [11].

Microcyclus is characterized by erumpent ascostromata on living

leaves having a foot-like hypostroma, similar to some Myco-
sphaerella pathogens of pine trees [12].

Each of the spore morphs in M. ulei’s life cycle would,

according to the present classification for the genera where they

are placed, belong to a different ascomycete family, namely:

Planistromellaceae/incertae sedis (Microcyclus sexual morph) [13–

15], Venturiaceae (Fusicladium asexual morph) [16] and Lophios-

tomataceae (Aposphaeria asexual morph) [17,18]. This is clearly

inadequate and requires an explanation. Although there would be

grounds for speculating that SALB is a disease complex involving

three unrelated fungal species, perhaps with the involvement of a

mycoparasite, previous authors that have dealt with the SALB

disease and its etiology have not reached such conclusion

Nevertheless, Langford [19] and more recently, Guyot and Doaré

[20] have inoculated conidia and ascospores on rubber plants and

were able to reproduce the symptoms of SALB, demonstrating

that the Microcyclus and Fusicladium morphs are part of the cycle

of a single fungus. Ascospores were shown to play an essential role

in the perpetuation of the disease outside the host’s growth

periods, in the resumption of epidemics, and in long-distance

dispersal and the conidia contributed primarily to the stepwise and

short-distance spread of the disease [21]. A conclusive Koch’s

postulates have never been performed with the pycnidial morph of

the fungus. This might play a different role in the life cycle of the

fungus or even be a mycoparasite of M. ulei. Conversely, this

puzzling situation may just result from the lack of proper

understanding of the life cycle and classification of the fungus

behind SALB.

The general lack of DNA sequence data for all three purported

morphs (Microcyclus, Fusicladium and Aposphaeria) contributes to

the confusion surrounding the taxonomy of the causal agent of

SALB. Until relatively recently, the genus Microcyclus was

classified in the Mycosphaerellaceae (order Capnodiales), as a

stromatic counterpart of the family [22,23], but has since been re-

classified in the Planistromellaceae (Dothideales), initially to

accommodate genera with ascostromatal locules that open

schizogenously by a periphysate ostiole [13,14]. More recently, a

phylogenetic analysis showed that the core Planistromellaceae

belong in the Botryosphaeriales, from which Microcyclus –

represented only by ITS sequences of M. ulei – was excluded

based on BLAST searches of GenBank, and its familial position

was considered to be uncertain [15]. After a taxonomic review of

the hyphomycete conidial morph, this asexual morph was retained

in Fusicladium s. lat. [16]; some species of which have now been

assigned to the newly recognised family Sympoventuriaceae in the

new order Venturiales [24]. However, in the absence of type

material, the species was neotypified and the name changed to F.
heveae since it was adjudged that the original epithet could be

confused with F. macrosporium Bonord. 1864 [16,25]. The latter

authors added the rider that: ‘‘Fusicladium heveae is an unusual

species, since its teleomorph, Microcyclus ulei, is placed in the

Mycosphaerellaceae and not in the Venturiaceae’’. The coelomy-

cete genus Aposphaeria is recognized as a member of the family

Lophiostomataceae (order Pleosporales), as a well-supported group

[17,18]. Thus, questionable issues regarding the classification of

both the purported asexual morphs, as well as the sexual morph, at

the genus, family and order levels of the causal agent of SALB

need to be addressed. ‘‘Clearly, a re-examination of its taxonomic

position would be justified’’ [26] and a single unifying generic

name should be adopted in accordance with the new nomencla-

tural rules of one fungus one name system and the promotion of

progressive plant pathology [27].

Additionally, knowledge about the evolutionary history of M.
ulei and of related species is scarce and molecular studies could

help to resolve the true affinity of this fungus [15,25,28]. Thus, the

objectives of the present study were: i) To obtain molecular

evidence of the connection of the three spore morphs of M. ulei; ii)

to elucidate the phylogenetic relationships of M. ulei using

molecular approaches; iii) to determine the adequate nomencla-

tural treatment for the fungus causing SALB; iiii) to obtain

experimental evidence on the function of the intermediate

pycnidial morph; iv) to prepare an updated model of life-cycle of

the SALB fungus. Conceivably, this should also lead to a better

understanding of the biology and ecology of one of the most

threatening plant pathogens to mankind’s welfare.

Material and Methods

Ethics statement
No specific permits were required for the described field studies.

No endangered or protected species were involved in the studies.

Sampling, isolation and DNA extraction
Leaves with lesions of South American leaf blight were sampled

in commercial fields of rubber in Brazil. Sampling was aimed at

areas with records of high incidence of SALB in the Brazilian

states of Acre, Rondônia, Mato Grosso, Minas Gerais, Espı́rito

Santo and Bahia between 2008 and 2010 (Table 1). Single conidia

were transferred from fungal structures formed on lesions to

culture media, using a sterilized fine-needle under a dissecting

microscope. Monosporic cultures of F. heveae were grown on M4

culture medium [29] in the dark for 2 months at 24 6 1 uC.

