Demidov et al. BMC Bioinformatics (2016) 17:429
DOI 10.1186/512859-016-1272-6

BMC Bioinformatics

@ CrossMark

A statistical approach to detection of
copy humber variations in PCR-enriched
targeted sequencing data

German Demidov'#3#, Tamara Simakova', Julia Vnuchkova' and Anton Bragin'”

Abstract

Background: Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive
parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and
accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure
variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for
structural variants detection were proposed, but they have limitations and often require datasets of certain type, size
and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution
germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool.

Results: We have developed a machine learning algorithm for the detection of large duplications and deletions in

the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies
and established the algorithm’s sensitivity and specificity. We have compared developed tool with other available
methods applicable for the described data and revealed its higher performance.

Conclusion: We showed that our method has high specificity and sensitivity for high-resolution copy number
detection in targeted sequencing data using large cohort of samples.
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Background

Targeted sequencing (TS) is a routine method that enables
sequencing of specific genome regions that are of interest
to researchers. In comparison with whole genome (WGS)
or whole exome sequencing (WES) the TS has lower anal-
ysis cost, provides deeper target regions coverage and
reduces storage and analysis infrastructure requirements
[1]. In contrast, variability in efficiency of amplification
during library preparation leads to uneven amplicon cov-
erage from one experiment to another. This limits the
usage of existing coverage-based CNV detection tools for
a TS data. Well-known paired-end algorithms that use
insert size and reads’ orientation are unapplicable for anal-
ysis of data produced with amplification-based sample
preparation techniques [2, 3].
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CNV corresponds to the deletions and duplications of
some large (one hundred base pairs or larger) portions of
the genome [4]. Many known CNVs are associated with
genetic disorders and thus are classified as pathogenic
mutations [5-7]. Several approaches for CNV detection
are used in clinical diagnostics, but most of them use WGS
or WES data and cannot be applied for amplification-
based TS [8, 9].

The CNV detection tools that work with TS data usu-
ally use one of three approaches or combination thereof,
which are on-target read depth (RD), B-allele frequen-
cies (BAF) or off-target read depth (OR). The examples
are ADTEx [10] (uses RD + BAF), ExomeCNYV [11] (uses
RD + BAF) , CNVKit [12] (uses RD + OR). However,
BAF and OR approaches have several limitations. At first,
BAF approach is typically used in case-control studies for
the detection of long CNVs while the probability of hav-
ing at least one point mutation for CNV covered with
small amount of short targets is low. OR approach is
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suitable only under the assumption that significant por-
tion of reads are off-target so they provide a low-coverage
sequencing of whole genome which is not always the
case — there can be only negligible amount of reads that
did not map on targets per sample. Another issue of
OR approach in respect of amplification-based sequenc-
ing is a non-uniform coverage of off-target reads across
the genome that arises due comparatively frequent non-
specific amplification. Thus we conclude that RD is the
most appropriate method for detection of CNVs that can
be intersected with small number of targets.

Usually RD CNV detection methods evaluate the ratio
between reads aligned to the target DNA segment and the
total number of aligned reads [13]. If read count for the
selected DNA segment in a sample differs from the value
estimated for the control set of samples lacking CNVs,
the testing sample is considered to carry CNV corre-
sponding to the DNA segment [14]. This works well with
WGS that provides somewhat uniform read distribution
along the target region (moreover, the uniformity can be
improved by taking into account sequence characteristics
such as GC-content), but cannot be directly applied to
PCR or hybridization enriched data since they are char-
acterized by a substantial coverage variability due to the
differences in DNA fragments capture or amplification
efficiencies. Exponential growth of PCR product quantity
further reduces the coverage uniformity. Therefore, exist-
ing CNV detection algorithms in WGS data are poorly
applicable for TS data.

We have found several tools for CNV detection in PCR-
enriched TS data [15-17]. As was described in papers,
these tools were designed for detection of long variants
intersected with substantial number of targets thus the
sensitivity and/or specificity are expected to be low in case
of TS data analysis that contain CN'Vs of regions covered
with small (up to one) number of amplicons. Below we
provide analysis that supports this conclusion.

We present a novel approach to the problem of CNV
detection in TS data. In contrast to the vast majority of
coverage based CNV detection tools for WGS/WES data,
we do not use library size normalizations. At the heart of
the algorithm is the idea of biochemical similarity of some
amplicons in the large pool of sequences in multiplex PCR
and machine learning techniques. We also present the tool
named CONVector that implements this approach. To
evaluate tool efficiency we performed verification using
large dataset of more than 1000 sequencing results and
made a comparison with existing tools. The tool is open
source and is deposited on GitHub.

