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Abstract
Metabolomics emerged as an important tool to gain insights on how the body responds to therapeutic interventions. Bariatric  
surgery is the most effective treatment for severe obesity and obesity-related co-morbidities. Our aim was to conduct a sys-
tematic review of the available data on metabolomics profiles that characterize patients submitted to different bariatric surgery 
procedures, which could be useful to predict clinical outcomes including weight loss and type 2 diabetes remission. For that, 
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA guidelines were followed. Data from 
forty-seven original study reports addressing metabolomics profiles induced by bariatric surgery that met eligibility criteria 
were compiled and summarized. Amino acids, lipids, energy-related and gut microbiota-related were the metabolite classes 
most influenced by bariatric surgery. Among these, higher pre-operative levels of specific lipids including phospholipids, 
long-chain fatty acids and bile acids were associated with post-operative T2D remission. As conclusion, metabolite profiling 
could become a useful tool to predict long term response to different bariatric surgery procedures, allowing more personal-
ized interventions and improved healthcare resources allocation.
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1  Introduction

The increasing prevalence of obesity in modern society 
makes it one of the main public health concerns [1]. Obe-
sity is a major risk factor for several other medical con-
ditions and particularly for non-communicable diseases 
[2–4]. Bariatric surgery is the most effective treatment for 
severe obesity and its associated co-morbidities, since it has 
proven to successfully achieve a significant and sustained 
body mass index (BMI) decrease, besides improving several 
obesity related diseases, such as type 2 diabetes (T2D) [4]. 
Although bariatric surgery is a highly effective interven-
tion for obesity treatment in majority of patients, 10–20% 
of individuals fail to achieve clinically relevant BMI reduc-
tion or T2D remission, a percentage that tends to increase 
along the post-operative timespan [5–7]. In order to prevent 
the raising number of primary or secondary failures derived 
from the widespread use of bariatric surgery for obesity and 
obesity related disorders treatment has rendered the iden-
tification of biomarkers able to predict surgery outcomes  
imperative. This aim became tangible by recent advances in 
omics technologies, which include genomics, transcriptom-
ics, epigenomics, proteomics, metabolomics, metagenomics, 
which also provided the opportunity to unravel the mecha-
nisms underlying phenomena, such as weight loss and meta-
bolic improvement. Additionally, these are now well-recog-
nized as crucial research tools to achieve the progress required 
to enact personalized medicine approaches [8, 9]. Particularly, 
metabolomics represent a valuable tool to study dynamic 
metabolic responses and biological systems adaptations to 
a given stimulus [3, 10]. Metabolomics has been widely  
used across several scientific areas in the quest for molecu-
lar fingerprints that could act as diagnostic and prognostic 
biomarkers. Metabolomics analyses are usually performed 
by stand-alone hydrogen nuclear magnetic resonance tech-
nique or mass spectrometry technique, combined with dif-
ferent metabolite chromatographic separation methods, such 
as capillary electrophoresis, liquid or gas chromatography 
[11]. These metabolite detection methods allow the charac-
terization of low molecular weight metabolites from sev-
eral different classes [11]. The use of metabolomics in the  
study of obesity has empowered, not only the understand-
ing of the biochemical and metabolic disruptions underly-
ing this disease condition, but also the acknowledgement 
of the metabolic and physiological impact of therapeutic 
interventions, such as bariatric surgery [12]. Metabolomics  
studies enable to evaluate to what extent does the anatomi-
cal modifications of the gastro-intestinal tract induced by 

bariatric surgery alter the individual’s metabolomics profile 
[11]. Furthermore, these techniques also allow to understand 
how different bariatric surgery techniques that result in dis-
tinct anatomical rearrangements of the gut, impact on the 
individuals’ metabolic profiles [13]. Some metabolomics 
signatures harbor the potential to provide a mechanistic 
explanation on the heterogeneity of patient outcomes elicited 
by bariatric surgical interventions [14, 15].

Thus, the aim of this review was to systematize the avail-
able data in order to describe the metabolic fingerprints that 
characterize patients’ submitted to different bariatric surgery 
procedures. Our goal was also to identify a preoperative or 
early postoperative metabolite profile potentially useful to 
predict weight loss response and T2D remission after bari-
atric surgery.

2 � Methods

2.1 � Protocol and registration

This project was submitted to PROSPERO (registration 
number CRD42021235341) and it is available at https://​
www.​crd.​york.​ac.​uk/​prosp​ero/​displ​ay_​record.​php?​ID=​
CRD42​02123​5341. The review was performed according 
to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines [16].

