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Unidirectional superscattering by 
multilayered cavities of effective 
radial anisotropy
Wei Liu, Bing Lei, Jianhua Shi & Haojun Hu

We achieve unidirectional forward superscattering by multilayered spherical cavities which are 
effectively radially anisotropic. It is demonstrated that, relying on the large effective anisotropy, 
the electric and magnetic dipoles can be tuned to spectrally overlap in such cavities, which satisfies 
the Kerker’s condition of simultaneous backward scattering suppression and forward scattering 
enhancement. We show that such scattering pattern shaping can be obtained in both all-dielectric and 
plasmonic multilayered cavities at different spectral positions, and believe that the mechanism we 
have revealed provides extra freedom for scattering shaping, which may play a significant role in many 
scattering related applications and also in optoelectronic devices made up of intrinsically anisotropic 
two dimensional materials.

With the rapid development of the field of metamaterials and metadevices1,2, recently the topic of scattering 
pattern manipulation based on the interferences of electric and artificial magnetic resonances has attracted a 
lot of attention (see refs 3–5 and references therein). The physical mechanism behind originates from the con-
cept of Huygens source in the antenna theory6–8 and the proposal of Kerker9 to simultaneously suppress back-
ward scattering and enhance forward scattering, which has only recently been specifically demonstrated in both 
all-dielectric and plasmonic nanostructures (for both dipolar and higher order modes)4,8,10–22. Moreover, the 
scattering suppression based on resonance interferences has been extended from the backward direction to other 
scattering angles4,23–25, the principle of which can be applied to generalize the concept of Brewster angle24,25.

In various nanostructures, usually resonances of the lowest order (dipolar resonances) are most accessible, 
which can be excited with high efficiency and thus are dominant. As a result, the achievement of the backward 
scattering suppression and forward scattering enhancement replying on overlapping electric dipoles (EDs) and 
magnetic dipoles (MDs) (the so called Kerker’s condition9,26) is still one of most outstanding examples of scat-
tering pattern manipulations based on resonance interferences3,12,13,17,18. It is shown that even for homogeneous 
dielectric spheres, the EDs and MDs can be tuned to overlap partly, leading to unidirectional forward scatter-
ing13,17,18. Nevertheless, for simple homogeneous dielectric spheres, the EDs and MDs can not be tuned to res-
onantly overlap (their central resonant positions do not coincide) and thus the overlapping position does not 
locate at the resonance centre. Consequently, though the backward scattering has been significantly suppressed, 
the forward scattering is not strong enough to be in the superscattering regime27. Recently fully resonant overlap-
ping of EDs and MDs and thus unidirectional forward superscattering has been achieved in core-shell plasmonic 
nanoparticles4,12,28,29, in dielectric nanodisks19 and in spheroidal dielectric nanoparticles22. For the latter two cases 
however, the scattering is dependent on the polarization and incident angle. Alternatively, it is recently proposed 
that even for homogeneous dielectric spheres, that electric radial anisotropy can be employed to enable resonant 
overlapping of EDs and MDs30. The problem is that the anisotropy required is too large to be found in naturally 
accessible materials.

In this work it is shown that multilayered cavities made up of isotropic layers can provide effective radial 
anisotropy that is large enough to enable resonant overlapping of EDs and MDs excited. Here we investigate the 
scattering of multilayered spherical resonators and demonstrate that in both all-dielectric and plasmonic cavities 
the Kerker’s condition can be fulfilled at different spectral positions, and thus significant backward scattering 
suppression and forward superscattering can be simultaneously achieved. We note that the mechanism we have 
revealed is general, and can be widely applied to cylindrical multilayered cavities and cavities of other shapes, to 
resonances of higher orders, and to other types of anisotropy31,32. We believe that such principle provides an extra 
dimension of freedom for resonance control and scattering shaping, which may shed new light to many scattering 
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related applications, and to optoelectronic devices incorporating two dimensional materials that are intrinsically 
highly anisotropic.

