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Abstract The anamniote lateral line system, comprising mechanosensory neuromasts and

electrosensory ampullary organs, is a useful model for investigating the developmental and

evolutionary diversification of different organs and cell types. Zebrafish neuromast development is

increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our

molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq

to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula).

Validation of a subset reveals expression in developing ampullary organs of transcription factor

genes critical for hair cell development, and genes essential for glutamate release at hair cell

ribbon synapses, suggesting close developmental, physiological and evolutionary links between

non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural

transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv

channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our

results illuminate ampullary organ development, physiology and evolution.

DOI: 10.7554/eLife.24197.001

Introduction
The lateral line system of fishes and aquatic amphibians is a good model for studying the diversifica-

tion of different organs and cell types, both in development and evolution. In jawed vertebrates, this

sensory system ancestrally includes mechanosensory neuromasts and electrosensory ampullary

organs (‘ampullae of Lorenzini’), both of which develop - together with their afferent neurons - from

individual embryonic lateral line placodes (Northcutt et al., 1995; Modrell et al., 2011a;

Gillis et al., 2012). (The jawless lampreys have neuromasts and electroreceptors, but the latter are

collected in ‘end buds’ at the surface, rather than recessed in ampullary organs, and their embryonic

origin is unknown; the lateral line system of hagfishes, which lack electroreceptors altogether, is
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secondarily reduced; Braun, 1996; Braun and Northcutt, 1997.) The electrosensory division of the

lateral line system was lost independently in the lineages leading to extant neopterygian fishes (gars,

bowfin and teleosts) and to anuran amphibians (neither of the major anamniote lab models, i.e., the

teleost zebrafish and the frog Xenopus, has electroreceptors). However, electrosensory lateral line

organs evolved independently at least twice within the teleosts, most likely from neuromast hair cells

(Bullock et al., 1983; Northcutt, 1986; Bodznick, 1989; Alves-Gomes, 2001; Bodznick and Mont-

gomery, 2005; Kawasaki, 2009; Baker et al., 2013). The entire lateral line system was lost in

amniotes, with the transition to life on land.

The loss of the electrosensory division of the lateral line system in different vertebrate lineages

shows that ampullary organ development must be genetically separable from neuromast develop-

ment. Indeed, even within the same lateral line placode-derived sensory ridge, neuromasts form first,

along the center of the ridge, while ampullary organs form later, on the flanks (Schlosser, 2002;

Northcutt, 2005a; Piotrowski and Baker, 2014). Neuromasts and ampullary organs are morpholog-

ically distinct: neuromasts contain mechanosensory hair cells, plus supporting cells that secrete a

gelatinous cupula; ampullary organs comprise a sensory epithelium of electroreceptor and support-

ing cells located at the base of a duct filled with conductive jelly, leading to a surface pore (North-

cutt, 1986; Jørgensen, 2005; Baker et al., 2013). Ampullary electroreceptor cells generally have an

apical primary cilium but either no or few apical microvilli, which are not organized into the ‘hair bun-

dle’ (stair-case array) that characterizes hair cells (Northcutt, 1986; Jørgensen, 2005; Baker et al.,

2013). The molecular mechanisms underlying neuromast formation from the migrating posterior lat-

eral line primordium in zebrafish have been intensively studied (Chitnis et al., 2012; Piotrowski and

Baker, 2014; Thomas et al., 2015), but our molecular understanding of ampullary organ develop-

ment is very limited.

Like hair cells (and also retinal and pineal photoreceptors, and retinal bipolar neurons), all verte-

brate electroreceptors have electron-dense pre-synaptic bodies surrounded by a large pool of syn-

aptic vesicles (Northcutt, 1986; Jørgensen, 2005). Such ‘ribbon synapses’ respond to graded

signals and are capable of sustained neurotransmitter release (Matthews and Fuchs, 2010;

Pangršič et al., 2012; Safieddine et al., 2012; Nicolson, 2015; Wichmann and Moser, 2015;

Moser and Starr, 2016). While the specific proteins involved in ribbon synapse function are increas-

ingly understood in retinal photoreceptors and hair cells (Matthews and Fuchs, 2010;

Pangršič et al., 2012; Safieddine et al., 2012; Nicolson, 2015; Wichmann and Moser, 2015;

Moser and Starr, 2016), all that is known about neurotransmission at non-teleost electroreceptor

ribbon synapses is from work in dissected skate (cartilaginous fish) ampullary organs, which showed

that activation of L-type voltage-gated calcium channels results in the release of a ‘glutamate-like’

neurotransmitter (Bennett and Obara, 1986).

Similarly, our only detailed understanding of non-teleost ampullary organ physiology until very

recently had come from current- and voltage-clamp approaches to study epithelial currents in dis-

sected single ampullary organ preparations from skates (Bennett and Obara, 1986; Lu and Fish-

man, 1995; Bodznick and Montgomery, 2005). These revealed that L-type voltage-gated calcium

channels are required both for voltage-sensing in the apical (lumenal, i.e., exterior-facing) electrore-

ceptor membrane, and for neurotransmitter release basally. The basal membrane is repolarized by

voltage-gated potassium channels and calcium-dependent chloride channels, while the apical mem-

brane is repolarized by the calcium-gated potassium channel BK (Bennett and Obara, 1986; Lu and

Fishman, 1995; Bodznick and Montgomery, 2005; King et al., 2016). BK was recently cloned

directly from skate ampullary organs (King et al., 2016), a little over 40 years after its properties

were initially discovered using the same preparation (Clusin et al., 1975; Clusin and Bennett,

1977a; Clusin and Bennett, 1977b). While the current manuscript was under review, whole-cell

patch-clamp experiments on dissociated electroreceptors from adult skates, together with transcrip-

tome profiling, revealed that the L-type voltage-gated calcium channel Cav1.3 mediates the low-

threshold voltage-activated inward current, and works together with BK to mediate electroreceptor

membrane oscillations (Bellono et al., 2017). Other than this recent exciting advance

(Bellono et al., 2017), the specific ion channels and subunits involved in electroreceptor function

have not been identified in any vertebrate.

In short, our understanding of the specific molecular basis of both vertebrate electroreceptor

development and physiology is still rudimentary. The few candidate gene approaches reported thus

far have identified some transcription factors, and a few other genes, expressed in both ampullary
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organs and neuromasts in larval axolotl (Metscher et al., 1997; Modrell and Baker, 2012), paddle-

fish (Modrell et al., 2011a, 2011b; Butts et al., 2014), shark and skate (Freitas et al., 2006;

Gillis et al., 2012). However, a candidate gene approach will not identify genes important specifi-

cally for ampullary organ development or function. Here, we report an unbiased transcriptomic

approach in paddlefish (a non-teleost chondrostean fish) to identify such genes, which has yielded

novel and wide-ranging insights into the development, physiology and evolution of non-teleost

ampullary organs.

Results
We generated transcriptomes at stage 46 (the onset of independent feeding; Bemis and Grande,

1992) from pooled paddlefish opercula (gill-flaps), which are covered in ampullary organs plus some

neuromasts, versus fins, which have a generally similar tissue composition but no lateral line organs

at all (Modrell et al., 2011a, 2011b). Differential expression analysis yielded 490 genes, excluding

duplicates, enriched at least 1.85-fold (log2fold 0.89) in operculum versus fin tissue, hereafter desig-

nated ‘lateral line-enriched’ (Supplementary file 1). Of these genes, 112 were uncharacterized loci

or could only be assigned to a protein family, while a further 44 were described as being ‘like’ a spe-

cific gene, leaving 334 assigned genes (Supplementary file 1). Figure 1 shows a molecular function

analysis using Gene Ontology (GO) terms, where available.

Figure 1. Pie chart showing the results of a PANTHER classification analysis by molecular function of 332 transcripts from the paddlefish lateral line-

enriched dataset with associated gene ontology (GO) terms. The percentage of function hits is indicated in parentheses. Binding activities GO:0005488

(blue) represent ~39% of the function hits (16% nucleic acid binding GO:0003637; 17% protein binding GO:0005515; 6% other binding, including

calcium and lipid binding). Catalytic activities GO:0003824 (green) account for ~35% of the function hits (4% enzyme regulator activity GO:0030234; 9%

transferase; and 11% each hydrolase and other catalytic activities). Transmembrane-associated activities (orange) represent ~19% of function hits (13%

transporter GO:0005215; 6% receptor GO:0004872). The remaining ~7% of function hits are comprised of signal transducer GO:0004871, structural

molecule GO:0005198 and antioxidant GO:0016209 activities.