Pycnidial stromata of A. ulei and ascostromata of M. ulei were

excised from a single lesion of an infected leaf with a sterilized

razor blade. Each lesion was examined under the microscope to

check for possible contamination by mycoparasites and selected

stromata (approximately 10 structures) were transferred to a

microtube (1.5 mL). The procedure was repeated from another

lesion on the same leaf. To break up the melanised cell walls, the

microtubes containing fungal material (mycelium, pycnidia or

ascostromata) were placed in liquid nitrogen and macerated using

a micropestle. DNA extraction was carried out following standard

cetyltrimethyl ammonium bromide extraction procedures [30].

DNA phylogeny
All phylogenetic analyses were performed using DNA sequence

of six loci as the first 900 bp at the 59 end of the 28S rRNA gene

(LSU), the first and second internal transcribed spacer (ITS), the

mitochondrial region of the mtSSU-rDNA and partial sequences

of nuclear genes such as the mini-chromosome maintenance

protein (MCM7), translation elongation factor 1-alpha (EF-1a)

and actin (ACT). Specific primers utilized were LR0R [31] and

LR5 [32], ITS1 and ITS4 [33], NMS1 and NMS2 [34], Mcm7-

709for and Mcm7-1384rev [35], EF1-728F and EF1-986R and

ACT-512F and ACT-783R [36], respectively.

Phylogeny of Microcyclus ulei
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The polymerase chain reaction (PCR) was done with a mixture

containing 20 gg of DNA, 0.2 mM of each primer and 16 of

DreamTaq DNA Polymerase Master mix as described by the

manufacturer (Thermo Fisher Scientific). PCR cycles were carried

out in a PTC100 thermal cycler (MJ Research, Incline Village,

NV) and consisted of a 5 min denaturation step at 94 uC, followed

by 35 cycles of 30 s at 94 uC, 30 s at 60 uC for LSU, mtSSU, EF-

1a, ACT and ITS primers or 57 uC for MCM7 primers and 1 min

at 72 uC with a final extension of 10 min at 72 uC. PCR products

were visualized by ultraviolet fluorescence following 1% agarose

gel electrophoresis in 16 TBE buffer and GelRed (Biotium)

staining. Single-band products were purified using the E.Z.N.A

cycle-pure kit (OMEGA Bio-tek). DNA concentration was

measured by NanoDrop 2000 Spectrophotometer (Thermo Fisher

Scientific). The same primers used for PCR amplification were

used for the sequencing reactions using the DYEnamic ET

Terminator Cycle Sequencing Kit (GE Healthcare) according to

the manufacturer’s recommendations. The purified PCR products

were sequenced using a MegaBACE 1000 DNA Sequencing

System (GE Healthcare). A consensus sequence was generated

after manually editing with The Staden Package, v. 1.6.0 [37].

Genbank accession numbers are provided in Table 1. Additional

sequences used in the analyses were obtained from GenBank and

the Fungal Genomics Portal of the Joint Genome Institute

[38](Table S1). Sequences were aligned with the Muscle v. 3.6

software [39] implemented in the MEGA 5.0 program [40].

Statistics resulting from sequence alignment such as variable,

parsimony-informative and uninformative sites were estimated in

MEGA.

Bayesian analysis was conducted with MrBayes v. 3.1.2 [41] to

determine generic relationships based on the LSU, mtSSU and

MCM7. Aligned datasets were inspected with MrModeltest v.2.2

[42] to select the suitable nucleotide substitution model and all

trees were rooted with Aspergillus niger. Additionally, another

dataset at species level was constructed and Bayesian phylogeny

was derived from the concatenated ITS, EF-1a and ACT

alignments with Pseudocercospora s. str. sequences. Passalora
eucalypti was used as the outgroup. For this analysis, the alignment

gaps were treated as a fifth character state and the MrModeltest v.

2.2 selected the best nucleotide substitution model for each

partition. The Markov Chain Monte Carlo (MCMC) analysis used

four chains that started with a heating parameter of 0.2 from a

random tree topology and lasted 50 million generations. Trees

were saved each 1000 generations, resulting in 50,000 saved trees.

Burn-in was set at 5,000,000 generations after which the likelihood

values were stationary, leaving 35,000 trees from which the 50%

majority rule consensus trees and posterior probabilities were

calculated. Quality of mixing and convergence to the stationary

distribution were assessed from three independent runs using

Tracer v. 1.5 [43]. The resulting phylogenetic trees were prepared

using FigTree v. 1.4 (http://tree.bio.ed.ac.uk/software/figtree).

All alignments and resulting trees were deposited into TreeBASE

(14357), and the nomenclatural novelty in MycoBank [44].