Methods

Implementation

Algorithm presented is implemented in CONVector soft-
ware package that uses Python for user input collection

Page 2 of 12

and data preprocessing and Java (> 1.7) for data analysis.
Source code is licensed under GPLv2 and is deposited on
GitHub: https://github.com/parseq/convector.

Model description

Amplification-based enrichment strategy is widely used
for targeted sequencing. Commercially available enrich-
ment systems, such as AmpliSeq (LifeTechnologies), pro-
vide the way to selectively amplify genomic regions of
interest. Number and location of targets are determined
by the analysis aim and varies from hundreds to thou-
sands in one sequencing library thus making analysis
highly multiplex. Quantity of PCR-product from certain
target region (N) generally depends on the initial amount
of target DNA segment in the sample (Np), number of
PCR cycles (c), amplification efficiency (e), and is typically
modelled as

N =Np x (1+e). (1)

The main principle of coverage-based CNV detection
is to estimate Nps from Ns and to compare estimated
Nps of targets to find the underrepresented (deletions)
or overrepresented (duplications) sequences. The task of
homozygous deletion detection is trivial since in case of
Ny equals to zero the N is also a zero. Such condition can
be detected by the lack of target sequence in the sequenc-
ing results. Other cases such of heterozygous deletions
and homo- and heterozygous duplications require deduc-
tion of Ny’s from N'’s that can be done by counting reads
from corresponding amplicons. The number of reads (N),
i.e. amplicon coverage, is highly dependent on amplifica-
tion efficiency that is influenced by amplicon structure,
primer characteristics and reaction conditions. In highly
concurrent multiplex PCR environment the amplification
balance can be shifted by even minor condition changes
that are beyond the control of the researcher. Resulted
imbalance leads to an inability to directly compare target
region absolute or relative coverages between samples to
perform CNV detection, except of cases when analyzed
genome region is covered by large number of amplicons
(thousands of bases). Nevertheless, detection of relatively
small portions of the genome, up to a single exon that is
covered by one or few amplicons, may have biological or
clinical importance.

To get CNV detection with an amplicon scale resolu-
tion we imply the idea that in large amplicon popula-
tion, which is the case of target PCR, it is possible to
find amplicons with similar respond to reaction condi-
tions. Therefore to detect changes in the initial amount
of targets we can compare coverages of targets which
have similar amplification behavior in series of samples
catching the anomalies (under- or overrepresentation), i.e.
CNVs. Since the described approach accounts for any fac-
tors affecting amplification efficiency (even hidden and


https://github.com/parseq/convector

Demidov et al. BMC Bioinformatics (2016) 17:429

uncontrolled), it is expected to be more efficient than the
normalization just on amplicon or primer characteristics.

The analysis consists of two steps: grouping amplicons
with highly correlated coverages in the series of sam-
ples and CNV detection by multiple coverage comparison
between amplicons within a group. From this perspective,
CNV detection can be formulated as anomaly detection
using methods of robust statistics.

The analysis requires aligned reads from samples
sequenced with the same set of primers and under the
same reaction conditions. The goal of analysis is to deter-
mine zygosity state for each amplicon in each sample of
the dataset. The model suggests that if two amplicons
have similar amplification efficiencies and the influence of
stochastic effects is small enough, the coverages of these
amplicons in set of samples are correlated. The analysis of
intersection of confidence intervals for A obtained using
Box-Cox transformation applied to the pairs of correlated
amplicons and model 1 suggests that log transformation
of amplicons coverage should be used to stabilize the
variance and to make the variables homoscedastic. We
propose two algorithms, unsupervised and supervised,
that can be used separately or in combination. First (unsu-
pervised) algorithm operates with amplicons while the
second one (supervised) operates with CNV sites that
may include one or more amplicons. Since CNV break-
points are usually located in intronic regions, it is useful
to describe CNVs sites in terms of affected exons [18]. We
assume that the dataset may contain a number of sam-
ples carrying CNVs, but each particular target is affected
by CNV just in some subset of samples for the first algo-
rithm. The prerequisite for the second algorithm is the
presence of at least 20 samples that are free of CN'Vs in test
dataset which can be satisfied with a priori known control
dataset or be assumed based on low previously estimated
populational frequency of CNVs in the particular genes of
interest. The frequency of CNVs’ presence in the dataset
and the dataset size influence on the robustness and effec-
tiveness of the statistical model. Presented model is based
on the assumption that each particular CNV is present in
no more than 20 % of samples in the dataset, which is in
consistence with holds for majority of real-life cases. We
used the robust linear regression model to estimate the
linear relationships between amplicons.