DOI: 10.7554/eLife.24197.002
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Conservation in ampullary organs of transcription factors critical for
mechanosensory hair cell development
The lateral line-enriched dataset (Supplementary file 1) includes several transcription factor genes

whose expression we had previously reported in both ampullary organs and neuromasts in larval

paddlefish, suggesting that the differential expression analysis had been successful. These were: the

homeodomain transcription factor genes Six1 and Six2 (Modrell et al., 2011a); the HMG-domain

SoxB1 class transcription factor gene Sox3 (Modrell et al., 2011b); and the basic helix-loop-helix

(bHLH) transcription factor gene Atoh1, whose lateral line organ expression at stages 40–45 was

noted, in passing, in a study on cerebellum development (Butts et al., 2014).

Atoh1 is essential for hair cell formation (Bermingham et al., 1999). Paddlefish Atoh1 is 18.6-fold

lateral line-enriched (Supplementary file 1), and expressed by stage 33 within the otic and preoper-

cular neuromast canal lines (Figure 2A). It is expressed within most canal lines and the migrating

posterior lateral line primordium by stage 37 (Figure 2B), and in the developing ampullary organ

fields by stage 39 (Figure 2C), where it persists at stage 46 (Figure 2D).

In mouse cochlear explants, Six1 and its co-factor Eya1, acting cooperatively with SoxB1 subfamily

member Sox2, are sufficient to induce Atoh1 (Ahmed et al., 2012). Like Six1, Eya1 is also expressed

in paddlefish ampullary organs (Modrell et al., 2011a), while Sox2 is 3.3-fold lateral line-enriched

(Supplementary file 1). Immunostaining with a cross-reactive anti-Sox2 antibody revealed Sox2

expression in developing ampullary organs as well as neuromasts (Figure 2E–H), consistent with

Sox2 mRNA expression by in situ hybridization (not shown). Sox2 represses Atoh1 in supporting cells

in the mouse cochlea while, conversely, Atoh1 represses Sox2 in developing hair cells

(Dabdoub et al., 2008). By stage 46, paddlefish Atoh1 expression is hard to detect in canal neuro-

masts - perhaps partly due to strong expression in scattered overlying epidermal cells, presumably

Merkel cells (Maricich et al., 2009; Whitear, 1989) - but is still strong in ampullary organs

(Figure 2I). Sox2 immunoreactivity remains strong in both neuromasts and ampullary organs at stage

46 (Figure 2J), where it is most likely restricted to supporting cells, given its punctate staining

pattern.

Of the 66 genes in the lateral line-enriched dataset that encode known transcription factors (three

other transcription factor genes in the dataset were assigned only to families) (Supplementary file

1), our top candidate was Pou4f3 (Brn3c, DFNA15), which is 27.5-fold lateral line-enriched

(Supplementary file 1). Pou4f3 is a confirmed Atoh1 target in hair cells (Masuda et al., 2011;

Ikeda et al., 2015) and required for hearing (Costaridis et al., 1996). In mouse cochlear explants,

Six1 and Eya1 - acting independently of Atoh1 - are sufficient to induce Pou4f3, which promotes hair

cell differentiation (Ahmed et al., 2012). Like Atoh1, paddlefish Pou4f3 is expressed in ampullary

organs, as well as neuromasts (Figure 2K,L).

All three SoxB1 subfamily genes are putative Atoh1 targets in the postnatal mouse cerebellum

(Klisch et al., 2011) and present in the lateral line-enriched dataset. Sox3 is 5.2-fold lateral line-

enriched (Supplementary file 1); as noted above, we previously reported its expression in paddle-

fish ampullary organs and neuromasts (Modrell et al., 2011b). Sox1 is 8.6-fold lateral line-enriched

(Supplementary file 1) and expressed in ampullary organs from their eruption (Figure 2M–P). It is

transiently expressed in the migrating posterior lateral line primordium (Figure 2M,N) and, at later

stages, expression is also seen in neuromast canal lines (Figure 2O,P).

Taken together, these data support a high degree of conservation in the transcriptional network

regulating the development of both lateral line organ types, including the likely requirement of

Atoh1 for electroreceptor as well as hair cell formation.

The proneural transcription factor gene Neurod4 is expressed in
ampullary organs but not neuromasts
Another highly lateral line-enriched transcription factor gene is Neurod4 (Ath3, NeuroM) (18.9-fold

enriched; Supplementary file 1), a putative cerebellar Atoh1 target (Klisch et al., 2011). In mice,

this atonal-related proneural bHLH transcription factor gene is expressed in the brain, spinal cord,

retina, trigeminal ganglia and dorsal root ganglia (Takebayashi et al., 1997). It is required for the

survival of cerebellar granule cell precursors (Tomita et al., 2000), and cooperates with other bHLH

and/or homeodomain transcription factors to regulate the development of retinal bipolar and ama-

crine cells (see Hatakeyama and Kageyama, 2004), and trigeminal and facial branchiomotor
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neurons (Ohsawa et al., 2005). In zebrafish, Neurod4 is important for olfactory neuron development

(Madelaine et al., 2011); it is transiently expressed during chicken otic neurogenesis, but not hair

cell formation (Bell et al., 2008). Although the related gene Neurod1 seems to be important for

zebrafish neuromast hair cell differentiation (Sarrazin et al., 2006), we previously showed that pad-

dlefish Neurod1 is not expressed in lateral line organs, only in cranial sensory ganglia

(Modrell et al., 2011b). Neurod4 is the only Neurod family member in the lateral line-enriched data-

set. At early stages, it is expressed in the brain, olfactory epithelium, eyes and trigeminal ganglion

(Figure 3A). The earliest lateral line expression of Neurod4 is in developing ampullary organ fields

Figure 2. Both ampullary organs and neuromasts express transcription factor genes essential for hair cell development, and selected putative Atoh1

targets. (A–D) In situ hybridization for paddlefish Atoh1 at stages 33, 37, 39 and 46, respectively. (E–H) Sox2 immunostaining at stages 34, 37, 41 and 46,

respectively. (I,J) Higher-power views of stage 46 skin-mounts of Atoh1 (I) and Sox2 (J). Dotted lines indicate approximate boundaries of neuromast

containing lateral line canal lines. (K,L) In situ hybridization for Pou4f3 at stage 46 reveals expression in both ampullary organs and neuromasts. (M,N) In

situ hybridization for Sox1 at stage 39 shows expression in the posterior lateral line primordium (pllp) and ampullary organs erupting on the operculum.

(O,P) At later stages, Sox1 is maintained in ampullary organs and expressed in neuromast canal lines, as shown here at stage 45. Abbreviations: ao,

ampullary organ; e, eye; nm, neuromast; ov, otic vesicle, pllp, posterior lateral line primordium. Scale bars: A-H,K,M-O, 200 mm; I,J,L,P, 100 mm.

DOI: 10.7554/eLife.24197.003
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around stage 39 (Figure 3B), where it persists (Figure 3C–F). Expression is never observed in devel-

oping neuromast lines. No other gene has previously been reported to show differential expression

in ampullary organs and neuromasts. Hence, Neurod4 may be important for specifying ampullary

organ and/or electroreceptor fate.

Figure 3. The proneural transcription factor gene Neurod4 is expressed in ampullary organs but not neuromasts. (A–F) In situ hybridization for Neurod4

at stages 29 (A), 39 (B), 41 (C) 43 (D) and 46 (E). At the earliest stages, transcripts are observed in the olfactory epithelium, eye, trigeminal ganglion. By

stage 39 transcripts are observed in the developing ampullary organ fields of the operculum, rapidly expanding to other ampullary organ fields in older

embryos. Expression is limited to ampullary organs and is not observed at any stage in neuromasts, as clearly seen at higher power at stage 46 (F).

Dotted lines indicate approximate boundaries of neuromast canal lines. (G–I) Potential Neurod4 interactors Pou4f1 (G), Lhx3 (H) and Myt1 (I) are

expressed in both ampullary organs and neuromasts. Abbreviations: ao, ampullary organ; e, eye; nm, neuromast; olf, olfactory epithelium; ov, otic

vesicle; tg, trigeminal ganglion. Scale bars: A-F, 200 mm; G-I, 100 mm.

DOI: 10.7554/eLife.24197.004
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We went on to examine the expression of transcription factor genes with known links to Neurod4

in other cell types. In trigeminal neurons, Pou4f1 (Brn3a) directly represses Neurod4 (Lanier et al.,

2007). Pou4f1 is a putative Atoh1 target in the postnatal mouse cerebellum (Klisch et al., 2011),

and is 20.6-fold lateral line-enriched (Supplementary file 1). Expression was seen in both ampullary

organs and neuromasts (Figure 3G), suggesting that additional factors besides Pou4f1 are likely

involved in controlling the differential expression of Neurod4 in ampullary organs versus

neuromasts.