Taxonomy
Based on newly obtained information and information available

in the literature and on the re-examination of newly collected

material a model was prepared. Observations of the morphology

of fungal structures belonging to each morph in the life cycle were

made based on the examination of microscope slides containing

sections of such structures mounted in lactophenol or lactofuchsin

and observed under a light microscope (Olympus BX 51)

equipped with a drawing tube. At least 30 measurements were

made of each fungal structure.

Nomenclature
The electronic version of this article in Portable Document

Format (PDF) in a work with an ISSN or ISBN will represent a

published work according to the International Code of Nomen-

clature for algae, fungi, and plants, and hence the new names

contained in the electronic publication of a PLOS ONE article are

effectively published under that Code from the electronic edition

alone, so there is no longer any need to provide printed copies.

In addition, the new combination introduced in this work has

been submitted to MycoBank from where they will be made

available to the Global Names Index. The unique MycoBank

number can be resolved and the associated information viewed

through any standard web browser by appending the MycoBank

Table 1. Origin of the Microcyclus ulei isolates used in the phylogenetic study.

Isolate Location1
Coordinates in decimals
(Lat/Lon)

GenBank accession number (ITS, ACT, EF-1a, LSU,
MCM7, mtSSU)

Fusicladium heveae UFVMu01RO Buritis-RO -10.211944/-63.828889 KC800717, KC800725, KC800733, KC800741, KC800755,
KC800768

Fusicladium heveae UFVMu05MT Itiquira-MT -17.208889/-54.150000 KC800718, KC800726, KC800734, KC800742, KC800756,
KC800769

Fusicladium heveae UFVMu01ES Sooretama-ES -19.220087/-40.121414 KC800719, KC800727, KC800735, KC800743, KC800757,
KC800770

Fusicladium heveae UFVMu77BA Porto Seguro-BA -16.378001/-39.366433 KC800720, KC800728, KC800736, KC800744, KC800758,
KC800771

Microcyclus ulei AC Xapuri-AC -10.651944/-68.503889 KC800721, KC800729, KC800737, KC800745, KC800759,
KC800772

Microcyclus ulei MG Oratórios-MG -20.415833/-42.908889 KC800722, KC800730, KC800738, KC800746, KC800760,
KC800773

Aposphaeria ulei RO Ariquemes-RO -9.913333/-63.040833 KC800723, KC800731, KC800739, KC800747, KC800761,
KC800774

Aposphaeria ulei ES Cachoeiro do Itapemirim-ES -20.752609/-41.290358 KC800724, KC800732, KC800740, KC800748, KC800762,
KC800775

1Brazilian states: Acre (AC), Bahia (BA), Espı́rito Santo (ES), Mato Grosso (MT), Minas Gerais (MG) and Rondônia (RO).
doi:10.1371/journal.pone.0104750.t001
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number contained in this publication to the prefix http://www.

mycobank.org/MB/. The online version of this work is archived

and available from the following digital repositories: [PubMed

Central, LOCKSS].

Assessments of the pleomorphic development of
Microcyclus ulei under natural conditions

The development of the pathogen in the rubber leaf was

monitored under environmental conditions favorable to the

Figure 1. Bayesian analysis showing the phylogenetic relationships of Microcyclus ulei based on the LSU sequence alignment.
Bayesian posterior probabilities are given at the nodes and coded according to the colored scale bar. The black line scale bar shows 0.2 expected
changes per site. The tree was rooted with Aspergillus niger.
doi:10.1371/journal.pone.0104750.g001
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development of SALB. At the Michelin Plantation of Bahia

(Brazil), 90 leaves at the B2 developmental stage [45] of eight

rubber trees of the RO38 clone were tagged with a label and

observations of the disease were made until maturity (stage D),

from December 15, 2011 to February 24, 2012 (Experiment 1)

and September 19 to December 03, 2012 (Experiment 2). All trees

were pruned 45 days before each experiment started. Scoring of

sporulation in lesions naturally infected was performed at every

four days using a 1–6 scale for sporulation intensity of the asexual

morph (conidia) adapted from Junqueira et al. [46], where 1 =

necrotic non-sporulating lesions, 2 = chlorotic non-sporulating

lesions, 3 = slight sporulation on lower side of the leaflets, 4 =

moderate sporulation on lower side of the leaflets, 5 = high

sporulation on lower side of the leaflets, and 6 = high sporulation

on both sides of the leaflets. Pycnidial and ascostromata density

was assessed at the same time interval using a 0–4 scale where 0 =

no stroma, 1 = 1–5 stromata per leaflet, 2 = 6–15 stromata per

leaflet, 3 = 16–50 stromata per leaflet, and 4 = more than 50

stromata per leaflet. The weighted average was computed in each

observation from total of leaves in each phenological stage and

score of conidial sporulation intensity and spermogonia and

ascostromata density.

