
ORIGINAL RESEARCH

Bayesian estimation of physiological parameters governing
a dynamic two-compartment model of exhaled nitric oxide
Patrick Muchmore, Edward B. Rappaport & Sandrah P. Eckel

Department of Preventive Medicine, University of Southern California, Los Angeles, California

Keywords

Bayesian inference, exhaled breath, FENO,

mathematical model, parameter estimation.

Correspondence

Patrick Muchmore, Department of Preventive

Medicine, Keck School of Medicine,

University of Southern California, 2001 North

Soto Street, Los Angeles CA 90089-9234.

Tel: +1 323 442 7295

Fax: +1 323 442 2349

E-mail: muchmore@usc.edu

Funding Information

This study was funded by the National

Institute of Environmental Health Sciences,

1K22ES022987, 4R01ES023262,

4T32ES013678, 5P30ES07048.

Received: 31 March 2017; Accepted: 5 April

2017

doi: 10.14814/phy2.13276

Physiol Rep, 5 (15), 2017, e13276,

https://doi.org/10.14814/phy2.13276

Abstract

The fractional concentration of nitric oxide in exhaled breath (FENO) is a bio-

marker of airway inflammation with applications in clinical asthma manage-

ment and environmental epidemiology. FENO concentration depends on the

expiratory flow rate. Standard FENO is assessed at 50 mL/sec, but “extended

NO analysis” uses FENO measured at multiple different flow rates to estimate

parameters quantifying proximal and distal sources of NO in the lower respi-

ratory tract. Most approaches to modeling multiple flow FENO assume the

concentration of NO throughout the airway has achieved a “steady-state.” In

practice, this assumption demands that subjects maintain sustained flow rate

exhalations, during which both FENO and expiratory flow rate must remain

constant, and the FENO maneuver is summarized by the average FENO concen-

tration and average flow during a small interval. In this work, we drop the

steady-state assumption in the classic two-compartment model. Instead, we

have developed a new parameter estimation approach based on measuring

and adjusting for a continuously varying flow rate over the entire FENO
maneuver. We have developed a Bayesian inference framework for the param-

eters of the partial differential equation underlying this model. Based on mul-

tiple flow FENO data from the Southern California Children’s Health Study,

we use observed and simulated NO concentrations to demonstrate that our

approach has reasonable computation time and is consistent with existing

steady-state approaches, while our inferences consistently offer greater preci-

sion than current methods.

Introduction

The fractional concentration of nitric oxide in exhaled

breath (FENO) is a biomarker of airway inflammation with

clinical (e.g., asthma) and research (e.g., environmental

epidemiology) applications. Nitric oxide (NO) is pro-

duced in endothelial cells in airway tissue. The discovery

(Gustafsson et al. 1991) that humans exhale measurable

quantities of nitric oxide (NO) was soon followed by the

discovery that, for a given subject, the concentration of

NO exhaled depends strongly on the exhalation rate

(H€ogman et al. 1997; Silkoff et al. 1997). To control for

this effect, guidelines for assessment (ATS 1999; ATS/ERS

2005) and interpretation (Dweik et al. 2011) of the

fractional concentration of exhaled NO (FENO) have been

developed around a standardized exhalation rate of

50 mL/sec (FENO,50). A significant drawback to this

approach is that this flow rate provides information on

NO arising primarily from proximal airway wall sources

(George 2008).

By measuring FENO at multiple flow rates, it becomes

possible to partition the sources of NO into distinct

anatomical subregions (Tsoukias and George 1998; Pie-

tropaoli et al. 1999; H€ogman et al. 2000; Silkoff and Syl-

vester 2000). In the widely used two-compartment model

(George et al. 2004), the respiratory system is divided

into alveolar and airway compartments, and the contribu-

tion to FENO from each estimated separately. Most
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approaches to modeling multiple flow FENO assume the

concentration of NO throughout the airway has achieved

a “steady-state.” In practice, this assumption demands

that subjects maintain sustained flow rate exhalations,

during which both FENO and expiratory flow rate must

remain constant. The FENO maneuver is then summarized

by the average FENO concentration and average flow over

a small interval during which the steady-state assumption

appears reasonable. Subjects may only be tested using

multiple flow sampling protocols if they can control their

exhalation rate with sufficient precision to achieve con-

stant expiratory flows near the protocol targets. Adequate

expiratory control may be difficult even for healthy adults

(George et al. 2004) or impossible for other groups, such

as young children (Linn et al. 2009). Even with excellent

expiratory control, FENO maneuvers at high flows can

often display patterns inconsistent with the steady-state

assumption (Puckett et al. 2010).

To overcome limitations of the steady-state assump-

tion, the goal of this paper is to drop this assumption

within the context of a two-compartment model with a

cylindrical airway. Instead, we have developed a new esti-

mation approach based on measuring, and adjusting for,

a continuously varying flow rate over the entire FENO
maneuver. Our methodology is similar to the “backward

integration” approach introduced in Tsoukias et al.

(2001) to analyze samples based on a single breath,

although we make fewer simplifying assumptions and

explicitly account for the effect of axial diffusion. Because

we make no a priori assumptions about the flow rate,

there is no inherent need for subjects to control their

breathing. Our approach uses measured flow data to con-

tinuously adjust the model; therefore, we can analyze data

gathered at continuously varying flow rates. This offers

the potential for our approach to enable extended FENO
testing with subjects unable to perform existing multiple

flow protocols.

In this study, we present the dynamic two compart-

ment model and the Bayesian inference framework we

developed to estimate the parameters of the partial differ-

ential equation underlying this model. Our approach was

originally motivated by mutltiple flow FENO data from

the Southern California Children’s Health study. Using

existing data from this study, we create a simulated sam-

ple of randomly selected subjects to compare our

dynamic approach with existing steady-state approaches.

We show that our inference method yields parameter

estimates with both superior accuracy and precision com-

pared with existing steady-state methods applied to the

same data. We also show examples of estimates generated

using real data, and we end by discussing potential sim-

plifications to the sampling protocol our method may

enable.

Glossary

• r and l are the airway radius and length (respectively),

in cm.