For CNV zygosity determination, we assumed that the
amplification starts from the equal numbers of maternal
and paternal copies of targets. The result of amplification,
i.e. coverage, is a sum of independent random variables so
we can build a linear model for any zygosity state, except
of homozygous deletion (coverage is zero, the detection
is trivial), by multiplication of coverage with correspond-
ing factor: 0.5 for heterozygous deletion, 1.0 for wild type,
1.5 for heterozygous duplication and 2.0 for homozygous
duplication and so on. Using the linearity of the sum of
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independent random variables’ variances, we can con-
clude that the variance is decreased when multiplier is
equal to 0.5 and increased when it is greater than 1.0. This
limitation results in the difficulty of duplication detection
relatively to a deletion’s detection due the lower power of
corresponding statistical tests. However, it is possible to
build a statistical model for CNV statuses detection inside
the group of correlated amplicons and use the likelihood
considerations of certain CNV status for each amplicon in
each sample, but the power to detect the exact number of
copies is decreasing with the higher ploidy states.

Our algorithms use several robust statistical techniques
that require comparatively large test dataset size for accu-
rate CNVs’ detection. Using the real sequencing data
(described below) we determined the lower threshold for
the number of samples in the test dataset as 25. However,
the tool can be used for datasets of smaller size in case the
control dataset of sufficient size is available.

CNV detection algorithms

The detection pipeline consists of two stages: unsuper-
vised and supervised (Fig. 1). The unsupervised algo-
rithm takes coverages of amplicons in the samples as an
input and does not require a priori assumptions about
the potential presence of CNVs except the maximum
CNV frequency at any particular site (described above).
The next algorithm (supervised) requires a control (free
of CNVs) dataset. Control dataset can be made using
the results of the unsupervised algorithm or alternative
methods.

We use following notations: 4; means j-th amplicon in
the dataset, cov(a;) denotes the a;’s vector of coverages
across the samples, aj denotes amplicon which vector
of coverages is correlating, i.e., has correlation is higher
than fixed threshold T, with cov(a;) (Fig. 2). T can be
choosen as biggest number from 0.0 to 1.0 such as all anal-
ysed exons have at least one amplicon that passes quality
control procedure (described below). cov(a;)[i] denotes
coverage of amplicon j in the sample i. In order to exclude
cases when both a; and aj; can be affected with CNV we
restrict selection by setting minimum physical distance
between a; and aj. In cases when target regions spread
across genes it is possible to select aj from the set of target
regions that are located on genes other than a; is located
on. Also we denote Mpormais MHetpel» Mpup as statistical
models for number of copies 2, 1 and greater or equal to
3, respectively.

We impy the idea that standard correction on fea-
tures such as GC-content and read length removes a
large part of variation, but there are many other sources
for amplification-based sequencing (for instance, primers’
properties) and it is not usually possible to infer all of
them. Thus we use different type of normalisation: we
construct statistical models within clusters of correlated
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amplicons. They explain large proportion of variation
in response variable which makes standard corrections
unnecessary. Pearson’s correlation coefficient used as an
effective non-robust estimator of explained variance for
the situations where we are sure that there are no out-
liers. Robust estimators of correlation and regression’s
parameters used as less effective robust alternative for the
case where the possible presence of outliers is unknown.
Finally, normalisation on correlated random variables
makes covariance matrix more close to diagonal, con-
sequently, robust to overfitting, which makes usage of
regularized classification methods possible.

Unsupervised algorithm
CNV states are determined by building linear models
using a cov(a;) as the response and cov(aj;) as predictors
(Fig. 2).

If cov(ay) [ i] can not be recognized as an outlier for linear
model Mpjrmai(aj), we will consider that this amplicon is
in wild type state for sample i.

If cov(a;)[ i] is lower than detection threshold (i.e., close
to 0), the amplicon is in homozygous deletion state for
sample .

If cov(a;)[ ] is lower than we can expect for wild type
amplicon and it is closer to the linear model for heterozy-
gous deletion Mpyespei(aj) (ie., the corresponding resid-

ual is smaller, which means that the simple Bayes factor
K = P(cov(a))|Mperpel (4)))
- P(COV(ﬂj)lMNormal(“f))
one), but were not recognized as the homozygous dele-

tion, we can conclude that it is a heterozygous deletion
(for sample ).

If cov(a;)[ i] is detected as an outlier for sample i, but it is
higher that the regression line and it is closer to the linear
model for heterozygous duplication, it can be considered
that it is a duplication.

Our approach was developed for single-copy germline
CNVs’ detection so this set of models covers vast majority
of real-life cases, but number of models can be increased
for detection of complex rearrangements involving quan-
titative change of higher order (4, 5, etc.). Such ploidy

for this models is greater then
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states are not considered as a separate case because the
prediction intervals of the models for different types of
duplications intersects largely. It is possible to determine
the exact ploidy of the region only in case the region is
large, but we considered the detection of CNVs with the
highest possible resolution (up to one amplicon) as more
important than detection of regions with higher possible
ploidy with necessarily low resolution.