Test of infectivity and germination of pycniospores of
Microcyclus ulei under controlled conditions

Suspension of pycniospores was obtained from pycnidia formed

in near mature leaves (C/D stage) of the RO38 rubber clone.

There were no conidia or ascospores. Suspension of hyphomycete

asexual morph was used as positive control. Both inoculum

suspensions were adjusted to 26105 spores/mL in a Tween 80 at

0.05% solution. The lower surface of three young leaves from the

Fx 3864 rubber tree clone were spray-inoculated until runoff with

an inoculum suspension of pycniospores or conidia separately

using a HS Airbrush Complete set (Paasche Airbrush company) in

an inoculation chamber at 24uC, relative humidity greater than

85%, artificial daylight of 2000 lux and 12 h photoperiod. The

0.05% Tween 80 solution was used as a negative control.

Sporulation was scored after 12 days on all inoculated leaves.

The suspensions of pycniospores and conidia were incubated in

the dark at 25 uC on both water agar and M4 culture media.

Germination assessments were conducted at 6, 12, 24 and 120 h

of incubation at 24 61uC. The experiment was conducted twice.

Results

Phylogeny: LSU, mtSSU and MCM7 datasets
Strongly supported clades provide molecular evidence of

asexual-sexual morph connection between the three morphs of

the SALB fungus and thus the holomorph belongs to the family

Mycosphaerellaceae s. str., order Capnodiales (Figures 1–3). For

this study, two specimens each of M. ulei and A. ulei and four of F.
heveae collected in Brazil were analyzed. The generic relationships

were determined with datasets for LSU, mtSSU and MCM7 that

included 89, 55 and 36 taxa, respectively (available in TreeBASE)

and the same nucleotide substitution model, GTR+I+G was used

in all analyses.

The alignment of the partial sequence of the LSU region had

838 sites including alignment gaps, of which 243 sites were

parsimony-informative, 57 were variable and parsimony-uninfor-

mative, and 534 were constant. The LSU phylogeny (Figure 1)

resulted in Aposphaeria populina and A. corallinolutea (members

of the Lophiostomataceae: Pleosporales), species of the genus

Fusicladium (members of the Sympoventuriaceae: Venturiales),

species of Kellermania (members of Planistromellaceae: Botryo-

sphaeriales), as well as members of the Dothideales forming well-

supported monophyletic groups. Representatives of the Capno-

diales grouped within well-established families as Cladosporiaceae,

Capnodiaceae, Teratosphaeriaceae, Schizothyriaceae, Dissoconia-

ceae and Mycosphaerellaceae. In the Mycosphaerellaceae, several

well-supported clades were formed with Mycosphaerella s. str.

(asexual morph Ramularia) and mycosphaerella-like with the

asexual morphs Cercospora, Pallidocercospora, Pseudocercospora,

pseudocercospora-like, Ramulispora, Septoria, and Zymoseptoria,

amongst others. Microcyclus ulei and its morphs A. ulei and F.
heveae were identical and grouped in the well-defined Pseudo-
cercospora s. str. clade of the Mycosphaerellaceae, distinct from

Mycosphaerella s. str. (M. punctiformis, represented by Ramularia
endophylla), showing clearly that the holomorph of the SALB

fungus is a species of Pseudocercospora in the Mycosphaerellaceae.

The phylogeny reconstructed with the partial sequence of the

mtSSU sequences (Figure 2) had 724 characters (248 parsimony-

informative and 99 singletons), while the dataset of the partial

sequence of the MCM7 region (Figure 3) was based on a dataset

with 466 characters (254 variables sites of which 221 were

parsimony-informative). The OTUs from the Venturiales, Pleos-

porales, Dothideales and Capnodiales (Capnodiaceae, Cladospor-

iaceae, Dissoconiaceae and Mycosphaerellaceae) for mtSSU

region, and those from the Pleosporales (Lophiostomataceae and

Pleosporaceae), Venturiales and Capnodiales (Teratosphaeriaceae

and Mycosphaerellaceae) for MCM7 formed well-supported

clades. In both analyses, OTUs of the genus Pseudocercospora in

Mycosphaerellaceae were the nearest relatives of the holomorph of

the SALB pathogen.

Phylogeny: Concatenated ITS, EF-1a and ACT datasets
After the analyses at the genus level, phylogeny at species level

was conducted with some OTUs of Pseudocercospora s. str. using

sequences of ITS, EF-1a and ACT regions combined (Figure 4).

The nucleotide substitution models, GTR+I+G, GTR+G and

SYM+I+G, were used for each partition, respectively. For this

dataset, 1126 characters were used, 517 were constant, 367 were

parsimony-informative and 144 were singletons. Two well-defined

clades were observed, both with posterior probability of 0.96, and

the holomorph was closely related to Pseudocercospora angolensis.