2.2 � Information sources and search approach

Publications reporting original data on metabolomics pro-
files induced by bariatric surgery were searched in three dif-
ferent electronic bibliographic databases: PubMed, Scopus 
and Isi Web of Knowledge, in February 2021. The detailed 
search approaches for each database are described in the 
Supplementary File 1.

2.3 � Study selection and inclusion criteria

The main domain of this review were metabolomics studies 
carried out in patients submitted to bariatric surgery for the 
primary treatment of obesity and obesity related-disorders. 
The inclusion criteria comprised studies conducted in adult 
individuals submitted to bariatric surgery, including Sleeve 
Gastrectomy (SG), Laparoscopic Adjustable Gastric Band 
(LAGB), Roux-en-Y Gastric Bypass (RYGB), Duodenal 
Jejunal Bypass (DJB), Biliopancreatic Diversion (BPD), 
Duodenal Switch (DS), and Single-anastomosis Duodeno-
ileal Bypass with Sleeve Gastrectomy (SADI-S). The exclu-
sion criteria were study data pertaining to children and preg-
nant women.
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2.4 � Data extraction

Studies provided by the bibliographic databases were 
screened to eliminate duplicates. Afterwards, the publica-
tions were independently reviewed by two authors, based 
on title and abstracts, in order to assess the eligibility cri-
teria of each study. Thereafter, full text examination was 
also required in case of doubt. A third author conducted 
an independent review of the discordant articles and solved 
disagreements by majority consensus.

The papers selected for inclusion were scored according 
to the Newcastle–Ottawa Scale, to assess the quality and risk 
of bias (Supplementary Files 2 and 3). Only studies consid-
ered to be at least of moderate quality, i.e. with a score of 6 
or higher, were included for data analysis.

The selected studies were divided among authors for indi-
vidual data extraction, and later reviewed by other author in 
a cross-over manner. Data was retrieved and summarized 
according to the following information: author(s), study 
name, reference, experimental design, number of subjects 
enrolled, most relevant patient features (age, sex, BMI and 
presence of T2D), type of bariatric surgery procedure, type 
of biological fluid, time points of the sample collection, 
experimental approach, study outcomes when applicable 
and major findings.

The articles were also subdivided into four different 
groups: (1) studies considering preoperative and postop-
erative metabolomic signatures; (2) studies that disclosure 
preoperative and early postoperative metabolomic signatures 
associated with T2D or (3) with weight loss response; (4) 
studies comparing metabolomic profiles after different bari-
atric surgery interventions.

3 � Results

Our search identified 378 papers in Scopus, 227 in PubMed 
and 233 in Isi Web of Knowledge, resulting in a total of 838 
papers. After elimination of duplicates (n = 328), a total of 
510 papers were submitted to an initial screen by reading 
papers’ titles and abstracts by two independent researchers. 
From those, 461 were out of scope resulting in a total of 50 
full-text papers to be evaluated for eligibility. After read-
ing the full texts, 6 papers were eliminated due to the fol-
lowing reasons: repeated data (n = 1), out of scope (n = 3), 
no description of metabolites analyzed (n = 1) and metabo-
lomics studies conducted in biological fluids other than urine 
or blood (n = 1). Additionally, 3 papers were identified from 
reading the full texts reference list, resulting in a total of 
47 papers to be included in the systematic review (Fig. 1). 
Among these, 46 studies included conducted metabolomic 
analysis on plasma or serum and only 1 study was conducted 
on urine.

3.1 � Metabolomic profiles induced by bariatric 
surgery

Several studies focused on evaluating the changes in metab-
olomic profile induced by bariatric surgeries (Fig. 2 and 
Supplementary File 4). Amino acids (AAs), lipids, energy 
metabolism-related metabolites and gut microbiota-related 
metabolites were the most frequently studied metabolite 
classes.