• z0, zmouth, and zalv are the locations of the sensor,

mouth, and alveolar boundary, in cm from z0.

• c(z,t) is a solution of equation 1, indicating the NO

concentration at position z and time t, in ppb.

• t0,t1, . . . ,tn are the n+1 discrete measurement times,

where exhalation begins at t0 and ends tn.

• ci :=c(z0,ti) is the model solution at the sensor z0, ĉi is a

numerical approximation of ci, and ~ci is the measured

concentration, all in ppb and at time ti.

• v(t) is the linear flow rate, in cm/s.

• d is the diffusivity of NO in air, in cm2/s.

• p is the permeability of airway wall tissue to NO, in cm/s.

• cw is the concentration of NO in the airway wall tissue

in ppb, which is assumed to be constant.

The parameters described in the steady-state modeling

review (George et al. 2004) can be related to the dynamic

model as follows:

• FENO = c(z0,t). The concentration of NO exhaled (also

denoted CENO) corresponds to the concentration at the

sensor (z0), and it is the only parameter that can be

measured directly. In the dynamic model this varies

with time, so it is also a function of t.

• CANO = c(zalv,t). The gas phase alveolar concentration

corresponds to the concentration at the alveolar bound-

ary (zalv). In principle this may vary with time, but

often it is assumed to be constant on short (seconds-

minutes) time scales.

• DawNO = 2prlp. The total airway diffusing capacity is

equivalent to the product of the airway surface area

and the coefficient p. It also equals the product of the

airway volume and the source term coefficient 2p/r in

equation 1.

• J
0
awNO = 2prlpcw. The maximum total flux of NO in

the airway is equivalent to the product of the airway

surface area and the coefficients p,cw. It also equals the

product of the airway volume and the source term con-

stant 2pcw/r in equation 1.

• CawNO = cw.

Methods

Our proposed airway model is a variant of the two-com-

partment approach (Tsoukias and George 1998), the pri-

mary distinction being we make no assumptions

regarding the flow rate. In its simplest form, the two-

compartment airway is assumed to be a cylinder with

fixed dimensions (Fig. 1). Unlike the airway
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compartment, the dimensions of the alveolar compart-

ment may vary. However, at any moment in time the NO

concentration is assumed to be constant throughout the

alveolar compartment, that is, it is “perfectly mixed.” The

original description of the two-compartment model

incorporated a time varying alveolar concentration (Tsou-

kias and George 1998); in practice it is often assumed to

be constant on short (seconds-minutes) time scales.

The airway cylinder is lined with epithelial tissue con-

taining NO producing cells. The tissue is assumed to be

NO permeable, and some of this NO will diffuse from

the tissue into the lumen. Exterior to this tissue is bron-

chial blood, which is assumed to serve as an infinite

sink for NO (Tsoukias and George 1998). The tissue

NO concentration is assumed to be constant; therefore,

depending on the relative NO concentration between

incoming air and the airway wall, the airway tissue

serves as either an infinite source or sink for airway

NO. Although the biological airway ends at the mouth,

the cylinder is extended by the instrument dead space

volume. In this region, the “airway wall” is assumed to

be impermeable to NO; otherwise, it is modeled in the

same manner as the rest of the airway. In this regard,

the model is equivalent to a cylindrical model with a

piecewise constant airway wall permeability.

The governing equation

The dynamics of NO in the airway are assumed to be

governed by the partial differential equation (PDE):

@

@t
cðz; tÞ ¼ � vðtÞ @

@z
cðz; tÞ þ d

@2

@z2
cðz; tÞ

þ 2p

r
cw � cðz; tÞ½ �

(1)

The three quantities on the right hand side are known

as the advection, diffusion, and reaction terms (respec-

tively). In this context the last quantity is also known as a

source term, as it represents another source of NO,

namely, the airway wall. The contribution from the air-

way wall is assumed to be proportional to the difference

in concentration between the wall and the lumen. More

details regarding the physical assumptions underlying the

result (eq. 1) can be found in Appendix A .

Our approach to estimation and inference is predicated

upon repeated simulation of the underlying physical

model. In this framework, “simulating” the model (eq. 1)

largely consists of calculating a series of numerical solutions

ĉ0; ĉ1; . . .; ĉn, where exhalation begins at t0 and ends at tn.

The method of lines (MOL) technique is applied to the

PDE (eq. 1), wherein the spatial (z) variable is discretized

using finite differences: upwind for the advective term, and

centered for the diffusive (see Appendix B for details).

Replacing the spatial derivatives with finite difference

approximations yields a large system of ordinary differen-

tial equations (ODEs). The time variable remains continu-

ous, and the resultant semi-discrete problem can be solved

numerically when combined with appropriate boundary

and initial conditions (discussed in Appendix B). An

advantage of this approach is that “off-the-shelf” routines

designed for arbitrary systems of ODEs can be used to per-

form the integration (Hundsdorfer and Verwer 2003;

LeVeque 2007). Calculating the solution of equation 1

also requires specifying the velocity function v(t). In a

sense, v(t) “drives” the solution, because it is the only term

on the right hand side of equation 1 that varies with time.

Southern California Children’s Health Study
data

We demonstrate data processing and model estimation

and inference using data from the most recent cohort of

the Southern California Children’s Health Study (CHS),

originally recruited in 2002–2003. Multiple flow FENO
data were collected in March–June 2010 from 1640 chil-

dren, ages 12–15, in eight of the CHS communities. The

study protocol requested that participants perform nine

constant flow FENO maneuvers at four target flow rates:

three at 50 mL/sec, and two each at: 30 mL/sec, 100 mL/

sec, and 300 mL/sec (Linn et al. 2013).

Samples were collected online using Ecomedics Analyz-

ers (CLD88-SP with DENOX module), which employ

chemiluminescence to measure NO concentrations and

ultrasound to measure flow rates. The flow rate measure-

ments are available almost instantaneously, while there is

a small delay in the NO signal. This delay is due to a

combination of the time required for gas transport

between the flow head and the sensor, and a sliding

Figure 1. The model airway cylinder. Air flow moves from left-to-

right (?) during inhalation, and right-to-left ( ) during exhalation.