In the spinal cord, Neurod4 cooperatively interacts with the LIM homeodomain transcription fac-

tor Lhx3 to specify motor neurons (Lee and Pfaff, 2003). Lhx3 is expressed in all inner ear hair cells,

although its expression is differentially regulated by Pou4f3 in cochlear versus vestibular hair cells

(Hertzano et al., 2007); it is also a putative cerebellar Atoh1 target gene (Klisch et al., 2011). Lhx3

is 16.3-fold lateral line-enriched (Supplementary file 1), and proved to be expressed in both ampul-

lary organs and neuromasts (Figure 3H). Hence, it is possible that Lhx3 could interact with Neurod4

in paddlefish ampullary organs to specify electroreceptors, and with another partner in neuromasts

to specify hair cells.

Finally, we examined the zinc finger transcription factor gene Myt1, another putative cerebellar

Atoh1 target gene (Klisch et al., 2011) that is 6.1-fold lateral line-enriched (Supplementary file 1).

We selected Myt1 because its expression is upregulated in Xenopus embryos by Neurod4

(Perron et al., 1999; Hardwick and Philpott, 2015), and it synergizes with Neurod4 to induce neu-

ronal differentiation in this system (Perron et al., 1999). Furthermore, Myt1 transcripts are report-

edly enriched in both cochlear and vestibular hair cells in postnatal mice (Elkon et al., 2015). We

found expression of paddlefish Myt1 in both ampullary organs and neuromasts (Figure 3I).

Overall, our results suggest that the transcription factor networks underlying hair cell develop-

ment, which center around Atoh1, are likely to be active in paddlefish ampullary organs as well as

neuromasts. This suggests significant conservation between the molecular mechanisms underlying

hair cell and electroreceptor development. Furthermore, our unbiased RNA-seq approach has also

identified the first transcription factor gene expressed in ampullary organs but not neuromasts, Neu-

rod4. Given the importance of members of the proneural bHLH Neurod family for specifying cell

fate, we suggest that Neurod4 may be involved in specifying ampullary organ and/or electrorecep-

tor fate in paddlefish.

Hair cell ribbon synapse genes are also expressed in ampullary organs
Some of the most highly lateral line-enriched genes in our paddlefish dataset are required for synap-

tic transmission in hair cells, which occurs at specialized ‘ribbon synapses’ characterized by electron-

dense, pre-synaptic structures called ‘synaptic ribbons’ (Matthews and Fuchs, 2010;

Pangršič et al., 2012; Safieddine et al., 2012; Nicolson, 2015; Wichmann and Moser, 2015;

Moser and Starr, 2016). These tether glutamate-filled synaptic vesicles and stabilize L-type voltage-

gated calcium channels at the plasma membrane (Cav1.3 in hair cells; Cav1.4, in retinal photorecep-

tors; Joiner and Lee, 2015), enabling rapid and sustained glutamate release in response to activa-

tion of these calcium channels by membrane depolarization (Matthews and Fuchs, 2010;

Pangršič et al., 2012; Safieddine et al., 2012; Nicolson, 2015; Wichmann and Moser, 2015;

Moser and Starr, 2016). Electroreceptors also have synaptic ribbons of varying morphology (North-

cutt, 1986; Bodznick and Montgomery, 2005): in paddlefish, they were described as synaptic

‘sheets’ (Jorgensen et al., 1972). In dissected skate ampullary organ preparations, activation of

L-type voltage-gated calcium channels in the basal electroreceptor membrane results in release of a

‘glutamate-like’ neurotransmitter (Bennett and Obara, 1986).

In hair cells, glutamate is loaded into synaptic vesicles by the vesicular glutamate transporter

Vglut3, which is encoded by Slc17a8 (DFNA25) and essential for hair cell synaptic transmission in

mouse (Ruel et al., 2008; Seal et al., 2008) and zebrafish (Obholzer et al., 2008). This is unusual:

Vglut1 or Vglut2 are used at glutamatergic synapses in the central nervous system, and at photore-

ceptor and bipolar cell ribbon synapses (see e.g. Zanazzi and Matthews, 2009; Pangršič et al.,

2012). Slc17a8 is one of the most highly enriched genes in our paddlefish dataset (30.9-fold

enriched; Supplementary file 1), and proved to be expressed in both ampullary organs and neuro-

masts (Figure 4A). Hence, synaptic vesicles in electroreceptors are likely to be loaded by the same

vesicular glutamate transporter as hair cells. Furthermore, this also provides independent evidence

that the afferent neurotransmitter released by non-teleost electroreceptors is indeed glutamate, as
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in hair cells (and photoreceptors), as suggested by electrophysiology experiments on dissected skate

ampullary organs (Bennett and Obara, 1986).

Hair cells are thought to be unique in depending on the multi-C2 domain transmembrane protein

otoferlin for synaptic vesicle exocytosis (Yasunaga et al., 1999; Roux et al., 2006; Pangršič et al.,

2010; Chatterjee et al., 2015; Strenzke et al., 2016; Vogl et al., 2016), rather than neuronal

SNAREs (Nouvian et al., 2011). This contrasts not only with conventional synapses but also with all

other ribbon synapses (see e.g. Zanazzi and Matthews, 2009; Mercer and Thoreson, 2011). Oto-

ferlin is a type II ferlin (Lek et al., 2012) encoded by Otof (DFNAB6, DFNAB9), which is 20.9-fold lat-

eral line-enriched (Supplementary file 1). Otof is expressed in both ampullary organs and

neuromasts in paddlefish (Figure 4B). This suggests that synaptic vesicle exocytosis at the electrore-

ceptor ribbon synapse, just as at the hair cell ribbon synapse, is otoferlin-dependent.

The L-type voltage-gated calcium channel whose opening triggers synaptic vesicle exocytosis in

hair cells is Cav1.3 (Kollmar et al., 1997; Platzer et al., 2000; Brandt et al., 2003; Michna et al.,

2003; Dou et al., 2004; Brandt et al., 2005; Baig et al., 2011). This contrasts with retinal photore-

ceptors, which do express Cav1.3, but rely on Cav1.4 for calcium influx (Matthews and Fuchs, 2010;

Joiner and Lee, 2015). The pore-forming (alpha) subunit of Cav1.3 is encoded by Cacna1d, which is

required for hearing (Platzer et al., 2000; Dou et al., 2004; Baig et al., 2011), and also for hair cell

function in zebrafish (Nicolson et al., 1998; Sidi et al., 2004), where it is expressed in both

Figure 4. Ampullary organs express genes required for transmission at the hair cell ribbon synapse. In situ hybridization at stage 46 reveals expression

in both ampullary organs and neuromasts of: (A) Slc17a8, encoding the vesicular glutamate transporter 3 (Vglut3); (B) Otof, encoding otoferlin; (C)

Cacna1d, encoding the pore-forming alpha subunit of Cav1.3; (D) Cacnb2, encoding an auxiliary beta subunit that is associated with Cav1.3 in hair cells

- note that the level of Cacnb2 in neuromasts is weaker than in ampullary organs; (E) Rims2, associated with synaptic ribbons in photoreceptors and hair

cells; (F) the Ribeye-specific A domain of Ctbp2, encoding the ribbon-specific protein Ribeye. Scale bars: 100 mm and 20 mm.

DOI: 10.7554/eLife.24197.005
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neuromasts and the inner ear (Sidi et al., 2004). (The two zebrafish cacna1d genes show differential

expression: cacna1da is expressed in hair cells plus retinal photoreceptors, while cacna1db is

expressed in retinal and pineal photoreceptors, but not hair cells; Sidi et al., 2004.) Paddlefish Cac-

na1d is 19.3-fold lateral line-enriched (Supplementary file 1) and expressed in both ampullary

organs and neuromasts (Figure 4C). Hence, Cav1.3 channels in the basal membrane are likely to

mediate glutamate release from both paddlefish electroreceptors and hair cells. Given the homology

of non-teleost ampullary organs (Bullock et al., 1983; Northcutt, 1986, Northcutt, 1992;

Braun, 1996; New, 1997; Baker et al., 2013), this also suggests that the L-type voltage-gated cal-

cium channels involved in neurotransmitter release from skate ampullary organs are likely to be

Cav1.3 channels.

The abundance and function of Cav1.3 channels in inner ear hair cells is regulated by the auxiliary

beta subunit Cavb2, which is required for hearing (Neef et al., 2009). Cavb2 is encoded by Cacnb2,

which is the only other voltage-gated Ca2+ channel subunit gene in the lateral line-enriched dataset

(2.7-fold enriched; Supplementary file 1). Although neuromast expression of cacnb2a and cacnb2b

was not reported in zebrafish (Zhou et al., 2008), paddlefish Cacnb2 is expressed in both ampullary

organs and neuromasts, with seemingly stronger expression in ampullary organs (Figure 4D). This

suggests that Cavb2 may be the auxiliary beta-subunit for Cav1.3 channels in electroreceptors, as

well as hair cells.