Numerous studies demonstrated that circulating levels of 
valine [17–34], isoleucine [17–24, 26, 27, 29–36], leucine 
[17–24, 26, 27, 29–33, 35–37], phenylalanine [17, 18, 20, 
21, 23, 24, 26–29, 37], tyrosine [17–21, 23, 24, 27, 29, 30, 
37], tryptophan [17, 21, 24, 29, 37, 38], alanine [17–21, 23, 
28, 30, 33, 39], proline [17–19, 21, 28, 39], methionine [18, 
23, 30], aspartate [21], threonine [19, 21, 32], lysine [19] 
and ornithine [18, 21, 24, 30, 40] decrease after bariatric 
surgery. Contrarily, circulating levels of glycine [18–22, 
24, 26, 27, 31, 36, 38, 41] and serine [18, 28, 31, 38] were 
reported to increase after bariatric procedures, while other 
AAs, such as glutamine, histidine, arginine and asparagine 
were inconsistently reported as being either increased [20, 
24, 27, 36, 41, 42] or decreased [18, 19, 21, 23, 28, 30, 39], 
after bariatric surgery. No pattern, regarding the type of sur-
gical procedures or the postoperative time, was recognized 
as potentially responsible for the differences in these specific 
AA profiles observed across the studies.

Among the lipid class, acylcarnitines (ACs), free fatty 
acids (FFAs), bile acids (BAs) and phospholipids (PLs) were 
the metabolites most frequently studied in patients submitted 
to bariatric surgery interventions.

Acylcarnitines are esters of L-carnitine and fatty acids. 
The short chain AC acetylcarnitines were reported to 
increase rapidly after interventions and to remain elevated 
for 6 to 12 months after bariatric surgery [17, 21, 28, 32, 
37, 43]. Contrarily, the short chain acylcarnitines derived 
from the branched chain amino acids (BCAAs) catabolism, 
C3 and C5, were shown to decrease after bariatric surgery 
[17, 18, 28, 30, 33, 34, 43]. A transient increase in long-
chain ACs levels was observed two-weeks after surgery [28, 
44], while most studies report a decrease in medium- and 
long-chain ACs over the long-term in patients submitted to 
bariatric surgery [17, 18, 42, 43].

Analysis of circulating fatty acids’ profiles identified a 
decrease in unsaturated and long-chain saturated fatty acids 
and non-esterified fatty acids after bariatric surgery, despite 
some inconsistent results across different studies [17, 19, 22, 
25, 32, 45]. The opposite pattern was observed for medium-
chain saturated fatty acids (MCSFA), in particular for the 
decanoic acid, which was found to increase after surgery 
[20, 22, 25, 32, 37].

Fasting primary and secondary circulating BA levels were 
also found to increase significantly after bariatric surgery 
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interventions with a malabsorption component, namely 
RYGB and BPD [44, 46, 47]. This effect was demonstrated 
to be even more pronounced in the postprandial for total BA, 
glycine- and taurine-conjugated BA [48]. In contrast, stud-
ies conducted in patients submitted to restrictive procedures 
yielded inconsistent results, with some studies reporting no 
differences between pre and postoperative BA levels and 
others reporting increased levels in fasting and postprandial 
level of glycine-conjugated BA [47, 49].

Phospholipids are important molecules within the cell 
membrane structure, which include several subclasses such 
as sphingomyelins (SMs), lysophosphatidylcholines (LPCs), 
phosphatidylcholines (PCs) and phosphatidylethanolamines 
(PEs). SM is the dominant sphingolipid in mammalians cells 
membranes. After BPD, most saturated and unsaturated SMs 
were found to be decreased[47]. A decrease in saturated SMs 
levels [43, 50] and increase in unsaturated SMs levels [37, 
43, 50] after RYGB was identified by the majority of studies, 

Fig. 1   Flowchart of the search, eligibility criteria approaches and study inclusion for systematic review
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although results are not consistent across reports [17, 21, 25, 
37, 43–45, 50].

Likewise, an increase in ketone bodies (3-hydroxybutyrate 
and acetoacetate) levels was also identified after bariatric sur-
gery [19, 27, 37, 38, 43, 51]. Although, carboxylic acids and 
ketone bodies levels were only observed or were more pro-
nounced in short-term period after surgery [22, 27].

Most studies reported a decrease in pyruvate [27, 28, 35, 
41] and lactate [19, 28, 32] levels after bariatric surgery. 
Contrarily, the Krebs cycle intermediates (citrate [19, 24, 
27, 37], succinate [24, 38], fumarate [38, 41], malate [24, 
41], oxalacetate [35]) were found to increase after surgery.

Gut microbiota metabolites related to AAs and carnitine 
metabolism were also found to increase after bariatric surgery. 
In particular, in the levels of p-cresol [17, 19, 32, 37], indole 
and indoxyl sulfate [20, 25, 29], trimethylamine N-oxide 
(TMAO) [20, 27], phenol sulfate [37], 3-indolelactic acid [37] 
and 4-hydroxy-L-proline [37].