During exhalation, air is expelled from the alveolar compartment,

entering the airway compartment through the right boundary of

the model cylinder. To account for dead space in the sampling

instrument, the airway cylinder is extended beyond the mouth by

the corresponding volume.
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average filter applied to the output signal. The total delay

is � 1 sec, and during testing the analyzer automatically

adjusts for this to provide synchronized flow and NO

time series output. The NO and flow rate measurements

were exported into raw text files at 100 samples/sec.

Many of these values are redundant, however, and the

effective sampling rates are 50 Hz for flow and 15 Hz for

NO. While these data were synchronized at the time of

collection, that is not required, and post hoc corrections

could also be applied prior to analysis.

Flow rate data preprocessing

We use a Dormand and Prince (1980) based routine to

perform the time integration of equation 1. Like most

automatic integration routines, this method adaptively

varies the time step size based on running error estimate

calculations. Sharp changes in the NO concentration

require shorter time steps be taken, dramatically increas-

ing computation time. Because the concentration is flow

dependent, sharp changes in the flow rate can precipitate

sharp changes in the concentration.

Since the solution is calculated at adaptively chosen

times, in general it may be necessary to approximate v(t)

at arbitrary values of t. Therefore, measurements made at

a fixed sampling frequency must be used to estimate the

continuous velocity input required by the integration rou-

tine. An example of typical flow data for a CHS partici-

pant, at the target flow of 50 mL/sec, is shown in

Figure 2. Naively interpolating the raw time series can

lead to spurious high frequency oscillations in flow rate

estimates, mimicking the computational challenges intro-

duced by sharp rate changes.

To dampen these oscillations, the flow rate data is run

through a low-pass frequency filter (Smith 2007). Because

the data is analyzed after all of it has been collected, two

pass (forward-backward) filtering is employed via a fourth

order Butterworth filter, with a low-pass frequency

threshold of 2.5 Hz. As Figure 2 shows, filtering the signal

in this manner retains the gross features, such as the

spikes at the beginning, while eliminating the rapid oscil-

lations later on. The estimated flow rate function v̂ðtÞ is
defined by interpolating the filtered signal.

Model simulation

As illustrated in Figure 1, the position of the sensor is

defined to be the origin, z0 = 0. Therefore, the solution at

this point over time corresponds to the model prediction of

FENO measured throughout the maneuver; informally,dFeNO=ĉi. In addition to the estimated flow rate function

v̂ðtÞ, the approximate solutions also depend on the airway

parameter values. In these examples, CANO = 2,

J
0
awNO=800, and DawNO = 5 (values identical to those used

in a previous simulation study [Citation Eckel et al. 2014]).

Combining v̂ðtÞ with the parameters CANO, J
0
awNO,

and DawNO enables the use of numerical integration to

calculate the sequence of approximations ĉi. The solid

line in Figure 3 is the same filtered flow data as shown

in Figure 2. The dashed line illustrates the predicted

concentration at the sensor throughout the exhalation

(synchronized with the flow, so the time scale is

shared). The solution ĉi is calculated at 100s-1000s of

time steps ti, resulting in a squence of approximations

fĉigni¼0. Because the integration routine adjusts the step

size according to the state of the system, the precise

number of steps will vary depending on the input val-

ues.

Multiple flow study simulation

The multiple flow FENO sampling protocol employed by

the CHS was designed to facilitate estimation via existing

steady-state models, and it involved participants perform-

ing nine FENO maneuvers at four target flow rates. Thus,

we can validate our model by applying our own method,

along with existing estimation techniques, to the simu-

lated data, and then comparing the resultant estimates to

the (known) values used during simulation.
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80

Time (sec)
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Raw flow data
Filtered flow data

Figure 2. Raw and filtered flow data from a CHS participant’s

50 mL/sec maneuver. The raw flow data (dotted line) can oscillate

rapidly over a range of 5–10 mL/sec. To dampen these oscillations,

the signal is run through a low pass frequency filter with a cutoff

of 2.5 Hz. Interpolating the filtered signal defines the estimated

flow rate function v̂ðtÞ (solid line).

2017 | Vol. 5 | Iss. 15 | e13276
Page 4

ª 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of

The Physiological Society and the American Physiological Society

Bayesian Parameter Estimation for a Dynamic Model of FENO P. Muchmore et al.



Because an exhalation flow profile is such a compli-

cated process, we do not attempt to recreate it via simula-

tion; rather, we use real flow data from the CHS to

generate the filtered flow functions v̂ðtÞ used during sim-

ulations. Specifically, we used flow rate data from a strati-

fied random sample of 100 CHS subjects. Sampling strata

were determined by FENO,50 level, with 25 subjects selected

from each of the categories (in ppb): <10, 10�25,
25�50, and ≥50. The sample was also restricted to sub-

jects that successfully completed the nine maneuvers spec-

ified in the protocol.

For every subject, each of their nine maneuvers was

used to simulate theoretical NO concentrations ci as a

function of time by combining the observed flow data

with the model equation 1 (still using the parameter val-

ues CANO=2, J
0
awNO=800, and DawNO=5). The determin-

istic PDE model leading to the dashed line in Figure 3

is capable of accurately describing many of the qualita-

tive features of exhaled nitric oxide (Shin and George

2002). However, there will inevitably be some deviation

between the model prediction ci and the observed value

~ci. To account for this residual variation, we assume

lnð~ciÞ is normally distributed with mean ln (ci) and

variance r2 = 0.12, that is ~ci has a log-normal distribu-

tion. This is the same subject shown in Figure 3 (and

Fig. 2), so the dashed line in the top left panel of

Figure 4 is identical to the corresponding line in Fig-

ure 3. The dotted line is the result of adding indepen-

dent normal errors to the (log-transformed)

deterministic solution, and the other 8 panels in Figure 4

are the result of repeating this process with the remain-

ing flow profiles for this subject.