Furthermore, given that the voltage sensors in skate electroreceptors are L-type voltage-gated

calcium channels in the apical membrane (Bennett and Obara, 1986; Lu and Fishman, 1995;

Bodznick and Montgomery, 2005), recently demonstrated to be Cav1.3 channels (Bellono et al.,

2017), and the fact that an apical calcium conductance is required for the firing of sturgeon ampul-

lary organ afferents (Teeter et al., 1980), it seems likely that apically-located Cav1.3 channels, with

Cavb2 auxiliary beta subunits, act as the voltage-sensing channels, as well as mediating neurotrans-

mitter release basally.

Finally, we report the expression in both ampullary organs and neuromasts of Rims2 (Rim2) and

Ctbp2 (Ribeye), which encode proteins associated with synaptic ribbons in photoreceptors as well as

hair cells (Matthews and Fuchs, 2010; Pangršič et al., 2012; Safieddine et al., 2012; Nicol-

son, 2015; Wichmann and Moser, 2015) (Figure 4E,F). Rims2 encodes Rab3-interacting molecules

2a and b, which are required in cochlear inner hair cells for Cav1.3 channel recruitment to the active

zone membrane beneath the synaptic ribbon (Jung et al., 2015). Rims2 is 15.7-fold lateral line-

enriched (Supplementary file 1) and expressed in all lateral line organs (Figure 4E). Hence, Rims2

may also be involved in Cav1.3 channel recruitment in electroreceptors. Ribeye, the only known syn-

aptic ribbon-specific protein, is the main structural component of synaptic ribbons in both photore-

ceptors and hair cells, encoded by usage of an alternative start site for the transcription factor gene

Ctbp2 that generates an N-terminal A-domain unique to Ribeye (Matthews and Fuchs, 2010; Nicol-

son, 2015; Wichmann and Moser, 2015). Ribeye is important in zebrafish neuromast hair cells for

Cav1.3 channel recruitment to synaptic ribbons and stabilizing synaptic contacts with afferent neu-

rons (Sheets et al., 2011; Lv et al., 2016). Recently, deletion in mice of the exon encoding the

A-domain showed that Ribeye is essential in the retina (the ear was not examined) both for ribbon

formation per se, and for rapid and sustained neurotransmitter release (Maxeiner et al., 2016).

Ctbp2 is not in the lateral line-enriched dataset, but was present in the combined transcriptome, so

was easily cloned. As expected, a riboprobe that exclusively recognizes the Ribeye-specific

A-domain sequence of paddlefish Ctbp2 reveals expression in both ampullary organs and neuro-

masts (Figure 4F), suggesting that Ribeye is likely to be a key component of synaptic ribbons in

electroreceptors (and hair cells), where it may also be important for Cav1.3 channel recruitment.

Taken together, these data suggest that the mechanisms of neurotransmission at the ribbon syn-

apse in paddlefish electroreceptors are essentially identical to those at the hair cell ribbon synapse,

involving otoferlin-dependent exocytosis of synaptic vesicles, loaded with glutamate by Vglut3, in

response to the activation of basal Cav1.3 channels. Since non-teleost ampullary organs are homolo-

gous (Bullock et al., 1983; Northcutt, 1986, Northcutt, 1992; Braun, 1996; New, 1997;

Baker et al., 2013), we predict that these mechanisms will be conserved across all other non-teleost

ampullary organs.

Modrell et al. eLife 2017;6:e24197. DOI: 10.7554/eLife.24197 9 of 26

Research article Developmental Biology and Stem Cells Neuroscience

http://dx.doi.org/10.7554/eLife.24197


Differential expression of beta-parvalbumin genes in ampullary organs
and neuromasts
The paddlefish lateral line-enriched dataset contains two parvalbumin (Pvalb) genes: one, annotated

as being related to zebrafish ‘pvalb8’, is enriched 22.8-fold; the other, annotated as being related to

zebrafish ‘pvalb3’, is enriched 2.1-fold (Supplementary file 1). Parvalbumins are cytosolic EF-hand

Ca2+-buffering proteins (Schwaller, 2010). Ca2+ is essential for multiple aspects of hair cell function

(Lenzi and Roberts, 1994; Mammano et al., 2007; Ceriani and Mammano, 2012) and different

hair cell subtypes are distinguished by different complements of EF-hand Ca2+ buffers, including dif-

ferent parvalbumin family members. Mammals have a single alpha-parvalbumin, encoded by Pvalb,

and a single beta-parvalbumin, oncomodulin, encoded by Ocm (Schwaller, 2010). Alpha-parvalbu-

min is restricted to cochlear inner hair cells, while oncomodulin is restricted to cochlear outer hair

cells, and is also expressed in vestibular hair cells (Sakaguchi et al., 1998; Yang et al., 2004;

Simmons et al., 2010; Pangršič et al., 2015; Tong et al., 2016). Non-mammalian species have vari-

able numbers of parvalbumin genes (nine in zebrafish; Friedberg, 2005), and the nomenclature for

both genes and proteins is inconsistent and confusing. This led us to undertake a phylogenetic analy-

sis of selected vertebrate parvalbumin proteins, including the two predicted paddlefish proteins

(Figure 5A). This revealed three distinct clades: one comprising the alpha-parvalbumins (including

zebrafish ‘Pvalb6’ and ‘Pvalb7’; Friedberg, 2005), and two containing beta-parvalbumins

(Figure 5A). One of the beta-parvalbumin clades includes the oncomodulins (i.e., mammalian beta-

Figure 5. Two beta-parvalbumin genes are differentially expressed in ampullary organs versus neuromasts. (A) Phylogenetic analysis of selected

vertebrate parvalbumin proteins shows three clades: the alpha-parvalbumins, plus two clades containing beta-parvalbumins: the first includes the

mammalian beta-parvalbumins, i.e., oncomodulins, and chicken Pvalb3/thymic CPV3. One of the paddlefish lateral line-enriched parvalbumin genes

encodes a protein that groups within the beta-parvalbumin clade containing the oncomodulins, so we have named it Pvalbb1/Ocm. The other falls

within the second beta-parvalbumin clade, so we have named it Pvalbb2. (B) In situ hybridization shows that Pvalbb1/Ocm is expressed in both

ampullary organs and neuromasts, while (C) Pvalbb2 is restricted to ampullary organs. Scale bars: 100 mm and 20 mm.

DOI: 10.7554/eLife.24197.006
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parvalbumins), chicken Pvalb3/thymic CPV3 (encoded by Ocm) (Hapak et al., 1994), bullfrog Pvalb3

(Heller et al., 2002) and zebrafish ‘Pvalb8’ and ‘Pvalb9’, which were originally named Pvalb3a and

Pvalb3b owing to their similarity to chicken Pvalb3/CPV3 and oncomodulin (Hsiao et al., 2002;

Friedberg, 2005) (Figure 5A). The second beta-parvalbumin clade includes chicken thymic Pvalb

(avian thymic hormone, encoded by Ocm2) (Brewer et al., 1989), zebrafish ‘Pvalb1-5’ (Fried-

berg, 2005) and various other beta-parvalbumins (Figure 5A).

Following our phylogenetic analysis, it was clear that both lateral line-enriched Pvalb genes

encode beta-parvalbumins. We named the most highly lateral line-enriched gene Pvalbb1/Ocm

(22.8-fold enriched; ‘pvalb8’ in Supplementary file 1), because the predicted protein groups in the

beta-parvalbumin clade containing mammalian oncomodulins (Figure 5A). Pvalbb1/Ocm is

expressed in both ampullary organs and neuromasts (Figure 5B). Interestingly, ‘Pvalb8’ was

reported to be the most highly expressed transcript in skate ampullary organs: the authors suggest

that, following the voltage-dependent Ca2+ influx via Cav1.3 that depolarizes the electroreceptor

and activates BK, this parvalbumin could bind Ca2+, thus blocking BK-mediated hyperpolarization

and enabling further oscillations (Bellono et al., 2017).

We named the less highly lateral line-enriched gene Pvalbb2 (2.1-fold enriched; ‘pvalb3’ in

Supplementary file 1), as it falls into the second beta-parvalbumin clade (Figure 5A). At all stages

examined, Pvalbb2 proved to be expressed in ampullary organs but not neuromasts (Figure 5C).

Therefore, in addition to Neurod4, we have identified another transcript expressed by ampullary

organs but not neuromasts. We suggest that this beta-parvalbumin is likely to be involved in ampul-

lary organ-specific aspects of Ca2+ regulation.