3.2 � Metabolomic profiles induced by different 
bariatric surgeries

Only reports comparing the metabolomic profiles induced 
by different types of bariatric surgery procedures from 
parallel arm studies were included in this review section. 
Nine prospective cohort studies and two cross-sectional 
studies compared the metabolomic profiles induced by dif-
ferent bariatric procedures [18, 27, 31, 33, 37, 39, 46, 47, 
52] or its variants [27, 53] (Table 1). From those, seven 

studies compared the effects of RYGB with two differ-
ent restrictive bariatric surgeries: LAGB [18, 31, 50] and 
SG [27, 33, 37, 39], at several time points after surgery, 
ranging from 3 days to 1 year. Metabolomic signatures 
associated with each type of bariatric surgery procedure 
were found. However, one study reported that metabolic 
signatures differences between RYGB and SG tend to be 
less prominent 12 months after surgery [37]. When com-
paring the two types of surgeries, changes in AAs and 
gut microbiota-related metabolites were the most differ-
entially altered metabolite classes [27, 31, 33, 37, 39]. In 
addition, a rapid decrease in the majority of lipid classes 
was observed after both RYGB and LAGB surgeries in the 
short-term (1 month). However, some PC and SM species 
returned or tended to return to baseline values 3 months 
after LAGB, but not after RYGB [50].

One study that compared the effect of restrictive (SG) and 
malabsorptive (BPD) bariatric surgeries on metabolomics 
found that sphingolipids, PLs and BAs levels were differen-
tially altered by the two bariatric surgery procedures. BPD 
induced an overall decline in sphingolipids and PLs and an 
increase in BAs levels. Contrarily, SG induced an increase 
in sphingolipids and PLs and no changes in BAs levels [47].

In contrast, in another study comparing RYGB and BPD, 
BAs levels were found to be similar after both surgeries [46].

Comparison of fasting and postprandial metabolomics 
profile of patients submitted to two different malabsorptive 
surgeries (SADI-S and BPD-DS) was explored in a cross-
sectional study. Higher postprandial BCAAs levels after 

Fig. 2   Main metabolomic alterations induced by bariatric surgery, 
in patients with obesity. Abbreviations: 3-HB – 3-hydroxybutyrate; 
LCSFA – Long-Chain Saturated Fatty Acids; LPC – Lysophosphati-

dylcholine; MCSFA – Medium-Chain Saturated Fatty Acids; NEFA 
– Non-Esterified Fatty Acids; PE – Phosphatidylethanolamine; TCA 
– Tricarboxylic Acid
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SADI-S, the least malabsorptive surgery, was the only dif-
ference observed [52].

The effects of two different RYGB variants on circulat-
ing metabolomics profiles was evaluated in a cross-sectional 
study and in another prospective study. However, the dif-
ferences in RYGB limb lengths used in the two studies do 
not allow direct comparisons [53]. Gralka et al. included 
patients submitted either to a proximal RYGB consisting of 
a biliopancreatic limb (BPL) of 60 cm and an alimentary 
limb of 150 cm; or to a distal RYGB that had both BPL and 
common limb lengths of 60–100 cm [27, 53]. In contrast, 
the RYGB variants described by Jarak et al. had different 
BPL length (short-BPL: 60–100 cm vs long-BPL: 200 cm) 
but the same alimentary limb length (120 cm) [53]. Despite 
the dissimilarities between RYGB variants, no differences 
on the postoperative AAs levels were noticed. Both studies 
found diverse changes in gut microbiota-related metabolites, 
namely acetate and dimethyl sulfone, when comparing the 
RYGB variants [27, 53].

3.3 � Metabolomic signatures associated 
with post‑bariatric weight loss response

The analysis of pre and postoperative metabolomics accord-
ing to post-bariatric weight loss responses was assessed in 
4 independent prospective studies, conducted in patients 
submitted to SG [49, 54] or RYGB [20, 55] (Fig. 3 and Sup-
plementary File 5).

AAs were the metabolic class that portrait more pro-
nounced changes after bariatric surgeries [20, 54, 55]. 
Higher baseline BCAAs levels, in particular isoleucine, were 
correlated with greater weight loss at 3 and 6 months after 
SG [54]. In the postoperative period, there was a significant 
decrease in creatine, ornithine, arginine and valine levels 
in the sub-group of patients with greater weight loss 1 year 
after RYGB [20].