Results
Theoretical analysis on plane wave scattering by multilayered cavities of effective radial anisotropy.  
Figure 1(a) shows the scattering configuration we study: the incident plane wave is polarized along x direction 
and the multilayered spherical resonator (overall radius R) is made of nonmagnetic alternating isotropic layers of 
two permittivity parameters ε1 and ε2 (ε1 ≠  ε2). When each individual layer width is far smaller then the effective 
wavelength of the incident wave in the layer, according to the the effective medium theory33–36, the layered resona-
tor in Fig. 1(a) can be approximated as a homogeneous radially anisotropic sphere shown in Fig. 1(b) of the same 
radius R. The corresponding permittivity along radial and transverse directions are respectively:

ε ε ε ε ε= − +f f/[(1 ) ], (1)r 1 2 1 2

ε ε ε= + −f f(1 ) , (2)t 1 2

where f is the filling factor of the ε1 layer in terms of layer width. The anisotropy parameter η is defined as:

η
ε
ε

= .
(3)

t

r

The scattering of plane waves by radially anisotropic spherical particles (both single layered or multilayered) 
can be solved analytically through generalized Mie theory30,37–39. The total scattering and absorption cross sec-
tions normalized by π

k
2

2  (k is the angular wave number in the background, which is vacuum in this work) are 
respectively:
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where the function ϒ (·) is defined as ϒ (·) =  Re(·) −  |·|2, and Re(·) means to adopt the real part; an and bn are 
Mie scattering coefficients, which correspond to electric and magnetic resonance of the n–th order respec-
tively (more specifically a1 and b1 correspond to ED and MD respectively). It is worth mentioning that bn is 
dependent on εt only as the magnetic resonances are intrinsically transverse electric and thus are εr independent 
(thus bn is not directly dependent on η); while in contrast an is dependent on both εt and εr and thus is directly 
η-dependent30,37–39. Both an and bn can be analytically calculated, and for the simplest case of homogeneous 
sphere shown in Fig. 1(b) we have:
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Figure 1. (a) Scattering of an x direction polarized (in terms of electric field) plane wave by a multilayered 
spherical cavity consisting of alternating isotropic layers of permittivities ε1 and ε2. The filling factor of the 
layer of permittivity ε1 is f in terms of overall layer width. The overall resonator radius is R. (b) A homogeneous 
radially anisotropic sphere of radius R and with radial permittivity εr and transverse permittivity εt. The radial 
anisotropy parameter is defined as η =  εt/εr and all the materials involved are nonmagnetic.
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; α =  kR; ψ and ξ are Riccati-Bessel functions37,38. When η =  1, =n n and 
Eqs (6 and 7) will be reduced to the well known expressions of isotropic spheres37,38. According to Eq. (4) the 
normalized scattering cross section contributed by ED and MD are respectively:

= = .N a a N b b( ) 3 , ( ) 3 (8)sca 1 1
2

sca 1 1
2

At the same time the law of energy conservation requires that27:

≤ ≤a b1, 1 (9)n n

which together with Eq. (8) immediately requires that the upper limit of the normalized scattering cross section 
for both ED and MD are 3. Basically when dipolar resonance are dominantly excited, to be in the superscattering 
regime requires that Nsca >  3. When both an and bn have been obtained, the far-field scattering patterns can be 
calculated directly30,37,38 (see the section of Methods).

Unidirectional superscattering by all-dielectric multilayered cavities of η > 1. We start with 
all-dielectric multilayered cavities of ε1, ε2 >  0. It is easy to prove that:

ε ε η> >, 1 (10)t r

and the highest anisotropy parameter that can be achieved is

η ε ε ε ε= +( )/2 (11)max 1 2 1 2

when f =  1/2. It is shown that the radial anisotropy can be employed to tune the resonant positions of EDs, which 
can enable the fully resonant overlapping of EDs and MDs, and result in unidirectional forward superscattering30. 
For η >  1 though EDs can not be engineered to overlap with MDs of the same mode number (a series of EDs and 
MDs can be excited at different wavelengths, and a mode number is adopted to differentiate them; for example 
the resonance excited at the largest wavelength has a mode number 130), it is possible to overlap EDs and MDs of 
different mode numbers.