Steady-state vs dynamic estimation

The most common approaches to estimating CANO,

J0awNO, and DawNO, are based on the steady-state model

(George et al. 2004)

FeNO¼ J0awNO

DawNO
þ CaNO� J0awNO

DawNO

� �
exp �DawNO

_V

� �
(2)

relating the parameters of interest to the exhaled concen-

tration ( _V is the volumetric flow rate, which is equivalent

to the product v(t)pr2 of the linear flow rate and the

cross-sectional area of the airway cylinder). The model

(eq. 2) is a special case of the model (eq. 1), which arises

by imposing additional simplifying assumptions (detailed

Appendix A).

The direct approach to estimation, introduced in Silkoff

et al. (2000), employs a nonlinear regression model by

incorporating an additive error term, that is FENO = ( . . . )+e
(nonLin). A more recent variant, introduced in Eckel et al.

(2014), first log transforms the data before performing the

nonlinear regression, that is log (FENO) = log (. . .)+e
(nonLinLog). This method can also constrain parameter

estimates to be non-negative, ensuring consistency with the

physical assumptions.

Earlier approaches replaced the exponential function with

a polynomial expansion, such as the linear approximations

employed by Pietropaoli et al. (1999) in the model

FeNO ¼ CaNO þ J0awNO= _V þ � (linP), and the model

FeNO � _V ¼ J0awNO þ CaNO � _Vþ � (linT) described in

Tsoukias et al. (1998). A linear function is a poor approxi-

mation of the exponential for values near 0, hence higher

order polynomials have also been used. The algorithm

described in H€ogman and Meril€ainen (2007) (HMA)

employs a third order approximation, in addition to ensur-

ing the estimate of DawNO is positive. While the majority of

two-compartment models employ a cylindrical airway, the

model described in Condorelli et al. (2007) (Condorelli)

employs a trumpet airway shape, along with a positive

diffusion coefficient d > 0.

The dynamic approach differs from existing methods

by dropping the steady-state assumption. It is based on

estimating the trajectory of FENO through all phases of

exhalation, and there is no requirement for, nor even
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Filtered flow data
Simulated NO concentration

Figure 3. Filtered flow and simulated NO concentration for a CHS

participant’s 50 mL/sec maneuver. The estimated flow rate function

v̂ðtÞ, which interpolates the filtered flow (solid line), can be used to

“drive” numerical solutions of the model (eq. 1). At the sensor (z0),

the numerical solution ĉi corresponds to an average simulated

measurement at time ti. Interpolating the sequence of numerical

solutions fĉigni¼0 throughout an exhalation (t0,tn) defines the

expected value for FENO over time (dashed line).
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notion of, FENO “plateaus.” This is achieved by continu-

ously measuring the flow rate and adjusting for its impact

on FENO. Because the estimates generated by the dynamic

model are based on a broader spectrum of input values,

it has the potential to calculate estimates with greater

precision than existing methods. Parameter estimation in

this framework is done via Monte Carlo methods, and

the point estimates reported here are maximum a posteri-

ori probability (MAP) values generated during Markov

chain Monte Carlo (MCMC) sampling, see Appendix C
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Figure 4. Simulated NO concentrations for nine FENO maneuvers using observed flow data from 1 CHS study participant. The interpolated

sequence of numerical solutions fĉigni¼0, which determines expected FENO over time (dashed line), is a deterministic function of the model

parameters. To account for residual sources of variation, the measured values are assumed to be subject to random perturbations which are

log-normally distributed around the deterministic solution. The dashed line in the top left panel corresponds to the dashed line in Figure 3,

while the dotted line is the result of simulating observed values ~ci based on ĉi in the log-normal framework described. The process was

repeated with the remaining flow data for this subject, yielding nine simulated maneuvers which together satisfy the requirements of the

original study (note these are based on average phase 3 plateau flow rates, not the median values shown here).
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for details (for readers unfamiliar with Bayesian method-

ology, in this context the reported MAP values are equiv-

alent to maximum likelihood estimates (MLE)).

To asses the uncertainty in point estimates, some meth-

ods also produce interval estimates for the parameters of

interest. The linP and linT point estimates are based on

ordinary least squares (OLS), and confidence intervals can

be derived from the assumptions underlying OLS. One of

these assumptions is that the residuals are normally dis-

tributed. However, when applied to FENO the true residual

distribution is unknown, potentially negating the validity

of the intervals. The nonLin and nonLinLog methods

employ non-linear least squares to calculate point esti-

mates, and the associated intervals are based on the

asymptotic normality of the maximum likelihood estima-

tor. An advantage of this approach is that it does not

require explicit distributional assumptions; however, the

results only become exact as n?∞. In the context of FENO
sample sizes tend to be small, for example n = 9 in the

case of CHS subjects, potentially calling into question a

large sample approximation. The dynamic model estimates

are based on a Bayesian approach, and the associated

parameter range estimates are known as credible intervals.

These intervals do not require assuming (asymptotic) nor-

mality. However, in general they cannot be explicitly cal-

culated, and instead must be estimated with a numerical

procedure such as MCMC (as we do here).

Results

The simulated maneuver-level data was processed accord-

ing to the original study protocol, so for each of the 100

simulated subjects, nine estimates of the steady-state pla-

teau average FENO concentration and flow rate were gen-

erated. Estimates of the parameters CANO, DawNO, and

J
0
awNO were then calculated using two steady-state

approaches (HMA and nonLinLog), along with our novel

dynamic approach. The steady-state methods use the nine

estimated plateaus as inputs, while the dynamic approach

uses the entire trajectory of each of the nine maneuvers

for estimation.

Simulation study parameter estimates

The box plots in Figure 5 illustrate the distribution of

point estimates generated by all methods for each
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Figure 5. Distribution of NO parameter estimates generated by two steady-state models, and also our novel dynamic methodology.
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parameter. The broken horizontal lines indicate the values

used to generate the simulated data, hence a “correct”

inference would recover these values. For all three param-

eters the dynamic estimates are centered around the true

values, while simultaneously possessing the narrowest

sample distribution of any method. The median estimates

for J
0
awNO and DawNO generated by the HMA and non-

LinLog methods also appear very close to the true values,

but there is significantly greater variability in the distribu-

tion of estimates. The HMA and nonLinLog methods also

produced estimates of CANO that tend to have a positive

bias.