Moreover, Abidi et al. compared metabolite pattern of 
patients with sustained weight loss with those of patients 
who experienced weight regain years after RYGB. The study 
unraveled that metabolomics’ profile of patients with poor 
long-term weight loss outcomes were characterized by lower 
levels of metabolites related to serine, glycine and threo-
nine pathways; lower metabolites from phenylalanine, ala-
nine and glutamate metabolism; lower levels of TCA cycle’ 
byproducts, as well as higher levels of AAs. In the opposite 
analysis, higher glycine levels were found in patients with 
sustained weight loss [55].

Serotonin, a molecule derived from the AA tryptophan, 
and its metabolites were also proposed as weight loss 
response molecular fingerprints. A preoperative profile with 
lower serotonin levels and serotonin/5-hydroxytryptophan 
(5-HTrp) ratio, and higher 5-hydroxyindoleacetic acid 

(5-HIAA) levels and 5-HIAA/serotonin ratio were identified 
in patients with greater weight loss at 3 and 6 months after 
SG [54].

Patients with sustained weight loss also presented upregu-
lated lipolysis and consequently depletion of triacylglycer-
ols, diaglycerols and cholesterol esters, in addition to higher 
levels of 3-hydroxybutyrate [55].

Increase in multiple BAs subtypes, more pronounced in 
postprandial rather than fasting period, was found to corre-
late with early (6 weeks) and short-term (12 weeks) weight 
loss response after SG. The authors highlighted the aug-
mented postprandial total and G-CDCA, as being signifi-
cantly correlated to the 6 weeks BMI loss, as well as the 
increased postprandial G-hyocholic acid, which was signifi-
cantly correlated to a greater weight loss percentage at both 
6 and 12 weeks [49].

3.4 � Metabolomic signatures associated 
with post‑bariatric T2D remission

Metabolomics profiles associated with glucose and insulin 
homeostasis after bariatric surgery were analyzed in four-
teen independent prospective cohort studies. While seven 
papers focused on T2D remission after bariatric surgery, 
another seven studies addressed the specific profile associ-
ated with T2D related parameters, namely glycated hemo-
globin (HbA1c) levels, insulin secretion and sensitivity, 
as inferred from insulinogenic index, homeostasis model 
assessment-insulin resistance (HOMA-IR) [56] and Quan-
titative Insulin Sensitivity Check Index (QUICKI) [29]. The 
majority of studies included individuals submitted either to 
SG [29, 34, 57] or RYGB [17, 20, 25, 56, 58–61] (Fig. 4 and 
Supplementary File 5).

Circulating AAs were the most differentially altered 
metabolite class distinguishing patients that achieved T2D 
remission from those with persistent disease after bariat-
ric surgical interventions [29, 34, 57, 58, 61, 62]. BCAAs 
decrease after SG and RYGB, being more pronounced in 
patients achieving T2D remission [29, 33, 34, 56, 58, 61]. 
Kwon et al. described, not only an early decline in BCAAS, 
but also aromatic amino acids (AAAs) [29] in patients 
depicting improved insulin resistance 3 months after SG.

Preoperative lipid metabolite fingerprints of patients who 
achieve T2D remission as compared to those without dis-
ease remission was characterized by higher PEs, triglycerides 
and PLs with long-chain fatty acids [25]; while postoperative 
metabolite profile was characterized by lower very-low-density 
lipoproteins (VLDL), low-density lipoproteins (LDL), N-acetyl 
glycoproteins and unsaturated lipids, and increased high-density 
lipoproteins (HDL) and PCs [17, 57, 58, 63] Arora et al. studied 
the metabolic profile of patients submitted to RYGB who expe-
rienced T2D remission 2 years after surgery [25]. Postoperative 
fasting plasma lipid profile was characterized by a significant 
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reduction of most lipid species after 4 days and an increase of 
the same metabolites at 42 days after surgery.

The utility of BAs levels as biomarkers of T2D improve-
ment after bariatric surgery was explored in three independ-
ent studies [17, 46, 59]. Two studies addressing T2D remis-
sion after RYGB identified higher total BA levels at baseline 
in the sub-groups of patients with better T2D outcomes 
[17, 59]. Yu et al. even highlighted that chenodeoxycholic 
acid (CDCA) and the ratio of CDCA/total BA correlated with 
T2D remission 2 years after RYGB. Ahlin et al. found that 
increased total BA levels at 185.3 (± 72.9) days after RYGB 
and BPD were correlated to insulin resistance improvement 
regardless the type of surgical procedure [46].