Identification of ampullary organ-specific voltage-gated potassium
channel subunits
The oscillatory character of the basal membrane voltage of skate electroreceptors depends on volt-

age-gated potassium channels, which contribute to repolarization of the basal membrane

(Bennett and Obara, 1986; Lu and Fishman, 1995; Bodznick and Montgomery, 2005). Noisy volt-

age oscillations have been recorded from ampullary organ canals in adult paddlefish in vivo

(Neiman and Russell, 2004). Hence, we were very interested to find two highly lateral line-enriched

shaker-related voltage-gated potassium channel subunit genes in our paddlefish dataset: Kcna5,

encoding the pore-forming alpha subunit of Kv1.5 (12.4-fold enriched) and Kcnab3, encoding the

beta subunit Kvb3 (21.4-fold enriched). In contrast to the L-type voltage-gated calcium channel sub-

unit genes Cacna1d and Cacnb2, which are expressed in both ampullary organs and neuromasts

(Figure 4C,D), Kcna5 (Figure 6A–D) and Kcnab3 (Figure 6E–H) are only expressed in ampullary

organs. Expression of both genes is first seen around stages 38–39, slightly after the eruption of the

first ampullary organs at the surface at stage 37 (Modrell et al., 2011a).

Voltage-gated potassium channels are tetramers of four alpha (pore-forming) subunits, each con-

taining six transmembrane segments, of which S4 contains a high density of positively charged resi-

dues and is the main transmembrane voltage-sensing component (Barros et al., 2012). Intriguingly,

paddlefish Kv1.5 has a number of amino acid substitutions at otherwise highly conserved positions in

S4, as well as in the S3-S4 linker, at the top of the S5 helix, and in the channel pore (Figure 6I,J).

How the sum of these substitutions affects paddlefish Kv1.5 channel behavior must await studies of

channel expression.

Discussion
Here, we took advantage of the abundance of ampullary organs (plus some neuromasts) on the

operculum (gill-flap) of late-larval Mississippi paddlefish, and the absence of lateral line organs on

the fins (Modrell et al., 2011a, 2011b), to generate a dataset of over 400 identified genes whose

transcripts are enriched at least 1.8-fold in operculum versus fin tissue (i.e., lateral line-enriched). The

dataset is not exhaustive: it does not include some genes whose expression we have validated in

developing ampullary organs and neuromasts in paddlefish, whether via previous candidate gene

approaches (e.g. Eya family members and Six family members other than Six1 and Six2;

Modrell et al., 2011a), or some genes cloned in this study from transcripts present in the combined

operculum plus fin transcriptome (e.g. Ctpb2, encoding the synaptic ribbon protein Ribeye). Never-

theless, this unbiased dataset provides an important foundation for investigating the molecular basis

Modrell et al. eLife 2017;6:e24197. DOI: 10.7554/eLife.24197 11 of 26

Research article Developmental Biology and Stem Cells Neuroscience

http://dx.doi.org/10.7554/eLife.24197


Figure 6. Shaker-related voltage-gated potassium channel subunit genes expressed in ampullary organs but not neuromasts. (A,B) In situ hybridization

at stage 46 for Kcna5, which encodes the pore-forming alpha subunit of the voltage-gated potassium channel Kv1.5, reveals expression only in the

developing ampullary organ fields. Dotted lines indicate approximate boundaries of neuromast canal lines. (C,D) Even at the successively earlier stages

shown (stage 41 and 39), Kcna5 is still restricted to the developing ampullary organ fields. (E–H) Expression of Kcnab3, encoding the auxiliary beta

subunit Kvb3, is similarly confined to the developing ampullary organ fields. Dotted lines indicate approximate boundaries of neuromast canal lines.

The arrow in H, and the higher-power view of this region shown in the inset, indicate the area where the first Kcnab3 expression is noted, at stage 39.

Scale bars: A,C-E,G,H, 0.5 mm; B,F, 50 mm. Abbreviations: ao, ampullary organ; e, eye; olf, olfactory pit. (I) Schematic, linear structure of the pore-

forming alpha subunit of a Kv channel, with the positions noted of amino acid substitutions in paddlefish Kv1.5. (J) Amino acid sequences across the S3/

4 linker region, the voltage-sensing segment S4, plus S5 and the pore, from paddlefish Kv1.5 (top) and other Shaker-related Kv channels for comparison,

indicating the deep conservation of some of these amino acid positions across metazoans. The first set of sequences are from Kv1.5 across the jawed

vertebrates, including three ray-finned bony fishes: Polyodon spathula (Mississippi paddlefish, a non-teleost chondrostean fish), Lepisosteus oculatus

(spotted gar, a non-teleost neopterygian fish), Danio rerio (zebrafish, a teleost neopterygian fish); four lobe-finned fishes/tetrapods: Latimeria

chalumnae (coelacanth), Xenopus tropicalis (tropical clawed frog), Gallus gallus (chicken), Homo sapiens (human); and a cartilaginous fish (Callorhinchus

milii, a holocephalan). The second set of sequences are from two other human Shaker-related channels (Kv1.1 and Kv1.4), and three invertebrate Shaker

orthologs, from Drosophila melanogaster (an insect, i.e., an ecdysozoan), Aplysia californica (a mollusc, i.e., a spiralian) and Nematostella vectensis (a

sea anemone, i.e., a cnidarian).

DOI: 10.7554/eLife.24197.007
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of ampullary organ development. Validation of a selection of genes from the dataset revealed signif-

icant molecular conservation between developing paddlefish ampullary organs and neuromasts,

both in their expression of transcription factor genes critical for hair cell development, and also of

genes essential for transmission specifically at the hair cell ribbon synapse. For the first time in any

vertebrate, we also identify genes expressed in ampullary organs but not neuromasts, including a

transcription factor, a beta-parvalbumin and voltage-gated potassium channel subunits consistent

with predictions from skate ampullary organ electrophysiology.

Atoh1 and Neurod4 are likely to be critical for ampullary organ/
electroreceptor development
Key elements of the transcription factor network underlying hair cell development, centering on the

bHLH transcription factor Atoh1 (Cai and Groves, 2015; Jahan et al., 2015; Costa et al., 2017),

seem to be conserved in developing paddlefish ampullary organs, including expression of Six1, Eya1

(Modrell et al., 2011a), Sox2, Atoh1 itself (this study and Butts et al., 2014) and Pou4f3 (Brn3c).

Hence, Atoh1 and Pou4f3 are likely to be critical for the specification and differentiation of electrore-

ceptors, as well as hair cells. This further highlights the importance of developmental context for

Atoh1 activity, since it is also required for the specification of mechanosensory Merkel cells and pro-

prioceptive neurons, cerebellar granule cells and intestinal secretory cells (Cai and Groves, 2015;

Jahan et al., 2015; Costa et al., 2017). It also raises the question of which transcription factors are

involved in the differentiation of ampullary organs/electroreceptors versus neuromasts/hair cells,

whether acting downstream of Atoh1, or in parallel with it.

Of the 16 transcription factor genes whose expression we have reported to date in developing

paddlefish lateral line organs, all except one are expressed in both ampullary organs and neuro-

masts: these are Six1, Six2, Six4, Eya1, Eya2, Eya3, Eya4 (Modrell et al., 2011a); the three SoxB1

class genes Sox1, Sox2 (this study) and Sox3 (Modrell et al., 2011b); Atoh1 (this study and

Butts et al., 2014), Pou4f3, Pou4f1, Lhx3 and Myt1 (this study). The single exception is the proneural

bHLH transcription factor gene Neurod4, a putative cerebellar Atoh1 target (Klisch et al., 2011)

present in the lateral line-enriched dataset, which proved to be expressed in developing ampullary

organs but not neuromasts. The related family member Neurod1 (which is expressed in paddlefish

cranial sensory ganglia, but not lateral line organs; Modrell et al., 2011b) suppresses a hair cell fate

in mouse otic neurons, and is important for the specification of outer versus inner hair cells in the

cochlea (Jahan et al., 2010), while the even more closely related Neurod6 was identified as enriched

in cochlear but not vestibular hair cells (Elkon et al., 2015). Hence, different NeuroD family mem-

bers may be involved in specifying different hair cell subtypes. Taken together, we propose that

Neurod4 is likely to be critical in paddlefish for the specification of ampullary organs/electrorecep-

tors within lateral line placode-derived sensory ridges.

The function of these transcription factors during lateral line development could in principle be

tested using the RNA-guided nuclease system CRISPR/Cas9, which has successfully been used to

generate biallelic mutations efficiently in, for example, F0-injected axolotl (Fei et al., 2014;

Flowers et al., 2014) and lamprey (Square et al., 2015). However, the very restricted annual spawn-

ing season for paddlefish, and the availability of 1-cell-stage embryos for injection only in a commer-

cial fishery, rather than a laboratory setting, raise significant technical and logistical obstacles to

optimizing CRISPR/Cas9 for this particular species. Another non-teleost chondrostean fish, the stur-

geon Acipenser ruthenus (sterlet), has a much longer spawning season, with 1-cell-stage embryos

readily available for microinjection in research facilities (e.g. Saito et al., 2014). Therefore, we plan

to purse functional experiments on electroreceptor development using this species in the future.