Pleomorphic development and function of intermediate
pycnidial morph in the life cycle of Microcyclus ulei

The SALB symptoms were assessed in two consecutive

experiments from trees after pruning. In the first period,

December 15, 2011 to February 24, 2012, conidial lesions started

in leaves in the B2 stage on December 19 and were observed up to

the D stage leaves, which corresponded to 26 days of monitoring

(Figure 5A). A. ulei first emerged from the upper side of infected

leaves in the C/D stage on December 29. Ascostromata arose after

32 days (January 17) and were found only in the upper side of D

stage leaves. In the second period, September 19 to December 3,

2012, conidial lesions were found on September, 28 in B2 stage

leaves and in D leaves within a 28 day-period (October 17)

(Figure 5B). A. ulei appeared in the C/D stage on October 9 (20

days) and ascostromata arose after 36 days of monitoring and were

found only in stage D leaves. Both stages occurred in the adaxial

side of leaves.

The main weather descriptors during the course of the

experiment 1 (72 days) and experiment 2 (75 days) were,

respectively: average maximum temperature 29 and 27.7 uC;

average minimum temperature 22 and 20.2 uC; average relative

humidity 83% and 83.9%. Total (cumulative) rainfall was 267 and

267.8 mm.

Phylogeny of Microcyclus ulei
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The possible contribution of the so-called pycniospores for

disease initiation was investigated by inoculating a concentrated

suspension of ‘‘pynciospores’’ onto young leaflets under controlled

conditions and also by assessing spore germination. Inoculation of

pycniospores did not cause lesions, but signs of the disease were

visible in leaflets inoculated with conidia after 12 days. The

pycniospores did not germinate in vitro, on both culture media,

while conidia germination started at 6 h of incubation.

Taxonomy
Based on the multi-gene phylogeny analyses, the pleomorphic

fungus M. ulei was shown to cluster unmistakably within the

Pseudocercospora s. str. clade and, in accordance with Art. 59 of

the ICN (International Code of Nomenclature for Algae, Fungi

and Plants), a new combination is hereby introduced.

Pseudocercospora ulei (Henn.) Hora Junior & Mizubuti,

comb. nov. MB 804653 (Fig. 4)

Basionym: Microcyclus ulei (Henn.) Arx, in Müller & Arx, Beitr.

Kryptogamenfl. Schweiz 11: 373 (1962).

; Dothidella ulei Henn., Hedwigia 43(4): 254 (1904).

; Aposphaeria ulei Henn. Notizbl. Bot. Gart. Berlin-Dahlem 4:

135 (1904)

;Apiosphaeria ulei Henn., Hedwigia 43: 245 (1904)

; Fusicladium macrosporum J. Kuyper, Recueil Trav. Bot.

Néerl. 8: 374 (1911).

= ?Passalora heveae Massee (nom. nud.) sensu Stahel, Bull.

Dept. Landb. Suriname 34: 34 (1917).

; Melanopsammopsis ulei (Henn.) Stahel, Bull. Dep. Landb.

Suriname 34: 1–111 (1917)

Figure 2. Bayesian analysis showing the phylogenetic relationships of Microcyclus ulei based on the mtSSU sequence alignment.
Bayesian posterior probabilities are given at the nodes and coded according to the colored scale bar. The black line scale bar shows 0.2 expected
changes per site. The tree was rooted with Aspergillus niger.
doi:10.1371/journal.pone.0104750.g002
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; Fusicladium heveae K. Schub. & U. Braun, in Crous &

Braun, Mycosphaerella and its anamorphs: 1. Names published in

Cercospora and Passalora. CBS Biodiversity Series 1: 481 (2003)

Lesions on young stems, petioles, inflorescences, fruits and

(mainly) on leaves. Sexual morph lesions, initially punctiform,

becoming circular to subcircular, necrotic, pale brown centrally

surrounded with a ring of prominent black stromata, growing with

age and leading to loss of subcircular fragments (shot-holes), 1–36
1–6 mm diam. leading to foliage distortions and, when abundant

to leaf drop. Spermogonial morph lesions as for sexual morph.

Asexual morph lesions, leaf spots of variable shape, subcircular to

elongating along leaf veins to angular or irregular 1–7 6 1–

2.5 mm, greyish brown to black, scattered over lamina, sometimes

somewhat raised, coalescing with age and leading to premature

leaf drop. Internal mycelium, 3–6 mm diam, branched, septate,

hyaline to pale brown, smooth.

Ascomata pseudothecial, superficial, epiphyllous, in large

erumpent ascostromata having a foot-like hypostroma, spherical,

128–165 6 90–192 mm, walls of brown textura angularis, 6–9

cells, 42–57.5 mm thick, smooth. Dehiscence ostiolate, 2–10 mm in

diam; Asci bitunicate, clavate, 66.5–90 6 13–16.5 mm, 8-spored.