4 � Discussion

High levels of circulating AAs is a well-known feature of 
patients with obesity [64]. BCAAs levels are particularly 
high and experience a rapid decrease after bariatric sur-
gery [17–32, 35–37, 65]. The reduction in BCAA has been 
attributed to a combination of multiple factors including 
decreased protein intake; decreased  amino acids absorp-
tion; increased BCAA catabolism and decreased protein 
catabolism as a consequence of insulin sensitivity improve-
ment and metabolic amelioration [3]. The upregulation of 
BCAAs catabolism is supported by the consistent postopera-
tive decline of specific subproducts of BCAAs’ mitochon-
drial oxidation, namely short chain acylcarnitine’s C3 and 

C5 [17, 18, 28, 30, 43]. Although BCAAs decrease after 
both restrictive and malabsorptive surgeries [17–32, 35–37], 
parallel arm studies reported a greater effect of RYGB in 
BCAAs levels [27, 31]. Since the differences found in 
BCAA levels when comparing RYGB and the restrictive 
procedures seem to be independent of the weight loss, these 
were hypothesized to be related to impaired AAs absorption  
induced by the RYGB intestinal rearrangement [27, 31].

Similarly, AAAs were also elevated in patients with obe-
sity and decrease after bariatric surgery [27, 37]. This is 
consistent with the increase of AAAs derived gut micro-
biota metabolites (p-cresol, indoxyl sulfate, phenol sulfate 
and 3-indolelactic acid) after bariatric surgery [17, 19, 20, 
29, 32, 37].

Multiple studies reported that BCAAs and AAAs modi-
fications induced by the bariatric procedures could play a 
relevant role predicting T2D remission [29, 34, 57, 58, 62]. 
Obesity associated hyperaminoacidemia is a consequence of 
insulin resistance, which positively affects protein synthe-
sis and proteolysis [66]. BCAAs can also modulate insulin 
secretion and promote diabetes via hyperinsulinemia, con-
sidering its role as insulin secretagogues. Chronic hyperin-
sulinemia can further stimulate compensatory insulin resist-
ance and potentially lead to pancreatic β-cell exhaustion [67, 
68]. Contrariwise, improved insulin sensitivity and secretion 
after bariatric surgery are associated with decreased circulat-
ing AAs [26, 29, 58].

In opposition to most of AAs, the levels of the non-essential  
AA glycine and serine are known to be low in subjects  

Fig. 3   Metabolomic profiles of patients with successful weight loss/
maintenance. Abbreviations: 5-HIAA – 5-hydroxyindoleacetic acid; 
5-HTrp – 5-hydroxytryptophan; CDCA – Chenodeoxycholic Acid; 

CE – cholesterol esters; DG – diaglycerols; G- – glycine amidated; 
HCA – hyocholic acid, SG – Sleeve gastrectomy; RYGB – Roux-en-Y 
Gastric Bypass; TG – triacylglyceride

512 Reviews in Endocrine and Metabolic Disorders (2022) 23:503–519



1 3

with obesity and increase after bariatric surgery [18–22, 24, 
26–28, 31, 36, 38, 41]. In healthy subjects, glycine is inter-
convertible with serine. Glycine participates in multiple bio-
logical functions, such as the glutathione synthesis, purines 
and primary bile salts [69]. Previous studies described low 
fasting levels of glycine in individuals with impaired glucose 
tolerance and proposed glycine as an early marker for insulin 
resistance [70].

Gut microbiota plays an important role in various physi-
ological processes, including metabolism of dietary compo-
nents and some host-generated substances, with an impact 
on the use and storage of energy [71]. Gut microbiota of 
individuals with obesity is characterized by a reduced bac-
terial diversity and lower ratios of Bacteroidetes to Firmi-
cutes [72]. After bariatric surgery, different gut microbiome-
related metabolites arise that differ depending on the type of 
bariatric procedure. In particular, p-cresol, a metabolite of 
phenylalanine and tyrosine fermentation by gut microbiota 
[73, 74], was reported to increase after SG [37]. Bacteroides 
fragilis is one of the bacteria responsible for phenylalanine 
and tyrosine fermentation. Bacteroides were previously dem-
onstrated to increase after SG in individuals with prior T2D  
diagnosis [75]. So, the effect in tyrosine and phenylalanine 
levels found in patients with T2D after SG when compared 
to RYGB, may be related to increased fermentation by gut 
microbiota. Sulfate-containing metabolites and TMAO, two 
other gut microbiome-related metabolites were identified to 
increase after RYGB but not after SG [37]. The differences 