For all-dielectric structures where the material dispersion can be neglected, the scattering properties are fully 
scalable and thus are dependent only on the size parameter α. In Fig. 2(a) we show the scattering spectra of a 
homogeneous anisotropic sphere of εt =  3.22 and η =  5.35, where both total scattering spectra (black curve, as is 
the case throughout the paper) and those contributed by ED and MD are shown. It is clear that ED and MD are 
resonantly overlapped (here the mode number for ED and MD are 1 and 2 respectively) and the resonant position 
is indicated by point A of αA =  2.04. At point A it is certainly superscattering as the total scattering is almost twice 
the single channel limit27. Moreover, the overlapping of ED and MD will significantly suppress the backward 
scattering and enhance the forward scattering, which is shown in Fig. 2(b) [two-dimensional (2D) scattering pat-
terns on the x–z and y–z planes] and Fig. 2(c) [full three-dimensional (3D) scattering pattern]. We note here that 
according to Fig. 2(b,c) the backward scattering has not been fully eliminated and the scattering patterns are not 
azimuthally symmetric (scattering patterns are not identical on different scattering planes containing z axis). This 
is because at point A, despite the resonant excitations of ED and MD, the electric quadrupole (EQ) has been also 
excited and is noneligible though the magnitude is much smaller (shown as the dashed green curve) in Fig. 2(a). 
The contributions of other multipoles (such as magnetic quadrupole, electric octupole and so on) are negligible 
at this overlapping resonant position (not shown).

The anisotropy parameter discussed above can be realized by an all-dielectric multilayered cavity of ε1 =  4.42 
and ε2 =  1, which effectively makes εt ≈  3.22, and η ≈  5.35 when f =  1/2. In Fig. 2(d) we show the scattering spectra 
of a multilayered cavity consisting of 15 units: each unit is made up of two layers of the same width d 

λ= d R( /30 ) and the permittivity is ε1 =  4.42 and ε2 =  1 respectively, and thus f =  0.5 and overall radius of the 
cavity is R. It is clear that the results agree well with those shown in Fig. 2(a) [the spectra is overall a bit red-shifted, 
which can be made convergent to those shown in Fig. 2(a) with decreasing layer width when the effective medium 
theory is more accurate], justifying the validity of the effective medium theory. The resonant overlapping position 
is indicated by point B of αB =  2.01, and the corresponding scattering patterns are shown in Fig. 2(e,f), which also 
agree well with those obtained through effective medium theory shown in Fig. 2(b,c), and confirms the unidirec-
tional superscattering of the all-dielectric multilayered cavity.

Unidirectional superscattering by plasmonic multilayered cavities of η < 1. To achieve unidirec-
tional superscattering relying on overlapping EDs and MDs of the same mode number requires η <  1. In Fig. 3(a) 
we show the scattering spectra of a homogeneous anisotropic sphere of R =  280 nm, εt =  2.52 and η =  0.285, where 
ED and MD of the same mode number of 1 (ED and MD excited at the largest wavelength) are resonantly over-
lapped and the resonant position is C (λC =  1450 nm). At this point it is unidirectional superscattering as proved 
by the scattering patterns shown in Fig. 3(b,c).

The condition of η <  1 can be satisfied in hybrid plasmonic-dielectric multilayered cavities of ε1 <  0 and 
ε2 >  0 according to Eqs (1–3). For a multilayered cavity of εt =  2.52 and η =  0.285, it requires that ε1 ≈  − 112 and 
f =  0.1 if ε2 =  4.42. We can design a silver-dielectric (ε2 =  4.42) hybrid cavity of f =  0.1 and R =  280 nm, where 
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the permittivity of silver (εAg) is taken from experimental data40 (see the supplementary information for more 
details). Of such a plasmonic cavity though the effective parameters (εt, εr and εAg) are dispersive, the resonant 
overlapping of ED and MD poses only the requirement that the anisotropy parameter of η =  0.285 is provided at 
the resonant position, which silver can meet [Re(εAg) ≈  − 112 when λ =  1450 nm]. In Fig. 3(d) we show both the 
scattering and absorption spectra of a homogeneous sphere of effective parameters obtained through Eqs (1–3) 
with ε1 =  εAg (complicated when loss of silver is considered), ε2 =  4.42 and f =  0.1. The resonant position is D 
(λD =  1450 nm), where the ED and MD are resonantly overlapped. In contrast to the results in Fig. 3(a), the 
ED and MD are not of the same scattering magnitude due to the effect of Ohmic losses of silver, which lead to 
different absorptions of ED and MD (see the dashed absorption curves). Nevertheless, as is shown in Fig. 3(e,f), 
unidirectional superscattering with negligible backward scattering can still be achieved though the pattern is not 
rigourously azimuthally symmetric.