Ascospores ellipsoidal, 15–20 6 4–5 mm, 1-septate, constricted at

septum, hyaline, smooth. Conidiophores amphigenous, sometimes

emerging from a thin layer of brown cells or ill-developed stroma,

mostly reduced to conidiogenous cells, sparse or subfasciculate to

forming dense parallel groups, cylindrical, bulbose at the base,

erect, straight or slightly flexuous to geniculate torward the apices,

unbranched, 31–56 6 4–6 mm, 0–1 septate, pale brown, smooth.

Conidiogenous cells holoblastic, integrated, cylindrical to subcy-

lindrical, terminal, proliferating sympodially with 1–3 loci, 2 mm

diam, flat, unthickened, not darkened. Conidia solitary, obclavate,

straight to usually curved or twisted into a somewhat sigmoid

shape, 27.5–62 6 6–11 mm, apex rounded, base attenuated to a

truncate hilum, 0–1-septate, somewhat constricted at the septum,

subhyaline to pale brown, smooth to somewhat roughened, thin-

walled, hilum 2 mm wide, unthickened, not darkened. Spermogo-
nia adaxial superficial, in stromatic groups, globose, 112.5–138 6
87.5–150 mm, walls of pale to dark brown textura angularis, 4–8

cells-thick, 37.5–92.5 mm, ostiolate, smooth. Spermatiophores
phialidic, lageniform, integrated, 10–16 6 1–2 mm, hyaline,

smooth. Spermatia dumb-bell-shaped, 7–4 6 1 mm, aseptate,

hyaline, smooth.

Hosts and Distribution: on Hevea spp. (Euphorbiaceae), H.
benthamiana (Brazil); H. brasiliensis (Bolivia, Brazil, Colombia,

Costa Rica, French Guyana, Guatemala, Guyana, Honduras,

México, Nicaragua, Panamá, Peru, South America, Suriname,

Figure 3. Bayesian analysis showing the phylogenetic relationships of Microcyclus ulei based on the MCM7 sequence alignment.
Bayesian posterior probabilities are given at the nodes and coded according to the colored scale bar. The black line scale bar shows 0.2 expected
changes per site. The tree was rooted with Aspergillus niger.
doi:10.1371/journal.pone.0104750.g003
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Trinidad & Tobago, Venezuela); H.colina (Brazil); H. confusa
(Guyana); H. guyanensis (Brazil, Guyana, South America,

Suriname); H. guianensis (South America); H. guianensis var.
lutea (Peru); H. lutea (Peru); H. paludosa (Brazil); H. randiana
(Brazil); H. spruceana (Brazil, Costa Rica, Guyana, Panama,

South America, Suriname, Trinidad & Tobago); Hevea spp.

(Brazil, Trinidad & Tobago) [47,48].

Material examined: sexual morph and spermogonial
morph - BRAZIL, Pará, Belém, on living leaves of Hevea
brasiliensis, 14 March 2007, H. C. Evans (VIC 30547), asexual
morph - Bahia, Porto Seguro, on living leaves of Hevea

brasiliensis, September 2008, B. T. Hora Junior (VIC 39722 –

COAD 1339)

Additional material examined: sexual morph - BRAZIL,

Pará, Belém, 14 March 2007, H. C. Evans (VIC 30549), Acre,

Xapuri, January 2010, B. T. Hora Junior (VIC 39728); Minas

Gerais, Oratórios, Fazenda Experimental EPAMIG, September

2010, B. T. Hora Junior (VIC 39729); asexual morph -

BRAZIL, Rondônia, Buritis, July 2010, J. Honorato Junior (VIC

39723 – COAD 1340); Mato Grosso, Itiquira, February 2009, B.

T. Hora Junior (VIC 39724 – COAD 1341); Espı́rito Santo,

Sooretama, December 2010, B. T. Hora Junior (VIC 39725 –

COAD 1342); spermogonial morph - BRAZIL, Rondônia,

Figure 4. Phylogenetic relationships of Microcyclus ulei based on the combined ITS, EF-1a and ACT sequences alignment. Bayesian
posterior probabilities are given at the nodes and coded according to the colored scale bar. The black line scale bar shows 0.08 expected changes per
site. The tree was rooted with Passalora eucalypti.
doi:10.1371/journal.pone.0104750.g004
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Ariquemes, on living leaves of Hevea brasiliensis, July 2010, J.

Honorato Junior (VIC 39726); Espı́rito Santo, Cachoeiro do

Itapemirim, December 2010, B. T. Hora Junior (VIC 39727).