observed in sulfate-containing metabolites’ results could 
easily be justified by the fact that the major group of sulfate-
reducing bacteria is mainly present in the duodenum, which 
is trespassed in RYGB [76]. Contrary, the effects of RYGB in  
TMAO levels  are not well understood and unexpected because  
high TMAO levels have been linked to cardiovascular dis-
eases, whereas RYGB is known to reduce the cardiovascu-
lar risk and events [77, 78]. The increase in TMAO levels 
observed after RYGB, but not after SG, could be explained 
by the shortening of the small bowel and a less anaerobic 
metabolism by the gut microbiota, in result of the increase in 
microbes, such as E.coli and Pseudomonas, responsible for 
raising TMAO levels [79]. Gut microbiota-related metabo-
lites were also differentially altered by RYGBs with differ-
ent absorptive limbs. Gralka et al. found that RYGB with a 
shorter common limb led to a higher increase in dimethyl 
sulfone levels compared to a more absorptive RYGB [27]. A 
different study also found that postprandial levels of acetate 
were higher in patients submitted to RYGB with a longer  
BPL [53]. Both metabolites are produced in the colon by 
bacterial fermentation [80], which is enhanced by the higher 
quantity of undigested food that reaches the colon in the less 
absorptive RYGB.

The obesity-associated energy metabolic disruption is 
characterized by decreased oxidation of ketone bodies and 
down-regulation of TCA cycle [81]. Metabolomic analysis 
suggests that after bariatric surgery a strong and early upreg-
ulation of catabolism and lipolytic activity occurs. Most of 

Fig. 4   Metabolomic profiles of patients with T2D remission/
improved insulin parameters. Abbreviations: BPD – Biliopancre-
atic diversion; DJB – Duodenal-jejunal bypass; HDL – High-density 
Lipoprotein; LCFA – long-chain free fatty acids; LDL – Low-density 

Lipoprotein; PE – Phosphatidylethanolamines; SG – Sleeve gastrec-
tomy; RYGB – Roux-en-Y Gastric Bypass; TCA – Tricarboxylic 
Acid; VLDL – Very-low-density Lipoprotein
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intermediate and end products of β-oxidation and ketogen-
esis increase after intervention, in particular in short-term 
period after surgery [19, 27, 28, 37, 38, 43, 44, 51]. These 
findings support a shift in energy metabolism from anabolic 
to catabolic status, possibly triggered by surgery and caloric 
restriction.

Obesity is also characterized by a blunted postprandial 
BAs response. Bariatric surgery, in particular RYGB and 
BPD normalizes that response, leading to an increase in 
postprandial BAs that can be justified by the accelerated 
delivery to the distal intestine where BAs are absorbed [46, 
48, 59]. Since BPD leads to an earlier delivery of food to 
the more distal gut, BPD would be expected to have a higher 
effect on BAs levels when compared to RYGB. However, 
BAs levels were found to be similar after both bariatric sur-
geries [46]. Accordingly, bile diversions to the mid-jejunum 
or mid-ileum  in rats led to the same BAs plasma levels, 
suggesting that BAs absorption is not necessarily propor-
tional to the length of the gut segment [82]. BAs are reported 
to have a key role on mediating the anti-diabetic effects 
of the bariatric surgery. Indeed, higher baseline levels of 
CDCA were correlated with better outcomes after RYGB 
[17, 59]. In addition, higher postoperative values of con-
jugated secondary BAs were associated with an increase 
of insulin sensitivity after both RYGB and BPD [46]. BAs 
metabolic effects are mainly mediated by the activation of 
two receptors: Farnesoid X Receptor (FXR) and Takeda G 
protein-coupled receptor 5 (TGR5). TGR5 activation in the  
enteroendocrine cells increases the release of the incretin hor-
mone, glucagon-like peptide-1, known for its anti-diabetic  
effects [83]. In addition, the receptor TGR5 is also expressed 
in human muscle and brown adipose tissue, leading to an 
increase of muscle energy expenditure via T4-T3 conversion, 
which can further contribute to increase insulin sensitivity 
[84, 85].