Now we turn to the multilayered plasmonic cavity consisting of 28 units: each unit is made up of a silver layer 
of width 1 nm and a isotropic dielectric layer (ε2 =  4.42) of width 9 nm, and thus f =  0.1 and overall radius of the 
cavity R =  280 nm. In Fig. 3(g) we show the scattering and absorption spectra of such a multilayered cavity. The 
results agree well with those shown in Fig. 3(d) obtained through effective medium theory. The resonant over-
lapping position is indicated by point E of λE =  1467 nm, and the corresponding scattering patterns are shown in 
Fig. 3(h,i), which confirms the unidirectional superscattering of the multilayered plasmonic cavity.

It is worth mentioning that here for the results shown Fig. 3(g–i) we neglect the nonlocal effect41,42 of the thin 
silver layer of 1 nm width. The study of the multilayered cavity with nonlocal effect is itself rather complicated, 
which would be even more challenging when the quantum effects are also present43,44. We leave such a problem 
to a future study. Nevertheless to verify the feasibility of our proposal, we study alternatively a multilayered plas-
monic cavity consisting of 7 units: each unit is made up of a silver layer of width 4 nm (of this geometric size, the 
nonlocal effect is negligible41,42) and an isotropic dielectric layer (ε2 =  4.42) of width 36 nm. Similarly the radius 
of the cavity would be R =  280 nm and the filling ratio f =  0.1. In Fig. 3(j) we show the scattering and absorption 
spectra and it is clear that they deviate significantly from those obtained through effective medium theory [see 
Fig. 3(d)]. This is understandable, as with increasing layer widths, the effectively medium theory would become 
less and less accurate. However, it is clear that the effective medium theory can still be employed as a useful guide, 
as is demonstrated in Fig. 3(j) where both ED and MD are efficiently excited and can partly overlap due to the 
effective radial anisotropy. This guarantees a good directionality of the forward scattering [see the 2D and 3D 
scattering patterns shown in Fig. 3(k,l) respectively]. Another effect we neglect here is the surface scattering effect 
of thin metal layer45, which would make the silver more lossy in the spectrum regime we have investigated. We 

Figure 2. (a) Normalized scattering cross section spectra for the homogeneous radially anisotropic sphere, 
where both total scattering spectra (black curve, as is the case throughout the paper) and those contributed 
by ED (red curve), MD (blue curve), and EQ (dashed green curve) are shown. The specific parameters for 
the sphere are: εt =  3.22 and η =  5.35. The overlapping resonant point is A (αA =  2.04) and at this point the 2D 
and 3D scattering patterns are shown in (b) (red line and blue crosses indicate angular scattering intensities 
on the y–z and x–z panes respectively) and (c) respectively. (d) Normalized scattering cross section spectra 
for the multilayered cavity made up of 30 layers with alternating ε1 =  4.42 and ε2 =  1 layers of the same width 
of d (d =  R/30). The overlapping resonant point is B (αB =  2.01) and at this position the 2D and 3D scattering 
patterns are shown in (e,f) respectively.
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show that though such effect would reduce the total scattering cross sections, it would not comprise significantly 
the feature of unidirectional forward scattering (see the supplementary information for more details).