In order to avoid the influence of errors in predictors
we determine the CNV state of an amplicon a; by con-
structing L linear models that explain variance in cov(a;)
better than others. To do this, we use L other amplicons
ajr, which vector of coverages in series of samples being
analyzed shows the highest correlations with cov(g;) in the
same series of samples. Then we assume that if the cover-
age of g; in a particular sample was detected as CNV in N
of L such models, then it indicates the presence of CNV. L
and N were empirically choosen as equal to 5 and 4 for our
experimental data since larger or smaller numbers gave us
worse performance on the train dataset.

S,-correlation coefficient is used as a measure of simi-
larity [19]:

2w - S2W)
5T S2(u) + S2(v),

where u# and v are the robust principal variables: u
x—med(x) + y—med(y) _ x—med(x) _ y—med(y)
V2MAD(x) V2MAD(y)’ = T 2MAD(x) V2MAD(y)"

Here

and below S,, means Rousseeuw and Croux’s estimator of
standard deviation [20].

We used Theil-Sen estimator [21] as a robust linear
model because of its high breakdown point (1 —

~

29.3 %), satisfactory effectiveness and simplicity. v
We used the standard formula for internally studen-
tized residuals with the standard deviation replaced with
its robust analogue. We used empirical level of signifi-
cance for the Student’s quantile as a threshold for outliers
detection (o 0.02 for deletions and « 0.05 for
duplications). The formula of calculating i-th studentized

residual is:
s (1-(; )

where &; means the i-th residual, X means mathematical
expectation of the random variable. Algorithm’s pseu-
docode is available in Additional file 1.

A

&

xi—a_c

t LG

Supervised algoritm

Using the output from the unsupervised stage samples can
be grouped using the following rule: if at least one of the
amplicons is marked as outlier the sample is suspected of
carrying CNV and added to test dataset, and if there is no
outlier, the sample is added to control dataset. Also it can
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be performed using control dataset with a priori known
absence of CN'Vs.

In general, we should search CNVs in any possible
CNYV site, which can be reformulated as a classification
problem. We use ideas of linear discriminant analysis,
however, the decision making is divided into 3 separate
steps in order to make it configurable for the particular
purposes.

Given that CNV site can be considered as a multivari-
ate random variable and in practice we may have up to
100 samples per dataset (each sample consists of hun-
dreds of amplicons), the direct usage of robust covariance
matrix consisting of thousands of predictors is useless
because of overfitting. To handle this we normalize the
coverage values and use the block covariance matrix.
In the presented work, we used the size of block one
times one.

The algorithm contains several steps:

1. For each amplicon a; we determine cluster C of k
other amplicons aj. Algorithm uses Pearson’s
correlation coefficient as an estimator of correlation
in case the Control set is big enough (more than 20,
according to bias and variance of permutation based
simulations) and robust correlation estimator
otherwise.

2. Normalisation of amplicons’ coverages:
xj = log(cov(aj)) — (W) In order to
reduce variance we use a group of highly correlated
amplicons located far enough from each other so
they can not be affected by the same CNV (i.e,,
amplicons from different genes or chromosomes)
and then normalise on its average instead of
normalisation on total amount of reads. For datasets
with large number of genes and possible CN'Vs more
robust normalisation procedure can be applied. For
example, instead of raw coverages a sampled
distribution of coverages, predicted by linear models
on the first step, can be created and considered as
normalisation factor (correlated amplicons should be
taken uniformly from different genes).

3. We construct several probabilistic models for each
amplicon, respectively:

MNormal (ﬂj)’ MHetDel (6{/‘), Mpup (ﬂ}) Assuming that
all x; are distributed normally, we calculate the
robust mean estimations for models using vectors
log(cov(ay)),log(cov(0.5a;)), log(cov(1.5x;)) and
robust scale estimation S, for x;. For simplicity, we
assume that number of reads produced from a
fragment is distributed as Pois(N), where N was
described in 1. Since we applied log transformation
that is much stronger than square root
transformation (that keeps variance approximately
constant), we have to use correction factors for
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variances. We can estimate the correction factors
using simulation procedure as

&2 (per) = 252 (log(x), 62 (xjpup) = 5-6>(log(x))),
where x;pe; and x;py, denote expected transformed
coverages for Myespei(a;), Mpyp(aj), respectively.