Electroreceptor synaptic transmission mechanisms are conserved with
hair cells
Although it was clear from electron microscopy that non-teleost electroreceptors in all species exam-

ined have ribbon-type synapses, given the presence of electron-dense presynaptic bodies (‘bars’,

‘sheets’ or ‘spheres’, depending on the species), surrounded by synaptic vesicles (Jørgensen, 2005),

nothing was known at the molecular level about transmission mechanisms at electroreceptor synap-

ses, except that activation of L-type voltage-gated calcium channels results in the release of a ‘gluta-

mate-like’ neurotransmitter (Bennett and Obara, 1986). Our data suggest that the electroreceptor
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ribbon synapse is glutamatergic, and functions in the same way as the hair cell ribbon synapse

(Safieddine et al., 2012; Nicolson, 2015; Wichmann and Moser, 2015; Moser and Starr, 2016),

with glutamate being loaded into synaptic vesicles by Vglut3, and otoferlin-dependent exocytosis

being triggered by the activation of Cav1.3 channels, potentially including the auxiliary beta subunit

Cavb2, as in cochlear inner hair cells (Neef et al., 2009). In contrast, retinal and pineal photorecep-

tors express Vglut1 and Vglut2 and neuronal SNAREs, and retinal photoreceptors depend on Cav1.4

(see e.g. Zanazzi and Matthews, 2009; Matthews and Fuchs, 2010; Mercer and Thoreson, 2011;

Joiner and Lee, 2015). These physiological similarities between electroreceptors and hair cells are

consistent with the expression in developing ampullary organs of key hair cell transcription factor

genes, some of which presumably control the expression of ribbon synapse-associated genes in

both electroreceptors and hair cells.

The expression of Cav and Kv channel subunit genes in paddlefish
ampullary organs is consistent with predictions from skate ampullary
organ electrophysiology
Our understanding of non-teleost ampullary organ physiology is primarily based on current- and

voltage-clamp studies of epithelial currents in dissected single ampullary organ preparations from

skates (cartilaginous fishes) (Bennett and Obara, 1986; Lu and Fishman, 1995; Bodznick and

Montgomery, 2005). These revealed that L-type voltage-gated calcium channels in the apical

(lumenal, i.e., exterior-facing) electroreceptor membrane open in response to low-frequency cath-

odal electric fields (i.e., lumen-negative at the apical surface of the electroreceptor, relative to the

interior of the animal). Ca2+ entry depolarizes the apical membrane and subsequently the basal

membrane, which activates L-type voltage-gated calcium channels in the basal membrane. Ca2+

entry through these channels further depolarizes the basal membrane, resulting in synaptic vesicle

exocytosis and neurotransmitter release. Basal Ca2+ entry also activates basal voltage-gated potas-

sium channels and calcium-dependent chloride channels, thus repolarizing the basal membrane and

de-activating the basal voltage-gated calcium channels (this gives the basal membrane voltage its

oscillatory character). The apical membrane is repolarized after sufficient Ca2+ enters through the

apical voltage-gated calcium channels to trigger the apical calcium-gated potassium channel BK.

This terminates the depolarization and oscillations of the basal membrane. Importantly, the apical

L-type voltage-gated calcium channels are partially activated in the absence of stimulus by a bias

current across the sensory epithelium (provided by sodium/calcium exchangers and sodium/potas-

sium pumps), so neurotransmitter is released steadily at rest, while the activity of the apical BK chan-

nel keeps the electroreceptor near threshold at rest and also during prolonged stimulus. Low-

frequency cathodal stimuli accelerate the resting discharge of the afferent nerve, while anodal stimuli

decelerate and eventually inhibit discharge (Bennett and Obara, 1986; Lu and Fishman, 1995;

Bodznick and Montgomery, 2005). Also in skate, Cav1.3 has just been identified as the L-type volt-

age-gated calcium channel that mediates the low-threshold voltage-dependent inward current, and

works with BK to mediate electroreceptor membrane oscillations (Bellono et al., 2017).

Our data on voltage-gated ion channel expression in larval paddlefish ampullary organs are rele-

vant both for the voltage-sensing calcium channels and for the voltage-gated potassium channel

involved in rectifying the basal membrane during oscillations. An apical calcium conductance is

required for ampullary organ afferent nerve firing in another non-teleost chondrostean fish, the stur-

geon Scaphirhynchus platorynchus (Teeter et al., 1980). The expression in larval paddlefish ampul-

lary organs of Cacna1d, encoding the pore-forming alpha subunit of Cav1.3 channels, and Cacnb2,

encoding the auxiliary beta subunit Cavb2, is consistent with the hypothesis that Cav1.3 channels are

candidates for the apical voltage-sensing L-type voltage-gated calcium channels, as well as for the

basal L-type voltage-gated calcium channels whose activation triggers otoferlin-dependent synaptic

vesicle exocytosis and glutamate release at the ribbon synapse (see previous section). The identifica-

tion of Cav1.3 channels as the voltage-sensor in skate electroreceptors (Bellono et al., 2017) further

supports this hypothesis. Furthermore, given that Cacnb2 seems to be expressed at higher levels in

ampullary organs than in neuromasts in paddlefish, it is possible that the voltage-sensing channels

include the auxiliary beta subunit Cavb2. (In contrast, deep-sequencing data from skate ampullary

organs suggest that Cavb1, encoded by Cacnb1, might be the auxiliary beta subunit in this species;

Bellono et al., 2017.) Testing these hypotheses will require subcellular localization using paddlefish
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Cav channel subunit-specific antibodies and/or the optimization of CRISPR/Cas9 in conjunction with

larval electroreceptor recordings, in this or related species.

We also identified expression in paddlefish ampullary organs, but not neuromasts, of Kcna5,

encoding the pore-forming subunit of Kv1.5 channels, and Kcnab3, encoding an auxiliary beta-sub-

unit. In the cardiac atrium, Kv1.5 channels are thought to conduct the ‘ultra-rapid delayed rectifier’

current (IKur), with relatively slow inactivation properties, which contributes to repolarization

(Schmitt et al., 2014; Wettwer and Terlau, 2014). Furthermore, when human KCNA5 and KCNAB3

are heterologously co-expressed in cell culture, they form a novel Kv channel that, upon depolariza-

tion, mediates very fast-inactivating (A-type) outward currents (Leicher et al., 1998). Hence, it is

possible that Kv1.5 and Kvb3 in paddlefish ampullary organs together constitute a rapidly-inactivat-

ing voltage-gated potassium channel that conducts an ultra-rapid delayed rectifier current. These

properties would plausibly be optimal for rapid oscillation of the basal electroreceptor membrane.

Noisy voltage oscillations have been recorded from ampullary organ canals in adult paddlefish in

vivo (Neiman and Russell, 2004). Importantly, the only evidence until now for the existence of a rec-

tifying Kv channel in non-teleost ampullary organs has been from current- and voltage-clamp

approaches in dissected skate (cartilaginous fish) ampullary organs (Bennett and Obara, 1986;

Lu and Fishman, 1995; Bodznick and Montgomery, 2005). Our gene expression data suggest that

this channel also exists in a chondrostean fish, supporting the hypothesis that non-teleost electrore-

ceptor physiology is conserved (at least across jawed vertebrates), and identify Kv1.5 and Kvb3 as

the candidate channel.

Amino acid substitutions may alter Kv1.5 channel properties in
paddlefish
The sequence of paddlefish Kcna5 predicts several amino acid substitutions in highly conserved

regions of Kv1.5 that could affect its properties. The S4 segment of voltage-gated ion channels is the

voltage sensor, and is highly conserved (Barros et al., 2012). The first positively-charged amino acid

in the voltage sensor is normally arginine: since it is the first arginine in S4, it is referred to as the R1

position. In paddlefish Kv1.5, this has been replaced by a threonine (T357). Experimental substitution

of methionine at this site in Drosophila Shaker (R362M; Aggarwal and MacKinnon, 1996) decreases

the gating charge on the channel and the slope of the conductance voltage curve (Aggarwal and

MacKinnon, 1996; Elliott et al., 2012). Aside from its role as part of the voltage sensor, R1 forms a

seal with hydrophobic residues in S2 that keeps ions from flowing around the S4 segment: substitu-

tion of R1 in Drosophila Shaker with histidine (R362H) allows protons to leak past S4 (Starace and

Bezanilla, 2004). Substitution with some other amino acids (alanine, cysteine, serine, valine) allows

monovalent cations to leak past S4 when the cell is hyperpolarized (omega current) (Tombola et al.,

2005). It is not known if a threonine at this position would encourage an omega current, but an

omega current could act like a slow depolarizing leak current, possibly contributing to the spontane-

ous activity of ampullary electroreceptors.