Circulating levels of fatty acids, acylcarnitines, phos-
pholipids, triglycerides, total cholesterol, and LDL are fre-
quently elevated in individuals with obesity and particularly 
with obesity-related metabolic disorders [64]. Bariatric sur-
gery induces an overall improvement in lipid profile with a 
marked decrease in most lipid classes. Apart from this trend 
stands the postoperative increase of MCSFA, known for 
suppressing fat deposition due to enhanced thermogenesis 
and fat oxidation in animals and humans [86]. Additionally, 
previous studies proposed the pharmacological potential of 
MCSFA for preserving insulin sensitivity in T2D [87, 88].

A preoperative lipid profile with higher levels of PEs, 
triglycerides and PLs with long-chain fatty acid could also 
be useful to assess the likelihood of T2D remission after 
surgery. Long-chain fatty acid metabolism is known to be 
abnormal in diabetes, leading to impaired formation of spe-
cific fatty acids dependent on delta-9, delta-6, and delta-5 
desaturation, as well as on chain elongation [89]. Thereby, 

greater levels of triglycerides with higher carbon number 
are associated with a decreased risk of T2D [90]. Palmitic 
acid (FFA 16:0) is also strongly associated with T2D, since 
this main even-chain fatty acid is significantly decreased 
before [17] and after [60] RYGB in patients with better T2D 
outcomes. Palmitic acid was shown to activate Toll-Like 
Receptor 4 (TLR4) and, subsequently prompt inflammatory 
cytokines and lipotoxicity in pancreatic β cells, with conse-
quent impaired insulin action [91].

Lipidomic profiles induced by BPD and SG were 
reported to be distinct [47]. Most sphingolipids and PLs 
decrease after BPD, which can be attributed to decreased 
lipid absorption after surgery. On the other hand, PLs levels 
increased after SG. Circulating levels of PLs are reduced in 
patients with obesity, which is associated with an increased 
oxidative status [92, 93]. SG seems to efficiently restore 
PLs levels to those found in subjects with normal weight by 
decreasing patients’ oxidative profile. Sphingolipids levels 
also increase after SG. However, this observation is more 
difficult to understand since sphingolipids are associated to 
obesity-related disorders such as insulin resistance and car-
diovascular diseases [94].

Nonetheless, the interpretation of the summarized data must 
be evaluated in the context of the limitations of the reported 
studies. There are some discrepant results across different anal-
ysis, raising the possibility of some bias, independent from 
the anatomical rearrangements of the surgery itself, such as 
patients’ dietary habits, which could also have a significant 
impact on the metabolome. Additionally, it is important to 
mention that the time points of assessment before and after 
surgical interventions differed substantially across the studies, 
in some cases, the follow-up was not long enough for an ade-
quate appreciation of patients’ outcomes. Most of the studies 
reported the metabolomic profile induced by a single bariatric 
surgery procedure. Although comparison between studies can 
be made for understanding the metabolomic profile induced by 
different surgeries, it raises several constraints derived from the 
comparison of non-paired patients regarding pre and postop-
erative characteristics and from the use of different methodo-
logical approaches.

In addition, there is still a small number of studies analyz-
ing the importance of metabolomics as predictors of bariat-
ric surgery outcomes. Furthermore, most  studies include a 
small number of patients with short post-operative periods 
and some of the conclusions are based on the analysis of 
patients submitted to different technical procedures.

In order to identify metabolomic signatures to predict bari-
atric surgery response, prospective studies with larger cohorts 
and longer follow-up periods are needed. Ideally, studies should 
avoid the inclusion of subjects with heterogenous pre-operative 
characteristics and submitted to different bariatric surgery. Food 
intake dairies prior to the analysis should also be taken into 
account as an additional source of bias.
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By conducting these research trials different patient sub-
groups metabolomics profiles could be compared and cor-
related with surgical outcomes, thus harboring the potential 
to identify a pre-operative metabolomic pattern that could 
act as a decision aid for the surgeon to choose the bariatric 
surgery procedure that is more likely to achieve successful 
weight loss and T2D improvement.

5 � Conclusions

This review summarizes the impact of bariatric surgery on 
the individuals’ metabolomics profile and how different 
bariatric procedures result in distinct metabolomics signa-
tures, which could contribute to explain the heterogeneity 
of surgical outcomes. Some preoperative metabolomics fin-
gerprints were identified as harboring the potential to be 
used as prognostic biomarkers for weight loss response and 
T2D remission. Among these, higher pre-operative levels of 
lipids including phospholipids, long-chain fatty acids and 
bile acids are associated with post-operative T2D remission.
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