To quantify the results illustrated in Figure 5, the mean

ð�xÞ and standard error ðseð�xÞÞ for each sample are shown

in Table 1. If we assume the 100 simulated subjects are

independent, we can use these estimates to conduct a

t-test of equality between the mean of the sampling distri-

bution for �x, and the known parameter values used dur-

ing simulation. Because this equality defines an unbiased

estimator, rejecting this hypothesis would be evidence of

bias in the estimation procedure. The P-value columns in

Table 1 report the results of these tests using a two-sided

( 6¼) alternative. For all three parameters, these results

support the hypothesis that the dynamic estimates are

unbiased. Moreover, it is the only method to provide an

unbiased estimate of CANO, and in every case it yields the

smallest standard error.

The steady-state assumption requires the time deriva-

tive be zero, (@/@c)c(z,t)=0, reducing the PDE (eq. 1) to a

second order ODE. By also assuming the diffusivity of

NO in air is zero (d=0), the model simplifies further into

the first order ODE underlying the equality in equation 2.

In a cylindrical airway model, we found the impact of

neglecting the diffusion term to be modest, but (statisti-

cally) significant.

To demonstrate this, the calculations leading to the

dynamic estimates reported in Table 1 were repeated with

d=0. This produced sample mean estimates for CANO,

J
0
awNO, and DawNO of (2.00, 804, 5.43) (respectively),

with corresponding standard errors of (4.71e-03, 1.30,

0.091). Compared with the true values of (2,5,800), the

estimate of CANO is unaffected (P=5.10e-01), while there

is evidence of small but significant positive biases in the

mean estimates for both J
0
awNO (P=3.06e-03) and DawNO

(P=8.00e-06).

Application to real CHS FENO data

The plots in Figure 5 and results in Table 1 show our

estimation routine reliably recovers known parameter val-

ues employed to generate simulated data. To demonstrate

our approach applied to real data, we also estimated

CANO, J
0
awNO, and DawNO based on the observed FENO

time series for the CHS subject whose flow samples

underlie the simulated profiles in Figure 4.

The dotted lines in Figure 6 illustrate the measured

FENO profiles for this subject. While the observed NO

profiles have shapes similar to the profiles generated for

the simulation study, the FENO values are significantly

(2-4x) higher in the real data. The dashed lines in Figure 6

illustrate the predicted model solutions based on MAP

estimates of the parameter values.1 These parameter esti-

mates, which are shown in the first row of Table 2, were

calculated using the MCMC sampler described in

Appendix C. Plateau NO concentrations and flow rates

were also estimated using the real data, and the same

steady-state methods as before were employed to calculate

the other point estimates shown in Table 2.

While there is no definitive way to asses the accuracy

of these estimates, some qualitative features are worth

noting. The estimates in Table 2 are significantly (2-4x)

Table 1. For each combination of model parameter and estimation method, in the first two columns we report the sample mean and stan-

dard error of the 100 simulation study estimates. The third column reports the P-value resulting from a test of equality between the mean of

the sampling distribution and the true value used during simulation. For these simulated subjects, the dynamic approach is the only one we

conclude to be unbiased for CANO, and for all three parameters it provides consistently greater precision than any other method.

CANO=2 J
0
awNO=800 DawNO=5

�x seð�xÞ P-value �x seð�xÞ P-value �x seð�xÞ P-value

Dynamic 2.00 3.67e-03 5.96e-01 801 0.97 4.75e-01 5.03 5.78e-02 5.72e-01

HMA 2.26 2.68e-02 2.89e-16 798 5.13 6.84e-01 5.60 3.17e-01 6.13e-02

nonLinLog 2.25 2.67e-02 6.54e-15 809 5.76 1.28e-01 5.34 4.02e-01 4.03e-01

1These plots illustrate the model solution over time at one point
in space (the NO sensor); however, simulating the model
involves calculating the solution over the length of the airway
(from the alveolar boundary to the sensor). To illustrate the
time evolution of the solution over the entire domain, for each
maneuver in Figure 6 an animation illustrating the dynamics
of NO throughout the airway has been made available in
Appendix S1.
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larger than the values used in the simulation study, which

is consistent with the fact that this subject has unusually

high FENO. As in the simulation study, the HMA and

nonLinLog methods produce very similar estimates. Per-

haps more interestingly, the rank ordering of the esti-

mates in Table 2 nearly matches the rank ordering of

estimates in Table 1.

Discussion

We have developed a parameter estimation framework for

FENO which treats the observed flow rate as an exogenous

input. Multiple flow testing already necessitates measuring

the flow rate to ensure protocol compliance; therefore,

the flow data we require is, in principle, readily available
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Figure 6. The real (dotted) and simulated (dashed) multiple flow FENO data for a CHS subject. The simulated profiles are calculated using the

MAP parameter estimates generated during MCMC sampling. The flow data used during the simulations illustrated here is identical to what is

illustrated in Figure 4, hence any differences between the simulated profiles are due only to the use of different values for CANO, J
0
awNO, and

DawNO.
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using current sampling technology. Employing flow data

gathered during the CHS, we validated our model by

applying current steady-state methods to 100 subjects in a

simulated multiple flow study. We have also developed a

novel approach to estimation, and adopting a flow-

adjusted model allows us to use the entire FENO trajectory

for inference. Amongst the simulated subjects and an

example CHS participant, this approach significantly

improves the precision of flow-independent parameter

estimates.

Relationship to existing methods

A restriction inherent in a cylindrical airway model is that

the cross-sectional area is fixed. In reality, this area

increases with airway generation (Weibel 1963). An alter-

native airway geometry that incorporates this feature is

the “trumpet” model (Shin and George 2002; Condorelli

et al. 2007). In the trumpet model, the cross-sectional

area of the airway increases with airway depth; therefore,

for the volumetric flow rate to be conserved throughout

the airway, the linear flow rate must decrease with airway

depth. A cylindrical model might thus be expected to

underestimate the significance of the diffusion coefficient

d, which is corroborated by the finding that axial diffu-

sion plays a larger role in a trumpet versus cylindrical

model (Shin and George 2002). This also suggests that

the dynamic parameter estimates with d=0 may underesti-

mate the true effect of neglecting axial diffusion.