The other amino acid substitutions in paddlefish Kv1.5 are at conserved positions in the S3-S4

linker, at the top of the S5 helix, and in the channel pore. A variety of studies indicate that the end

of the S3/S4 linker and the top of S4 contact the top of S2, S3 and S5/pore in the closed or open

state (Kanevsky and Aldrich, 1999; Elliott et al., 2004; Soler-Llavina et al., 2006; Henrion et al.,

2009; Lin et al., 2011; Elliott et al., 2012). Generally speaking, amino acid substitutions at some of

these amino acid positions cause a rightward shift in the conductance-voltage curve, meaning that

the channel would open at more depolarized voltages. Characterization of the effects on Kv1.5 of

these various amino acid substitutions will require future paddlefish channel expression in a heterolo-

gous system and mutagenesis studies: for example, characterizing the properties of paddlefish

Kv1.5, as compared with paddlefish Kv1.5 in which these amino acids (in different combinations)

have been substituted with conserved residues, and/or substituting the paddlefish-specific amino

acids into, for example, human Kv1.5.

Insights into electroreceptor evolution
As noted above, of the 16 transcription factor genes whose expression we have reported to date in

developing paddlefish lateral line organs (this study; Modrell et al., 2011a, 2011b; Butts et al.,

2014), all except one (Neurod4) are expressed in ampullary organs as well as neuromasts, including
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transcription factor genes that are essential for hair cell development, such as Atoh1 and Pou4f3

(Brn3c). Furthermore, genes that are required for synaptic transmission at the hair cell (but not pho-

toreceptor) ribbon synapse are also expressed in larval paddlefish ampullary organs. This suggests

very close developmental and, most likely, evolutionary links between hair cells and electroreceptors.

This was not necessarily to be expected: electroreceptors could have been more similar to other cell

types with ribbon synapses, i.e., retinal or pineal photoreceptors, or retinal bipolar cells (indeed,

Neurod4 is also important for bipolar neuron development; Hatakeyama and Kageyama, 2004).

The selective pressure for the evolution of electroreceptors, which enable the detection of living

animals in water, is likely related to the transition from filter-feeding to predation in the lineage lead-

ing to vertebrates (Gans and Northcutt, 1983; Northcutt and Gans, 1983; Northcutt, 2005b). Var-

ious lines of evidence support the homology of all non-teleost electroreceptors, including those of

lampreys: their stimulation by weak, low-frequency cathodal fields (and inhibition by strong cathodal

fields); their innervation by pre-otic anterior lateral afferents projecting to the dorsal octavolateral

nucleus in the hindbrain; and, in jawed vertebrates, their demonstrated embryonic origin, together

with neuromasts, from lateral line placodes (Bullock et al., 1983; Northcutt, 1992; Braun, 1996;

New, 1997; Baker et al., 2013). Given this, the striking similarities in both development and physiol-

ogy that we have identified in paddlefish ampullary organs are consistent with electroreceptor evolu-

tion in the vertebrate ancestor either via the diversification of hair cells that had already evolved

from ancestral mechanoreceptor cells (Duncan and Fritzsch, 2012; Fritzsch and Straka, 2014), or

via the diversification of an ancestral mechanoreceptor cell - with an apical primary cilium (lost in

lamprey electroreceptors), microvilli, and synaptic ribbons (Northcutt, 1986; Bodznick, 1989;

New, 1997), and using otoferlin, Vglut3 and Cav1.3 channels for synaptic transmission - into both

hair cells and electroreceptors.

Summary and perspective
Our unbiased RNA-seq approach has shed new light on molecular mechanisms underlying ampullary

organ development and physiology in a non-teleost chondrostean fish. The expression in ampullary

organs, as well as neuromasts, of key hair cell transcription factor genes, such as Atoh1, Sox2 and

Pou4f3, and genes encoding proteins specifically required for glutamate release at the hair cell rib-

bon synapse, such as otoferlin, Vglut3 and Cav1.3 channels, supports close developmental and physi-

ological, hence evolutionary, relationships between electroreceptors and hair cells. Our identification

of the first-reported ampullary organ-specific genes, including the proneural transcription factor

gene Neurod4, a beta-parvalbumin gene, and voltage-gated potassium channel subunit genes, pro-

vides novel insight into the potential molecular basis of ampullary organ-specific development and

physiology. We identify Cav1.3 (with Cavb2) as a candidate for the apical voltage-sensing channel

(indeed, Cav1.3 was recently shown to be the voltage-sensing channel in skate electroreceptors;

Bellono et al., 2017), and Kv1.5 (with unusual amino acid substitutions that may affect its proper-

ties), together with Kvb3, as a candidate for the basal membrane rectifying Kv channel predicted

from skate ampullary organ electrophysiology. As noted above, the paddlefish has a very limited

annual spawning period, so it is technically difficult to optimize e.g. CRISPR/Cas9 for targeted muta-

tion. However, the continuing rapid advances in CRISPR/Cas9 technology, plus the development of

other experimentally tractable non-teleost model systems, should eventually make it possible to test

specific gene function in this and related species. Overall, our analysis has provided wide-ranging

insights into molecular aspects of ampullary organ development and physiology, and an essential

framework for future comparative work to determine both the function of these genes, and the

extent to which they are conserved across other non-teleost electroreceptive vertebrate groups.

Materials and methods

Tissue and RNA isolation and Illumina sequencing
P. spathula embryos were purchased over multiple spawning seasons from Osage Catfisheries Inc.

(Osage Beach, MO, USA) and staged according to Bemis and Grande (1992). All experiments were

performed in accordance with the approved institutional guidelines and regulations of the Institu-

tional Animal Care and Use Committee of Kennesaw State University (approved protocol #12–001).

Stage 46 yolk-sac larvae were preserved in RNALater (Ambion, Thermo Fisher Scientific Inc.,
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Waltham, MA, USA) overnight at 4˚C. Excess solution was removed and samples were stored at

�80˚C until processed. Opercular (lateral line organ-enriched) and fin (no lateral line organs) tissues

were manually dissected and pooled from three different sets of 6–7 specimens each, yielding three

biological replicates. RNA was extracted using Trizol reagent (Ambion), according to the manufac-

turer’s protocol. RNA concentration was assessed using a Nanodrop N1000 spectrophotometer and

integrity using an Agilent 2100 Bioanalyzer (Cambridge Genomic Services). Only samples with an

RNA integrity number (RIN) greater than nine were used for next-generation sequencing. Illumina

RNA-sequencing library preparation and sequencing were performed by The Centre for Applied

Genomics, The Hospital for Sick Children, Toronto, Canada. Libraries were prepared following the

standard Illumina RNA Library Prep kit and sequenced on an Illumina HiSeq 2500, using Illumina v3

chemistry, following the multiplex paired-end protocol (2 � 100 bases).

Assembly and analysis of transcriptome
Read QC and trimming
Reads were subjected to various quality controls, including filtering of high-quality reads based on

the score value given in fastq files (FastQC version 0.10.1; http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/), removal of reads containing primer/adaptor sequences and trimming of read

length using Trimmomatic-0.30 (Bolger et al., 2014).

De novo assembly of the transcriptome
Reads were de novo assembled using Velvet version 1.2.10 (Zerbino and Birney, 2008) and Oases

version 0.2.08 (Schulz et al., 2012). Velvet was run using different k-mer lengths k27–k77 in k10

increments along with other default parameters. Oases was run using the same k-mer range. Results

from these assemblies were merged, again using Velvet and Oases k-mer of k27. All assemblies

were performed on a server with 64 cores and 512 Gb of RAM.

Obtaining transcript counts
Reads were mapped back to the transcriptome using Bowtie2 version 2–2.1.0 (Langmead and Salz-

berg, 2012). As reads were uncorrected, some cleaning of the SAM files was needed to remove

PCR duplicates and to remove long-stretch (>85%) poly-A sequences. Transcript counts for each

sample were obtained with HTseq-count (version 0.5.4p3) (Anders et al., 2015). A locus-to-tran-

script mapping file was used to collapse related transcripts and obtain locus-level counts. Output

was used as input for statistical calculations.

Differential Expression Analysis
The BioConductor package DESeq (Anders and Huber, 2010) was used for differential expression

analysis. A p-value of <0.1 was considered significant after adjustment (multiple testing using Benja-

mini-Hochberg).