. For each region we ask three questions consequently:

a) can region’s vector of coverages be produced by
probabilistic models Mpzetpes 0r MHetpup? b) is it
highly probable that the region was produced by
Mnormal? €) is Mpgetper O MHetpup the most probable
explanation for the observed coverage of the region?
In order to answer the first question a), we test if
each amplicon’ coverage can be produced by these
models, using x? statistics with low level of
significance o (0.05 divided by expected number of
amplicons that are altered in copy number, can be
roughly estimated as “total number of amplicons in
Test dataset divided by 2, since we have an
assumption on CNVs’ frequency). If all amplicons
located inside CNV site can be produced by one of
this models, we then mark this site as “suspicious”.
Next, we are trying to reject the hypothesis that the
normalised coverages within each “suspicious” CNV
site can be produced by Mpypyma. We use normalised
Euclidean distance as a test statistic (2) It follows
x2-distribution because we can assume that the
estimated covariance matrix is approximately
diagonal after the normalisation step. False discovery
rate is controled using Benjamini—-Hochberg
procedure. Obtained adjusted p-values are qualified
as an answer for the second question.

Finally, we check if region’s coverage Bayes factor
(where Hy is the absence of CNV and Hj is one of
the CNVs’ models) is bigger than some constant
value. Using prior knowledge of CNVs frequency

in our dataset we chose the value of 100 as a
threshold and assumed equal prior probabilities of
models. The graphical representation is depicted on

(Fig. 3).

. The larger size of Control set leads to more accurate

statistical estimations and increase the quality of
output so if it was found that some of samples from
Test set are free of CNVs, we include them in the
Control set and repeat the procedure from the first
step. Otherwise, we provide the final report about
CNVs on CNV-site resolution (currently, we use
exons as potential CNV sites due to biological
reasons).

Normalised Euclidean distance (NED) can be defined as:

(2)
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where we used S, estimator of standard deviation for
x; — y; values as s; and y is a vector of the location esti-
mations. We used the median of Walsh averages due its
robustness and effectiveness as the estimation of location.

Input data quality control

Low covered samples may lead to an unreliable results
due the high influence of stochastic effects on amplifica-
tion and sequencing therefore we filtered out samples that
contain less than 15000 reads. We use the quality con-
trol procedure for amplicons as well: in case if amplicon
has average coverage less than 50 or does not have the
required number of correlating amplicons for the predic-
tion on the unsupervised algorithm, we mark this ampli-
con as QC failed and do not consider. In case the whole
exon is covered only with amplicons that did not pass QC
control, we do not include this exon into analysis in all
samples.

After initial filtering the algorithm defines all amplicons
which coverage is close to zero as homozygous deletions.
We use coverage 10 as a threshold for homozygous dele-
tion since in practical cases the coverages for homozygous

deletions do not exceeded this limit. Then it filters out
samples that are not similar to other samples in the
dataset. We call such samples “irregular” because they
have no analogues in amplification behavior expressed in
coverage. Statistical estimation on irregular samples and
determination of their CNV states are inaccurate. The
presence of large CNV leads to abnormal coverage ratios
therefore only samples deviated by more than #n/2 genes,
where 1 denotes the overall amount of genes, n > 2, are
considered irregular. The assumption is that the presence
of n/2 large scale CN'Vs in n genes in one sample is rare.

The algorithm can be divided into several steps. After
read counting, we perform library size normalisation tak-
ing into account that the total number of reads can be
influenced by the large CNV and lead to bias in nor-
malised data. To solve this problem, normalisation is
performed within the genes: we divide each amplicon’s
coverage by the total number of reads aligned to corre-
sponding gene. For simplicity, we assume that logarithms
of obtained values are normally distributed.

Next we calculate NED (2) using this normalised log-
transformed data for each gene separately. Working
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with real data, we found the significant proportion of
amplicons can have extreme values which leads to unre-
alistically high NED for the whole gene. Due the fact
that the presence of small proportion of outliers does
not corrupt the further analysis due the used estimators’
robustness, we use only 80 % of coordinates (rounded up)
with smallest values for NED calculation.

We compare obtained NED value with x2-distribution
and degrees of freedom equal to 80 % of initial number of
amplicons within the gene. The sample does not pass qual-
ity control if test statistics for more than 4 genes exceed
pre-defined level of significance.

Results and discussion

Basic data analysis

Tools from Life Technologies Torrent Suite™ version 4.2
with parameters recommended by manufacturer were
used for reads’ alignment. We developed approach for
mapping reads to target regions and describe it in
Additional file 1.

CONVector evaluation by experimental datasets

To test our model we used 26 experimental datasets
generated on the Ion PGM™ platform using VariFind™
Neoscreen assay (Parseq Lab, Russia) with three differ-
ent sequencing panels targeting CFTR, PAH and GALT
genes. Panels IAD30284, IAD39777 and IAD75243 con-
sisted of 126, 127 and 146 amplicons correspondingly
(coordinates of targets are provided in Additional file 2).
Each dataset comprised about 48 samples (see Additional
file 3). Sequencing data from healthy individuals and
patients diagnosed with cystic fibrosis, phenylketonuria
and galactosemia were obtained from Parseq Lab biobank
(read length was equal to 150, average coverage of samples
was distributed from ~120 up to 1200 reads per ampli-
con). Total number of analyzed sequencing results was
1090. Total number of unique samples was 552. We used
sequencing data generated by four independent labs, in
order to evaluate robustness and reproducibility of the
developed tool.