Discussion

DNA sequences of the three morphs in the life cycle of M. ulei
collected over a wide geographic area in Brazil confirmed the

asexual:sexual morph connection of this fungal species, but the

current classification of the pathogen in the Planistromellaceae

[13,14] was not supported by any of the phylogenies. The analysis

conducted in the present study was based on nuclear and

mitochondrial ribosomal rDNA, as well as on protein-coding

genes, and supports the classification of M. ulei in the family

Mycosphaerellaceae s. str., in the order Capnodiales, class

Dothideomycetes of the phylum Ascomycota. Mycosphaerellaceae

is a well-supported family within the Capnodiales with Myco-
sphaerella punctiformis (Ramularia endophylla as anamorph) as

the type species [49,50]. DNA sequence data of R. endophylla
were included in all analyses of generic relationships, corroborat-

ing the classification of the pathogen at the family level and

revealing a close relationship of the SALB fungus with Myco-
sphaerella. Currently, robust multi-gene phylogenetic analysis

concluded that Mycosphaerella is a polyphyletic group [51–53],

suggesting that Mycosphaerella s. lat. should be subdivided to

reflect natural groups (genera) as defined by their asexual morphs,

since Mycosphaerella s. str. is restricted to species with Ramularia
morphs [52].

The phylogeny of species representing the core genera of the

Planistromellaceae formed a clade within the order Botryo-

sphaeriales and revealed that previous morphology-based defini-

tions of genera have resulted in an artificial classification system

and thus, the genera Planistromella and Planistroma have been

considered to constitute one genus, namely Kellermania [15]. In

addition to M. ulei, other species previously classified in

Planistromellaceae have been transferred to the Mycosphaerella-

ceae, as in the case of Eruptio acicula [54] and to the

Phaeosphaeriaceae as for Loratospora aestuarii [53], after

phylogenetic re-evaluation. The classification of Microcyclus as a

mycosphaerella-like organism has been discussed previously [55].

The Microcyclus genus has ellipsoidal, hyaline, 1-septate asco-

spores in clavate, bitunicate asci, typical of the genus Myco-
sphaerella Johanson [26]. The development of stromatic tissue in

Microcyclus appears to be the only character that contributes to its

separation from the genus Mycosphaerella [55]; although Barr [13]

further characterized the genus by the presence of periphysate

ostioles in the type species Microcyclus angolensis. Nevertheless,

some mycosphaerella-like species have similar strongly erumpent

ascostromata [12,26]. As already demonstrated for Mycosphaer-
ella, the genus Microcyclus, as currently circumscribed, also

appears to be polyphyletic, given the variety of asexual morphs

associated with the assigned species [55].

The conidial morph of M. ulei, F. heveae, was ‘‘tentatively

retained in Fusicladium since it is morphologically indistinguish-

able from other species of this genus’’ [25]. Bonorden [56]

characterized the genus Fusicladium as having denticulate

conodiogenous cells. In Saccardo [57], Lindau [58] and Ferraris

[59] this genus was described as having sympodial conidiogenous

cells (denticulate) or percurrent (annelidic). In the 1950s, Hugues

[60] limited Fusicladium spp. to species having conidiogenous cells

with sympodial proliferation. Sympodial proliferation on its own is

a character that is far from adequate for grouping species within

the cercosporoid complex as this is a feature widespread among

genera of cercosporoids. Furthermore, our observations have

consistently shown that P. ulei does not have denticulate

conidiogenous loci but instead it has the typical locus structure

of fungi in Pseudocercospora - truncate without thickening and

pigmentation of conidiogenous scars contrarily to ‘‘slightly

denticulate’’ as in the description included in Schubert et al.

[25]. Another feature consistently observed that was in disagree-

ment with Schubert et al. [25] as the absence of ‘‘well formed

stromata from which the conidiophores emerge’’. Instead, only a

1–2 cell layer of pseudoparenchymatous cells from which a dense

palisade of somewhat parallel to subfasciculate conidiophores was

observed. Species of Fusicladium s. lat. form a monophyletic

group in the Venturiaceae [24,61], whilst other fusicladium-like

species have been assigned to the Sympoventuriaceae, both in the

Venturiales [24]. Although F. heveae has already been treated as a

Figure 5. Pleomorphic development of the life cycle of Pseudocercospora ulei. Weighted average based on the score of conidial sporulation
intensity and spermogonia and ascostromata density during the leaf development of RO38 rubber clone grown under field conditions. Assessments
were made from December 15, 2011 to February 24, 2012 (A); and from September 19 to December 3, 2012 (B).
doi:10.1371/journal.pone.0104750.g005
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species of the Passalora-type and, therefore, a cercosporoid fungus

[16], our molecular data demonstrate that the SALB pathogen is

better accommodated in the clade Pseudocercospora s. str., as

defined by Crous et al. [52,62] in which the type species,

Pseudocercospora vitis, resides (Figures 1 and 4). Whilst in the

Mycosphaerellaceae, many asexual morphs evolved in more than

one clade and thus represent different genera [51], [52], the

morphological convergence of ‘F. heveae’ is at the order level, as is

also evident for ‘A. ulei’ (Figure 1).