Assumptions regarding d are typically made because of

computational concerns. The same is true of the assump-

tion that (@/@c)c(z,t)=0; however, there are significant

practical implications to this assumption as well. Because

FENO is flow dependent, subjects must perform sustained

exhalations at constant flow rates (i.e., _V in eq. 2 must be

held constant). Official guidelines suggest these plateaus

last for at least 3 sec, and that total exhalations last for at

least 4 sec in children < 12, and 6 sec for children > 12

and adults (ATS/ERS 2005). Most multiple flow protocols

recommend 2–9+ maneuvers be performed (George et al.

2004), and in general performing more maneuvers leads

to better parameter estimates. The need to perform

repeated, extended exhalations at well controlled flow rates

has had a significant negative impact on the potential for

routine multiple flow FENO testing in a clinical setting.

For comparison purposes, the dynamic model estimates

are based on the same nine profiles as the steady-state

methods; however, it is not limited to this type of data.

By adjusting the model for the measured flow, there is no

inherent need for subjects to execute a controlled breath-

ing pattern. Dropping the steady-state assumption ((@/@c)

c(z,t)=0) potentially has significant practical implications,

which is discussed further in the last section.

While the majority of techniques for parameter estima-

tion employ constant flow maneuvers, variable flow

approaches have been explored as well, and in Tsoukias

et al. (2001) it was shown that all three parameters could

be estimated from a single maneuver with a varying flow

rate. Similar to our approach, this method uses measured

flow data to adjust for the effects of a variable flow rate

by performing a backward integration of the flow signal

to estimate the airway residence time of an arbitrary bolus

sampled at time t. Airway NO dynamics are also assumed

to be governed by a similar PDE, although the governing

equation neglects to account for axial diffusion. Because

of this, the model does not precisely predict phases I and

II of the profile (e.g., fig. 5 in Tsoukias et al. (2001)),

which is a period that should theoretically have high sen-

sitivity to DawNO. By accounting for axial diffusion our

approach should be able to better model phases I and II,

and by extension could potentially produce more accurate

DawNO estimates. No off-the-shelf software is available to

implement their approach, and future work should com-

pare/contrast the two methods under a variable flow (or

tidal) breathing protocol.

Limitations

The most significant limitation to our approach is that it

is computationally demanding. The estimation routine

depends on calculating a numerical solution to equation 1

thousands of times. The single biggest determinant of

computation time is the spatial (z) resolution required to

resolve the dynamics of NO in the airway. Previous stud-

ies have found that Dz = 0.2 cm is sufficient (Shin and

George 2002); however, our simulations indicate this is

Table 2. Parameter estimates based on real FENO input data. Interval estimates based on frequentist (conf) or Bayesian (cred) approaches have

also been calculated when applicable. The estimated parameter values are significantly larger than the simulation study inputs, although the

rank ordering of the estimates largely agrees with the rank ordering in Table 1.

dCaNO 95% interval dJ0awNO 95% interval dDawNO 95% interval

dynamic 4.83 (4.52, 5.11) cred 2738 (2689, 2795) cred 8.52 (7.24, 9.73) cred

HMA 6.08 NA 2926 NA 14.0 NA

nonLinLog 6.31 (4.70, 7.92) conf 2960 (2552, 3367) conf 13.4 (4.96, 21.7) conf
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inadequate. Specifically, the simulated profiles illustrated

in Figure 4 are based on using 1000 grid points (corre-

sponding to a spatial resolution Dz=0.025 cm). We then

ran our estimation routine, beginning at 100 grid points,

and increasing the number of points until further

increases no longer impacted the results. Our experiments

show at least 300 points are required, corresponding to a

step size of Dz ¼ 0:08�3 cm. Using a modern desktop

CPU, our estimation procedure runs in 5–10 min per

subject.

Our approach to parameter estimation requires detailed

time series on both flow and FENO. During the CHS these

data were gathered using commercially available analyzers

which are capable of recording at 10s (FENO) to 100s

(flow) of Hz. However, some newer devices output just a

single plateau value (Cristescu et al. 2013; Maniscalco

et al. 2016), which is inadequate for fitting our models.

Although the cylindrical two-compartment model can

explain many features of FENO, the airway is not a cylin-

der, and more sophisticated airway shapes can explain

phenomena the standard model cannot. An example

would be the steady downward slope observed in the last

two maneuvers in Figure 6. One potential explanation for

this phenomena is offered by the multi-compartment,

trumpet shaped model introduced in Suresh et al. (2008).

In Shelley et al. (2010), this model was shown to be cap-

able of explaining FENO profiles which decline continu-

ously throughout maneuvers that satisfy official guidelines

regarding flow rate stability. Combining our estimation

routine with a more realistic airway model could be a

natural way to improve the fit of some maneuvers over

the standard two-compartment approach.

Future directions

While more sophisticated airway shapes can potentially

explain trajectories like those in Figure 6, they have typi-

cally only been applied to constant flow rate data, and

often only in a laboratory setting. The primary appeal of

our methodology is that there are no inherent require-

ments regarding breathing behavior. This potentially

opens the door to estimation based on tidal breathing

patterns, essentially eliminating the need for subject coop-

eration during testing. While some preliminary work

attempting to use tidal data as a proxy for FENO,50 exists

(van Mastrigt et al. 2014), accurately and reliably estimat-

ing CANO, J
0
awNO, and DawNO based on tidal FENO would

be a significant advancement.

From a theoretical perspective, tidal breathing patterns

may be preferable to a multiple flow protocol. While cur-

rent multiple flow protocols typically gather data at 2-5

different rates, during tidal breathing the observed flow

rate continuously ranges over a spectrum of values.

Therefore, the dynamic model can potentially be used to

estimate the parameters of clinical interest with equal, if

not greater precision, by allowing the flow rate to vary

continuously. Moreover, this would simultaneously sim-

plify the process, expanding the pool of eligible patients.
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Additional Supporting Information may be found online

in the supporting information tab for this article:

Appendix S1. Supplemental information.