It is well known that in a simple two or three layered core-shell metal-dielectric cavity, the ED and MD can be 
tuned to resonantly overlap12,28,46, producing unidirectional forward superscattering12. Now the question is: why 
do we need the many layered plasmonic cavity described above to overlap EDs and MDs? Though it is shown spe-
cifically that through geometric tuning the resonant overlapping point of ED and MD can be pushed to the visible 
spectral regime in simple core-shell structures46, the problem is that in such structures it is extremely challenging 
to resonantly overlap ED and MD at wavelengths close to the plasmon frequency (at λ =  400 nm for example). 
To efficiently excite MDs at small wavelengths, it is known that high permittivity dielectric materials are usually 
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Figure 3. (a) Normalized scattering cross section spectra for a homogeneous radially anisotropic sphere: 
R =  280 nm, εt =  2.52 and η =  0.285. The overlapping resonant point is C (λC =  1450 nm) and at this point the 2D 
and 3D scattering patterns are shown in (b,c) respectively. (d) Normalized scattering (solid curves) and absorption 
(ED: red dashed; MD: blue dashed) cross section spectra for a homogeneous radially anisotropic sphere of 
R =  300 nm, for which the effective parameters are obtained through Eqs (1–3) with ε1 =  εAg, ε2 =  4.42 and f =  0.1. 
The dispersive anisotropy parameter obtained is η =  ηAg. The overlapping resonant point is D (λD =  1450 nm) and 
the scattering patterns are shown in (e,f). (g) The scattering and absorption spectra for the multilayered cavity 
made up of 56 layers with alternating silver and dielectric (ε2 =  4.42) layers of width 1 nm and 9 nm respectively. 
The overlapping resonant point is E (λE =  1467 nm) and the scattering patterns are shown in (h,i). (j) The scattering 
and absorption spectra for the multilayered cavity made up of 14 layers with alternating silver and dielectric layers 
of width 4 nm and 36 nm respectively. The resonant point is E λ =



( 1533nm)E  and the scattering patterns are 
shown in (k,l).
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required47,48. While high permittivity dielectric layer will red-shift the EDs, making them spectrally separated 
from MDs. In Fig. 4(a) we show the scattering spectra of a silver-dielectric (ε1 =  32) core-shell cavity (inner radius 
R1 =  35 nm and outer radius R2 =  70 nm) where the MD resonates at point F (λF =  411 nm). However at this point 
the scattering magnitude of ED is much smaller, rendering significant backward scattering, as can be observed 
in the scattering patterns shown in Fig. 4(b). At the same time, with a low index dielectric layer, the EDs can be 
efficiently excited at small wavelength, while under such circumstance the MD can not be efficiently excited, mak-
ing the scattering pattern a typical ED type with equal forward and backward scattering. This is demonstrated in 
Fig. 4(c) where we show the scattering spectra of a silver-dielectric (ε1 =  1.22) core-shell resonator (R1 =  42 nm, 
R2 =  80 nm). Here the ED resonates at point G (λG =  411 nm), where however the MD excitation is negligible. As 
a result, the scattering is contributed only by ED and thus not unidirectional [see the scattering patterns shown 
in Fig. 4(d)].

The challenge of overlapping EDs and MDs at small wavelengths close to the plasmon frequency is not insur-
mountable for multilayered plasmonic cavities of effective radial anisotropy. we employ a multilayered plasmonic 

Figure 4. Normalized scattering cross section spectra of two layered silver-dielectric cavity of dielectric 
permittivity ε2 =  3, R1 =  35 nm, R2 =  70 nm in (a) and ε2 =  1.2, R1 =  42 nm, R2 =  80 nm in (b). The resonant 
positions are indicated by F and G (λF =  λG =  411 nm), and at those points the 2D scattering patterns are shown 
in (b,d) respectively. (e) Normalized scattering cross section for the multilayered cavity made up of 8 layers with 
alternating silver and dielectric (ε2 =  32) layers of width 4 nm and 16 nm respectively. At point H (λH =  411 nm) 
the 2D scattering patterns are shown in (f).
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cavity consisting of 4 units: each unit is made up of a silver layer of width 4 nm and a isotropic dielectric layer 
(ε1 =  32) of width 16 nm, and thus f =  0.2 and overall radius of the cavity R =  80 nm. In Fig. 4(e) we show the 
scattering spectra of such a plasmonic multilayered cavity. It is clear that ED and MD can still overlap partly. At 
point H (λH =  411 nm), though ED and MD are not of exactly the same magnitude, the backward scattering still 
has been significantly suppressed with forward unidirectional superscattering [see the scattering patterns shown 
in Fig. 4(f)].