For panels 1AD30284 and IAD39777 CNV detec-
tion was performed using unsupervised algorithm only,
because 11 exons were covered with only one amplicon.
For panel IAD75243 we used both algorithms in the single
pipeline since the panel was designed in such a way that
each exon was covered with more than 2 amplicons or has
at least 2 flanking amplicons. CONVector evaluates cov-
erage correlation between amplicons within a sample and
within a run. PCR amplification biases result in deviations
in amplicons behavior and decreased correlation. Datasets
with highly correlated amplicons coverage are good qual-
ity and unbalanced datasets are poor quality. Poor quality
may be the result of PCR bias or differences in sample
preparation procedures. We revealed that the variance
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of amplicon relations varies greatly from experiment to
experiment that makes CNV detection within set of sam-
ples sequenced in one run is more effective therefore, we
analyzed each dataset separately.

Among 552 analyzed samples, 507 samples have suc-
cessfully passed QC filter and 33 have carried CNVs
detected by CONVector. Interestingly that only 23 of them
have been previously found in corresponding samples
using convinient methods. Yet four of previously known
CNVs have not been detected by CONVector (one sample
didn’t pass QC filter; three false-negative samples carry-
ing CFTRdele2,3 had poor sequencing libraries). All newly
detected CNVs have been confirmed by MLPA method
(SALSA MLPA probe sets by MRC-Holland, Amsterdam,
The Netherlands). One of the detected CNVs, PAHdele
4, is described for the first time in PKU patient carrying
L48S on the other allele. Detected CNVs included dele-
tions and duplications of the CFTR gene and deletions of
the PAH gene. We did not detect CN'Vs in the GALT gene.
All CNVs, except one homozygous CFTRdele2,3 detected
in one analysis, have been heterozygous. CNVs size is been
ranged from one exon to the whole gene. Thus, we can
conclude that applied algorithm is suitable for targeted
sequencing data and allows accurate detection of different
types of CNVs (see Additional file 3).

In order to calculate sensitivity we have selected 64
analyses of 36 unique samples carrying different types of
previously known CNVs (data from Parseq Lab biobank)
and analyzed them with the CONVector tool (results are
available in Additional file 4). Analysis was performed on
data generated during 13 sequencing runs (6 runs with
1AD30284 panel; 6 runs with IAD39777 panel; 1 run with
IAD75243 panel). We defined sensitivity as the propor-
tion of true positives among all positive results. Sensitivity
of the developed tool comprised 84.62 % (95 % CI: 73.52-
92.37). False negative results were mainly obtained for
CNVs affecting one exon that is covered by one ampli-
con, such as PAHdele5 in IAD39777 panel. We achieved
better results for this CNV using panel IAD75243, where
this exon is covered by three amplicons. Thus, sensitiv-
ity of the detection may be increased by appropriate panel
design with increased number of amplicons covering the
exons. This is confirmed by the result, calculated only for
exons that are covered by more than one amplicon. The
sensitivity comprised 94.23 % (95 % CI: 84.05-98.79). In
order to calculate specificity we have analyzed 244 unique
clinical samples from compound heterozygous patients
diagnosed with cystic fibrosis or phenylketonuria. All
patients are carriers of two previously known pathogenic
SNPs located in trans (data from Parseq Lab biobank). We
assumed that the probability of appearing CNV in cis with
pathogenic SNP is extremely small therefore we consid-
ered such samples as not carrying CN'Vs in corresponding
genes, i.e. CFTR or PAH. We did not found false positive
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CNVs thus specificity calculated as the proportion of true
negative among all negative results is comprised 100 %
(95 % CI: 98.50-100.00 %).

We also provide the result of analysis of the whole
dataset of 938 sequencing results that passed QC proce-
dures, sequenced by panels described above and consisted
of biological and technical replicates. Every reported
result of one sample’s analysis is called positive. In case the
reported result has intersection of at least 50 % with true
CNV, we called it true positive, otherwise false positive.
When CONVector does not detect CN'Vs detected previ-
ously, we consider it as a false negative. Duplications that
affect only one exon were not considered as a call since, as
was shown above, models for normal and duplicated data
intersects largely, comparatively to deletion and normal
models’ intersection.