Pseudocercospora s. str. is a well-defined genus in the Myco-

sphaerellaceae, based on both DNA sequence and morphological

data [52,62], which is now utilized as a holomorph name with

species having mycosphaerella-like sexual morphs. As observed for

‘F. heveae’ in the present study, when the phylogenetic species

concept is applied to other species of the genera Cercostigmina,

Phaeoisariopsis and Stigmina, they are reduced to synonymy with

the genus Pseudocercospora [62–65].

Pseudocercospora s. str. includes several well-known and highly

destructive plant pathogens affecting important crops worldwide

[62]. Recognizing the SALB fungus as belonging to such genus

allows for the adoption of comparative epidemiology and

genomics approaches, using better studied pathogenic species

such as P. fijiensis, the causal agent of the black leaf streak (black

Sigatoka) disease of banana [66].

Based on the molecular evidence connecting the three spore

morphs in the life cycle of the SALB fungus and comparative

biology from phylogenetic relationships, the life cycle of M. ulei
was then re-assessed with special attention to its intermediate

‘pycnidial’ morph. Physiological data indicate that leaves at the B

and C stages act as sinks with high respiration rates and are almost

Figure 6. Hypothetical life cycle of Pseudocercospora ulei. A. Asexual morph with conidiophores and conidia (Bar = 35mm) and conidiogenous
cells with conidia at different stages of conidial formation. Pictures: Lesions to which the asexual morph is associated (left) and close-up of leaf
bearing typical lesions (right). B. Spermogonial morph with stroma, spermogonia (Bar = 30 mm) and spermatia (Bar = 7 mm). Pictures: Lesions to
which the spermogonial morph is associated (left), and close-up of the same lesions (right). C. Sexual morph with stroma, pseudothecia, asci and
ascospores (Bar = 60mm). Pictures: Lesions to which the sexual morph is associated (left), and close-up of stromata (right). Dotted arrows indicate that
both ascospores and conidia can infect young leaves.
doi:10.1371/journal.pone.0104750.g006
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lignin-free [3]. Previous studies report that conidial lesions are the

first stage of the disease and fertile pycnidia occur three to five

weeks later on mature or near-mature diseased leaves [2,19].

Ascostromata become mature at about four to six weeks and the

formation of ascospores is correlated with effete pycnidia [1]. In

our study, mature ‘pycnidia’ were seen after two to three weeks on

the upper surface of leaves in the C/D and D stages in the area

previously occupied by abaxial conidial (Pseudocercospora) lesions.

After four weeks, the ascostromata became more visible and

increased in number and size.

In contrast to a previous study [1], but in accordance with an

earlier study [19], our results confirmed that the pycniospores do

not germinate in vitro and fail to infect rubber leaves. These

observations corroborate the hypothesis that the supposedly

erumpent pycnidial structures are in fact spermogonia and are

likely to be involved in the initial stages of the sexual cycle, as

suggested previously [2,19,26]. Commonly, fungi in the Myco-

sphaerellaceae produce spermogonia and the spermatia are

thought to act as male sexual elements because of their small

size and inability to germinate and to infect the host plant.

Pseudothecial development begins from protoascomata, usually

concurrently with the spermogonia, and the two structures are

similar in size and shape [67–70]. The production of spermatia is

also part of the life cycle of Pseudocercospora fijiensis [66,71], and

such spermatia are considered as male gametes, formed in

spermogonia, which usually develop from the substomatal

chambers before the formation of pseudothecia; although the

cytological details of spermatization and ascospore development

have not yet been elucidated [66]. Similar fertilization events can

also take place in P. ulei.
A revised version of the life cycle of this pleomorphic fungus is

presented (Figure 6). Only one asexual morph, which belongs to

Pseudocercospora s. str., is present and conidia infect young leaves

being responsible for the destructive secondary disease cycles in

the field. The sexual cycle begins with spermogonial developing in

the leaf (from stage C/D) and finishes with mature ascospores in

pseudothecia within pronounced, erumpent ascostromata of the

Mycosphaerella-type.

The persistence of significant gaps in the knowledge on the

biology of a fungus of the importance of P. ulei has puzzled

Money [7] who stated ‘‘I am astonished by the apparent ostrich-

like behavior of the rubber-manufacturing companies towards the

disease… the scientists endeavor to understand the fungus appears

frozen… the lack of recent publications in the public domain is

remarkable.’’ His anxiety was clearly justifiable considering the

lack of a proper taxonomic treatment for the fungus and of

adequate understanding of its life cycle as indicated by the present

findings. Much more needs to be investigated about the SALB

fungus if we are willing to properly understand the biology of the

fungus and prepare to deflect the threats represented by SALB.
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