Appendix A: Model description

The airway is assumed to be a cylinder with constant

radius r and constant length l (one or both may be

implicitly defined by specifying the airway volume pr2l
and/or surface area 2prl). The model (eq. 1) results from

imposing conservation of (NO) mass throughout this

domain. That is, for any time interval (t,t + Dt), we

assume any net change in mass inside an arbitrary region

(z,z + Dz) equals the net mass passing through the

regions’s boundary over the same time interval.

Advection of NO axially through the airway

Over the time interval (t,t + Dt), a cross-section of air

moving at v(t) cm/s will travel a distance Dz�v(t)Dt cm.

Therefore, over a time interval of length Dt the mass that
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flows into the region through the lower boundary is

approximately v(t)Dtpr2c(z,t). Similarly, the mass that

flows out of the region through the upper boundary is

approximately v(t)Dtpr2c(z + Dz,t), hence the net change

in mass due to advection (flow) is approximately �v(t)[c
(z + Dz,t) � c(z,t)]pr2Dt

The airway wall as a source of NO

Depending on the concentration, the tissue lining the air-

way wall can act as either a source or sink for NO. Typi-

cally, we assume the concentration of NO in the airway

wall cw exceeds the alveolar concentration c(zalv,t), imply-

ing the airway tissue serves as a net source of NO. The

net transfer of NO from tissue to lumen is assumed to

occur at a rate proportional to the concentration differ-

ence. Denoting the proportionality constant by p, the flux

per unit area is p[cw � c(z,t)].Therefore, over a time

interval of length Dt the net mass diffusing into the

region from the airway wall is approximately equal to the

product p[cw � c(z,t)]2prDzDt.

Diffusion of NO axially through the airway

Assuming cw > c(zalv,t) implies that during exhalation the

concentration will increase as air moves though the air-

way, i.e. c(z + Dz,t) > c(z,t). According to Fick’s first law,

the diffusive flux per unit area will be proportional to the

concentration gradient cz(z,t) := (@/@z)c(z,t). Denoting by

d the proportionality constant, over a time interval of

length Dt the mass diffusing into the region will be

approximately dcz(z + Dz)pr2Dt. Similarly, the mass dif-

fusing out of the region will be approximately dcz(z,t)

pr2Dt, hence the net change in mass due to (axial) diffu-

sion is approximately d[cz(z + Dz,t) � cz(z,t)]pr
2Dt.

Imposing conservation of mass requires that over the

time interval (t,t + Dt), the net change inside the region

must equal the net mass passing through the boundary.

This implies the approximate equality [c(z,t + Dt) � c(z,t)]

pr2Dz � � v(t)[c(z + Dz,t) � c(z,t)]pr2Dt + d[cz(z + Dz,t)
� cz(z,t)]pr

2Dt + p[cw � c(z,t)]2prDzDt. Dividing both

sides by pr2DtDz then taking Dt,Dz?0 results in the model

(eq. 1).

eq. 2 as a special case of eq. 1

To transform eq. 1 into eq. 2, we begin by assuming the

airway NO concentration has achieved a steady-state, and

thus does not vary through time. Mathematically, this is

equivalent to assuming (@/@t)c(z,t) = 0, which also

implies c(z,t) = c(z). Because the concentration is flow

dependent, a necessary condition for this to occur is for

the velocity to be constant through time, that is v(t) = v.

As a further simplification, the diffusivity of NO in air is

assumed to be negligible, i.e. d = 0, reducing the problem

further to a first order ordinary differential equa-

tion (ODE).

By substituting (@/@t)c(z,t) = 0, v(t) = v, and d = 0

into equation eq. 1 it simplifies into 0 = �vc0(z) + (2p/r)

cw�(2p/r)c(z). Multiplying through by the airway volume

pr2l, dividing through by _Vl, and rearranging terms yields

c0ðzÞ þ ½DawNO=ð _VlÞ�cðzÞ ¼ J0awNO=ð _VlÞ. Generically,

this is a linear ODE with constant coefficients of the form

c
0
(z) + [a/d]c(z) = b/d. Using standard techniques for

ODEs, such as separation of variables, the general solu-

tion can be shown to be c(z) = b/a + k exp (�z[a/d]),
where k is the constant of integration. Therefore, by

Figure A1. For an arbitrary airway segment of length Dz, and an

arbitrary time interval of length Dt, we assume any net change in

mass inside the segment must equal the net mass passing through

the boundary. As illustrated here, air moves vertically through the

airway during exhalation; therefore, the net change due to

advection (flow) represents the difference between the mass

entering through the lower boundary and exiting through the

upper boundary. The airway wall is also assumed to be permeable

to NO. Depending on the relative concentrations of the airway wall

cw and the alveolar compartment c(zalv,t), it will serve as either a

net source or sink of NO. Typically, cw > c(z,t), yielding a net

diffusion of NO from the airway wall to lumen (as pictured here).

This also implies that the concentration in the lumen will increase as

air moves vertically though the airway, that is, c(z + Dz,t) > c(z,t).

This concentration gradient results in net NO diffusion opposite to

the direction of flow; therefore, the net change in mass due to

diffusion will be the difference between the mass diffusing in

through the upper boundary and the mass diffusing out through

the lower boundary.
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making the above simplifying assumptions, the general

solution of (eq. 1) can be written as

cðzÞ ¼ J0awNO=DawNO þ k expð�z½DawNO=ð _VlÞ�Þ.
The constant k can be found by imposing a boundary con-

dition, and for consistency with Tsoukias and George (1998)

the origin (z0) is shifted from the sensor to the alveolar

boundary. That is, by definition the concentration at the ori-

gin is equal to the alveolar concentration, or cð0Þ ¼ CaNO.