Sensitivity and specificity of CONVector using 938 sam-
ples were equal to 87.5 % (95 % CI: 78.73-93.59 %) and
94.7 % (95 % CIL: 92.98-96.11 %) for the unsupervised

Page 9 of 12

algorithm and 90.9 % (95 % CI: 82.87—-95.99 %) and 92.94 %
(95 % CI: 91.01-94.57 %) for the supervised one. As can
be seen from the design of algorithms, they differ in detec-
tion sensitivity of short and long CNVs (Fig. 4). Large
part of the false positive CNVs that covered only one or
two amplicons arise recurrently in technical replicates,
but was not confirmed by alternative methods. We sug-
gested that they can be caused by technological artifacts
such as inability of primers’ binding. All 8 false positively
detected deletions covered with more than > 10 ampli-
cons also happen recurrently in technical replicates and
were detected by other tools, but each of them has at
least several heterozygous mutations inside so we consider
these results as caused by wrong library preparation. The
analysis of these CN'Vs with multiplex ligation-dependent
probe amplification also showed the presence of large
deletions (an example is provided in Additional file 1).
CONVector’s computational time for the dataset of 48
samples and panel of 128 amplicon is approximately 1
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Fig. 4 Barplots of CNVs' lengths detected by two algorithms. x-axis: lengths of CNVs, in amplicons (after QC), y-axis: CNVs' frequencies. Top:
unsupervised algorithm (number of True Negatives: 805), bottom: supervised algorithm (number of True Negatives: 790)
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hour for coverage calculation and up to half a minute for
quality control and two stages of algorithm on a laptop
with 2 GHz Intel Core i7 and 8 GB RAM. Other tools’
computational time is less than one minute (except online
version of lonReporter which can not be tested under
the same conditions), however, the most time consuming
step (coverage calculation with realignment, described in
Additional file 1) can be replaced with simple, but less
precise counting procedure, making tools’ computational
time approximately equal.

Comparison with other tools

In order to evaluate CONVector algorithm performance
we have compared our tool with Ion Reporter (IR)
CNV analysis tool (v.4.6) developed by Life Technolo-
gies, ONCOCNYV (v. 6.4) [16], cn.mops (v. 1.16.2) [22]
and Conifer [23]. Due the fact that first two tools has
prerequisites such as presence of control samples with
confirmed absence of CNVs in targeted regions and high
quality of sequencing, we analysed them using compara-
tively small dataset sequenced with one panel, while the
comparison with cn.mops was performed on the whole
dataset and all 3 panels.

IR tool is optimized for Ion Torrent Sequencing tech-
nology. The algorithm finds the most likely copy number
segmentation and ploidy state based on the comparison
with control set of samples (baseline) and using Hidden
Markov Model. IR can be run on the Ion AmpliSeq data
however its sensitivity depends on the panel size. The
smallest AmpliSeq panel that has been tested is comprised
of 200 amplicons. We have run this tool on the panel
IAD39777 consisted of 127 amplicons. We have tested
IR on 13 positive and 56 negative samples, selected as
described above and randomly. Only samples containing
CNVs spanning of at least two exons or covered by at
least six amplicons were selected as positive samples for
sensitivity evaluation since none of the examined tools
were able to detect single amplicon CNVs. The tool was
run with the default settings and the medium sensitiv-
ity. CNV baseline was generated from 50 control samples,
not carrying CNVs (results are available in Additional
file 4). Sensitivity of the IR tool is comprised 64.29 %
(95 % CI: 38.57-90.91 %); specificity — 100 % (95 % CI:
93.62-100.00 %). Analytical characteristics of the IRCNV
detection established in this study is much lower than it
was shown previously (see poster of Rhodes et al., (2013)).
Therefore, we can assume that the IR CNV detection algo-
rithm is much more useful for large CNVs covered by
dozens of amplicon while CONVector algorithm allows
detecting even small CNVs starting from hundreds bases
and covered of at least few amplicons. Detection of such
variations in targeted sequencing data is important since
many of small CNVs are responsible for human diseases
diagnosed with NGS panels [8].
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We also made comparisons with ONCOCNV tool.
We have choosen 5 control samples (sequenced in one
run) that were free of CNVs. We used the same dataset
as before for performance evaluation. Sensitivity of the
ONCOCNYV is comprised 57.14 % (95 % CI: 28.86-
82.34 %), specificity — 89.29 % (95 % CI: 77.45-95.57 %).
Six samples, sequenced in one experiment, were detected
as having a duplication of whole gene, whereof we con-
cluded that ONCOCNV’s performance may be improved
with batch effect correction or quality control filtering as
a preliminary step.