BLAST Annotation
With a dataset of 189,933 contigs (>200 bp) assembled by Velvet/ Oases, transcripts were searched

against chordate and invertebrate protein datasets (obtained from SwissProt and NCBI databases)

using NCBI’s Basic Local Alignment Search Tool BLASTX (McGinnis and Madden, 2004), with an

expected (E)-value cut-off of �1E�05 to reveal sequence conservation. For results above threshold,

the UniProt protein record was obtained for the top BLAST hit against each transcript locus.

Functional Annotation and Enrichment Analysis
Gene ontology (GO) and protein domain annotations were extracted from relevant UniProt records.

Enrichment analysis was performed using hypergeometric mean and Bonferonni multiple testing cor-

rection. Enriched genes were classified using GO terms according to molecular function using the

web-based resource PANTHER (Mi et al., 2016).

RNA-seq data have been deposited in the NCBI Gene Expression Omnibus (GEO) database

under accession code GSE92470.
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Phylogenetic analysis of parvalbumins
Amino acid sequences were downloaded from GenBank and aligned using the online version of

MUSCLE (Edgar, 2004) from the EMBL-EBI server (Li et al., 2015). The following Parvalbumin

(Pvalb) protein sequences were used: for Callorhinchus milii, Pvalb, thymic CPV3-like (AFP11760),

Pvalb-alpha-like (AFP11872); for Danio rerio, Pvalb1 (AAH71552), Pvalb2 (AAH93135), Pvalb3

(AAH46001), Pvalb4 (AAH72551), Pvalb5 (AAH92666), Pvalb6 (NP_991136), Pvalb7 (NP_991137),

Pvalb8 (NP_891982), Pvalb9 (NP_891983); for Gallus gallus, Pvalb3/thymic CPV3 (AAA17518), Pvalb-

alpha (CAX32963), Pvalb thymic/Ocm2 (NP_001007478); for Homo sapiens, Pvalb-alpha

(NP_001302461), Ocm (AAH69468); for Mus musculus, Pvalb-alpha (NP_038673), Ocm (NP_149028);

for Rana catesbeiana, Pvalb3 (AAL09922), Pvalb-alpha (BAC55948), Pvalb-beta (AC051685); for Rat-

tus norvegicus, Pvalb-alpha (NP_071944), Ocm (P02631); for Salmo salar, Pvalb-alpha

(NP_001167235), Pvalb thymic/CPV3 (ACM09534), Pvalb-beta1 (NP_001117190), Pvalb-beta2

(NP_001117189).

Phylogenetic analyses were carried out using a Bayesian framework with the parallel version of

MrBayes 3.2.6 (Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003). One major

issue with analyzing highly divergent multi-gene families is finding suitable outgroups to root the

tree appropriately. Instead of using an outgroup, a relaxed molecular clock with independent

gamma rates was used to infer the position of the root. A ‘mixed’ substitution model prior for the

amino acid sequences was used to allow the program to explore and sample across substitution

models. To estimate posterior probabilities of all parameters, two Metropolis-coupled Markov chain

Monte Carlo (MCMCMC) runs of 100 million generations were performed, sampling every 10,000

generations and discarding the first 25% as burn-in. The resulting annotated consensus tree was sub-

sequently edited in FigTree (http://tree.bio.ed.ac.uk/software/figtree/).

Alignments of Shaker-related voltage-gated potassium channel amino
acid sequences
Amino acid sequences for Shaker-related voltage-gated potassium channels were aligned using Sea-

view (Gouy et al., 2010) with default settings. The following protein sequences were used: Aplysia

californica Shaker-like (NP_001191634.1), Callorhinchus milii Kv1.5 (XP_007902374.1); Danio rerio

Kv1.5 (XP_005171764.1); Drosophila melanogaster Shaker (CAA29917.1); Gallus gallus Kv1.5

(XP_015147812.1); Homo sapiens Kv1.5 (NP_002225.2), Kv1.1 (NP_000208.2) and Kv1.4

(NP_002224.1); Latimeria chalumnae Kv1.5 (XP_006013184.1); Lepisosteus oculatus Kv1.5

(XP_006633553.2); Nematostella vectensis Shaker4 (AFY09706.1); and Xenopus tropicalis Kv1.5

(XP_004912856.1).

Gene cloning, in situ hybridization and immunohistochemistry
Total RNA from stage 44–46 embryos or stage 46 opercular tissue was isolated using Trizol

(Invitrogen, Carlsbad, CA), as per the manufacturer’s protocol. cDNA was made using the Super-

script III First Strand Synthesis kit (Invitrogen, Thermo Fisher Scientific). Gene-specific primers were

used under standard PCR conditions to amplify gene fragments, which were cloned into the pDrive

vector (Qiagen, Manchester, UK) and individual clones verified by sequencing (Department of Bio-

chemistry Sequencing Facility, University of Cambridge, UK). GenBank accession numbers for cloned

paddlefish cDNA fragments are as follows: Cacna1d KY781950, Cacnb2 KY781951, Ctbp2

KY781952, Kcna5 KY781953, Kcnab3 KY781954, Lhx3 KY781955, Myt1 KY781956, Neurod4

KY781957, Otof KY781958, Pou4f1 KY781959, Pou4f3 KY781960, Pvalbb1/Ocm KY781961, Pvalbb2

KY781962, Rims2 KY781963, Slc17a8 KY781964, Sox1 KY781965 and Sox2 KY781966. Anti-sense

RNA probes were synthesized using T7 or SP6 polymerases (Promega, Southampton, UK) and digox-

igenin-labeled dUTPs (Roche, Basel, Switzerland).

Whole-mount in situ hybridization and immunohistochemistry was performed as described

(Modrell et al., 2011a). The primary antibody against Sox2 was ab92494 (rabbit, 1:200–1:400;

Abcam, Cambridge, UK; reported to work in skate: http://www.abcam.com/sox2-antibody-epr3131-

ab92494.html/reviews/37352). A horseradish peroxidase-conjugated goat anti-rabbit secondary

(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA) was used at 1:600. Each RNA

probe/antibody was tested a minimum of two times, using at least five embryos per experimental

trial.
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Square T, Romášek M, Jandzik D, Cattell MV, Klymkowsky M, Medeiros DM. 2015. CRISPR/Cas9-mediated
mutagenesis in the sea lamprey Petromyzon marinus: a powerful tool for understanding ancestral gene
functions in vertebrates. Development 142:4180–4187. doi: 10.1242/dev.125609, PMID: 26511928

Starace DM, Bezanilla F. 2004. A proton pore in a potassium channel voltage sensor reveals a focused electric
field. Nature 427:548–553. doi: 10.1038/nature02270, PMID: 14765197

Strenzke N, Chakrabarti R, Al-Moyed H, Müller A, Hoch G, Pangrsic T, Yamanbaeva G, Lenz C, Pan K-T, Auge E,
Geiss-Friedlander R, Urlaub H, Brose N, Wichmann C, Reisinger E. 2016. Hair cell synaptic dysfunction, auditory
fatigue and thermal sensitivity in otoferlin Ile515Thr mutants. The EMBO Journal 35:2519–2535. doi: 10.15252/
embj.201694564, PMID: 27729456

Takebayashi K, Takahashi S, Yokota C, Tsuda H, Nakanishi S, Asashima M, Kageyama R. 1997. Conversion of
ectoderm into a neural fate by ATH-3, a vertebrate basic helix-loop-helix gene homologous to Drosophila
proneural gene atonal. The EMBO Journal 16:384–395. doi: 10.1093/emboj/16.2.384, PMID: 9029157

Teeter JH, Szamier RB, Bennett MVL. 1980. Ampullary electroreceptors in the sturgeon Scaphirhynchus
platorynchus (Rafinesque). Journal of Comparative Physiology 138:213–223. doi: 10.1007/BF00657039

Thomas ED, Cruz IA, Hailey DW, Raible DW. 2015. There and back again: development and regeneration of the
zebrafish lateral line system. Wiley Interdisciplinary Reviews: Developmental Biology 4:1–16. doi: 10.1002/
wdev.160, PMID: 25330982

Tombola F, Pathak MM, Isacoff EY. 2005. Voltage-sensing arginines in a potassium channel permeate and
occlude cation-selective pores. Neuron 45:379–388. doi: 10.1016/j.neuron.2004.12.047, PMID: 15694325

Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R. 2000. Mammalian achaete-scute and atonal
homologs regulate neuronal versus glial fate determination in the central nervous system. The EMBO Journal
19:5460–5472. doi: 10.1093/emboj/19.20.5460, PMID: 11032813

Tong B, Hornak AJ, Maison SF, Ohlemiller KK, Liberman MC, Simmons DD. 2016. Oncomodulin, an EF-Hand
Ca2+ buffer, is critical for maintaining cochlear function in mice. Journal of Neuroscience 36:1631–1635.
doi: 10.1523/JNEUROSCI.3311-15.2016, PMID: 26843644

Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangršič T, Santarelli R,
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