Combining this condition with the general solution above

allows us to solve for the constant, resulting in

k ¼ CaNO � J0awNO=DawNO, and hence the particular solu-

tion cðzÞ ¼ J0awNO=DawNO þ ðCaNO � J0awNO=DawNOÞ
expð�z½DawNO=ð _VlÞ�Þ:

This solution is applicable along the length of the air-

way from the alveolar boundary to the mouth, or

0 ≤ z ≤l. Once air enters the sampling device dead space,

both the airway wall concentration and permeability are

assumed to be zero. This is equivalent to assuming

c
0
(z) = 0 in this region, i.e. there is no spatial variation in

the concentration. This implies the concentration mea-

sured at the sensor equals the concentration measured at

the mouth. Mathematically, this means cðlÞ ¼ FeNO, and

inserting z = l and cðlÞ ¼ FeNO into the particular solu-

tion yields the equality (eq. 2).

Appendix B: Numerical integration

Spatial discretizations

To solve the governing PDE (eq. 1) numerically, the spa-

tial (z) derivatives are replaced with finite difference

approximations based on Taylor series expansions. For

the diffusive term, a centered three term Taylor series

approximation is employed, (@2/@z2)c(z,t) � [c(z � Dz,
t) � 2c(z,t) + c(z + Dz,t)][Dz]�2. For the advective term,

a biased 4 term Taylor series approximation is employed.

The direction of the bias is determined by the direction

of flow, as dictated by the sign of v(t). Specifically, the

approximation is oriented with an “upwind” bias; two of

the terms in the approximation are chosen on the side

from which the flow originates, and only one is chosen

from the opposite side.

For example, when v(t) > 0 the approximation is (@/@

z)c(z,t) � [c(z � 2Dz,t) � 6c(z � Dz,t) + 3c(z,t) + 2c

(z + Dz,t)][6Dz]�1. An upwind discretization is employed

because centered discretizations for advection can lead

to spurious oscillations in the numerical approximation.

A completely one-sided discretization can prevent oscilla-

tions; however, despite the formal order of the Taylor

series, such an approximation will always have first order

accuracy (Hundsdorfer and Verwer 2003). By employing

a two-sided, but biased, discretization, higher order

accuracy can be achieved while minimizing the potential

for oscillatory solutions.

Boundary and initial conditions

For the PDE (eq. 1) to have a unique solution, initial

(time) and inflow boundary (space) conditions must be

specified. Moreover, the incoming concentration depends

on the direction of flow. During exhalation it corresponds

to the alveolar concentration, a parameter to be esti-

mated. During inhalation this concentration is typically

the ambient NO level; however, during testing subjects

may be provided air that has been “scrubbed” of NO.

By definition, modeling FeNO involves modeling exhala-

tion. However, because respiration is cyclic, the terminal

condition in one direction of flow becomes the initial

condition for the reverse flow. This relationship means

that NO measured during exhalation is determined, in

part, by the terminal state of the previous inhalation. In

principle, the previous inhalation depends, in turn, on

the preceding exhalation, which depends on the inhala-

tion before that, continuing ad nauseam.

In practice, higher flow rates diminish this dependence,

and at relatively high rates (300+ mL/sec), the terminal air-

way concentration is effectively independent of the initial.

Although 300 mL/sec is a relatively rapid rate for exhala-

tion, it is a relatively slow rate for inhalation. For example,

in all 900 maneuvers used for simulation this threshold

was cleared every time, typically by factors of at least 2-3x.

The implication of this phenomena is that calculating

accurate estimates of the airway concentration immedi-

ately after inhalation does not require knowing the initial

airway concentration when inhalation began. The solution

can be calculated based on a simple initial condition

(i.e. zero everywhere), and the end result will be essen-

tially unchanged. The terminal condition will also depend

on the inflow concentration; however, in the case of

“scrubbed” air this can be assumed to be zero.

Appendix C: MCMC parameter estima-
tion

We adopt a Bayesian approach to inference (Gelman

et al. 2004), and our goal is to characterize the posterior

distribution (generically denoted f(h|x) for parameters h
and data x). Using Bayes rule, the posterior can be

expressed in terms of the likelihood f(x|h) and a prior dis-

tribution f(h). For many purposes, including ours, the

unnormalized posterior is sufficient, simplifying the rela-

tionship between to the posterior, likelihood, and prior to

the proportionality f(h|x) / f(x|h)f(h).
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Multiple parameterizations of the model (eq. 1) are

possible; for consistency with eq. 2, we work with the vec-

tor of parameters h ¼ ðCANO
; J0awNO;DawNOÞ. The data

for each subject consists of x ¼ f~cijg, where ~cij is the

measured concentration at time ti during maneuver

j 2 1,2, . . ., 9.

To formulate a likelihood, we assume that by fixing h
and solving the corresponding model equation, the model

solution can be used to calculate the density of the

observed data. If we further assume the observed values

~cij arise from a shared parametric conditional distribution

with density function f, and that conditional on the

model solutions cij the ~cij are independent, then the likeli-

hood can be written as f ðxjhÞ ¼ Q
i

Q
j f ð~cijjcijÞ, where h

appears implicitly on the right via the model solution cij.

When the likelihood f(x|h) is combined with a prior f

(h), the (unnormalized) posterior can be easily calculated

for any particular set of parameters h. To efficiently

explore the posterior distribution we employ a Metropo-

lis-Hastings style MCMC algorithm (Robert and Casella,

2005), which generically proceeds as follows:

0. Select an initial value h and calculate the likelihood

f(h|x).
1. Propose a new value h

0
using a transition kernel

q(h?h
0
), and calculate the likelihood f ðh0jxÞ.

2. Accept the proposed value with probability

min½1; f ðxjh0Þf ðh0Þqðh0!hÞ
f ðxjhÞf ðhÞqðh!h0Þ �.

3. If the proposal is accepted set h = h
0
,

f ðhjxÞ ¼ f ðh0jxÞ then return to 1; otherwise, return

to 1.

The choice of transition kernel q can have a significant

impact on the efficiency of this type of algorithm. Finding

an optimal q can be difficult; however, there are a num-

ber of more recent MCMC algorithms which incorporate

an “adaptive” transition distribution (Roberts and Rosen-

thal 2009). To better account for variability in the poste-

rior across individuals, the adaptive Metropolis algorithm

of Haario et al. (2001) is employed to automatically cali-

brate the proposal distribution against the target. This has

the dual benefit of both increasing the efficiency of our

sampler, while also simplifying the user experience by lar-

gely automating the choice of transition kernel.
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