The comparison with cn.mops was of our special inter-
est because cn.mops is also using matrices of coverages as
an input so we evaluated this tool using exactly the same
datasets as we used for CONVector testing. We tested
cn.mops on 922 samples with the same preliminary QC
steps as we used for our tool, but did not take samples
that contained single-amplicon CNVs into account. We
have choosen the threshold that allow us to have compar-
atively high sensitivity. After the filtration of samples that
have single amplicon CNVs, we had 46 out of 74 CNVs
as True Positives and 90 false positives. The sensitivity
was equal to 62.16 % (95 % CI: 50.09-72.96 %), specificity:
89.38 % (95 % CI: 87.07-91.34 %).

The comparison with Conifer v0.2.2 was made using
only the subset of available data due the technical issues
of Conifer that we were not able to solve. Conifer also
uses the whole cohort of available samples as an input,
removes several singular values for batch effects removal
and detects CN'Vs that are covered with at least 3 targets.
QC control procedure was described in the paper, but
were not implemented, however, all our samples would
be removed using QC thresholds suggested by authors
and there was no clear way to establish a new threshold
suitable for all available experiments’ results. We decided
to use basic QC procedure and removed all samples that
were covered with less than 200 reads per target. We
removed only 2 singular values from the data because
after removal more the sensitivity dropped dramatically.
We considered all variants covered with less than 3 tar-
gets as True Negatives. We had 721 samples from 17
experiments that passed quality control. We were able to
detect 21 True Positive results among 43 possible while
having 7 False Positive results. The sensitivity was equal
to 48.84 % (95 % CI: 33.31-64.54 %), specificity: 98.97 %
(95 % CI: 97.88-99.58 %). Raw output files (i.e., logs with
the used parameters, plots and table reports) generated
by CONVector and other tools used for the comparison
(versions of the tools are specified above) are available in
Additional files 5, 6, 7 and 8, described in Additional files
section.

We also have tried to compare the performance
of CONVector with other tools. This comparison is
described in Additional file 9 and was not included into
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the main comparison section because of low quality of
results, different requirements for the input data or tech-
nical problems we faced launching several tools.

Conclusions

We described the new high resolution approach for CNVs
detection that enables detection of CNVs with the size
comparable to single exon (few hundred bases). The tool
is based on novel approach that relies upon a fact of PCR
efficiency correlations for subsets of amplicons in highly
multiplex PCR. This approach can be also extended to
hybridization based library preparation techniques. We
also created CONVector — open-source tool designed for
targeted sequencing CNVs detection. The tool has mini-
mal requirements to input data, poses no limitations on
CNV site size which can be as small as a single PCR ampli-
con, and does not requires control datasets or any a priory
knowledge on potential CN Vs sites location. We evaluated
CONVector with the large dataset and made limited com-
parison with the analogs that showed superior specificity
and sensitivity.

Additional files

Additional file 1: Auxiliary procedures and descriptions. This pdf file
contains details on counting of coverages procedure, illustration of
non-uniformity of coverages across samples sequenced within one
experiment, explanation of assumption of CNVs absence in the dataset
where we did not make direct check with alternative methods, description
of potential source of false positive results, description of comparison with
cn.mops and ONCOCNV. Also CNV verification procedure is described here
and pseudocode of the first algorithm provided in the end. (ZIP 968 kb)

Additional file 2: Description of Panels. xlsx file with bed files, containing:
target's chromosome, start coordinate, end coordinate, id of target, target's
region (exonic or intronic). (XLSX 27.6 kb)

Additional file 3: Description of Datasets. xlsx file with description of
experiments: panel used for sequencing, internal id of experiment, number
of samples within the experiment, laboratory where sequencing was
performed, Average Robust Variance (absulte measure of noise, described
in CONVector's documentation), number of detected CNVs. (XLSX 9.74 kb)

Additional file 4: Supplementary table with comparison of CONVector,
ONCOCNY, IR. xIsx file with data about samples: panel used for sequencing,
id of experiment, internal sample’s code, laboratory, name of CNV, results
of three methods. Status field denotes if particular variant was confirmed
before analysis or was found by CONVector and validated. (XLSX 14.6 kb)

Additional file 5: Archive with cn.mops results. Zip archive with large pdf
file (R markdown) with the results of cn.mops (plots) and short summary of
calls. (ZIP 1771 kb)

Additional file 6: Archive with ONCOCNV results. Set of files (png plots
and txt files) in zip archive that were provided by ONCOCNYV after
specificity and sensitivity testing. (ZIP 5007 kb)

Additional file 7: Final reports on CNVs analysis of whole dataset by
CONVector. Tab delimited xIs files with final reports of CONVector and
short summary of calls. (ZIP 42.1 kb)

Additional file 8: Archive with Conifer results. txt files with CNV calls
made by Conifer. (ZIP 1157 kb)

Additional file 9: Results of comparison with other tools. xIs table with
short summary of methods and performance (where possible) of 12 tools
which we have tried to compare with CONVector. (XLSX 47.9 kb)
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