Conclusions and Discussions
To conclude, in this work we study the plane wave scattering by multilayered cavities that possess large effective 
radial anisotropy. In such cavities, relying on the effective radial anisotropy, the EDs and MDs can be tuned to res-
onantly overlap, which thus satisfies the Kerker’s condition and produces unidirectional forward superscattering. 
It is demonstrated that such scattering shaping can be realized in both all-dielectric and plasmonic multilayered 
cavities. Moreover it is shown that in plasmonic cavities of effective radial anisotropy, the EDs and MDs can be 
made to resonantly overlap at small wavelengths in the violet spectral regime, which is not accessible for simple 
two layered metal-dielectric core-shell resonators. We note here that in this work we have confined our studies 
to dipolar modes, and based on the same approach higher order modes can be made to overlap, which can pro-
duced more collimated forward superscattering30. Also, we have studied only the case of η >  0, and quite naturally 
hyperbolic cavities of η <  0 can be studied using the same method33,34. Moreover, the principle we have revealed is 
general, which is also applicable to resonators of other shapes and to other kinds of anisotropy such as magnetic 
anisotropy or the intrinsic huge anisotropy of 2D materials. Such mechanism of resonance control and scattering 
pattern shaping based on effective anisotropy can shed new light to many particle scattering problems and is quite 
promising for various applications in the fields of nanoantennas, solar cells, bio-sensing and so on.

Methods
To obtain the effective permittivities (along both radial and transverse directions) and anisotropic parameters 
of both all-dielectric and plasmonic multilayered cavities, we apply the effective media theory [see Eq. (1)]. For 
all-dielectric structures, this theory will be valid as long as each dielectric layer width is far smaller than the effec-
tive wavelength. For plasmonic structures however, the excitation of plasmonic modes can made the effective 
wavelength extremely small, which can render the effective medium theory invalid in some spectral regimes33. 
In this work, besides providing results obtained through effective medium theory, we also show the results calcu-
lated through the full analytical Mie theory for multilayered isotropic cavities, which agree quite well [see Figs 3 
and 4]. It is worth noting that when the loss of silver is considered, as has been done in this work, the anisotropy 
parameter η will be a complicated number. As a result, to obtain the far-field scattering pattern will have to involve 
the calculation of Bessel and Hankel function of complex orders, where we have implemented in Matlab (The 
MathWorks, Inc.) through symbolic expression calculation.

To calculate the scattering and absorption spectra, the generalized Mie theory30,37–39 can be applied for 
both homogeneous radially anisotropic [Fig. 1(c)] and multilayered isotropic [Fig. 1(b)] spherical cavities [see 
Eqs (4–7)]. For the case of multilayered cavities of many layers, we can apply the Cramer’s rule to calculate the 
scattering coefficients of an and bn based on the coefficients matrix37. With an and bn obtained, the far-field scat-
tering intensity Γ  is (see refs 4 and 38):

θ ϕ θ ϕ θ ϕΓ = | | + | |
k r

T T( , ) 1 [ (cos ) sin (cos ) cos ],
(12)2 2 1

2 2
2

2 2

where r is the distance between the observation point and the particle center λr( ), θ and ϕ are the polar and 
azimuthal scattering angles respectively. Here T1,2 (cos θ) can be expressed as:

∑θ π θ τ θ=
+
+

+
=

∞
T n

n n
a b(cos ) 2 1

( 1)
[ (cos ) (cos )],

(13)n
n n n n1
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∑θ τ θ π θ=
+
+

+
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∞
T n
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where

π θ θ θ= P(cos ) (cos )/sin , (15)n n
1

τ θ θ θ= .dP d(cos ) (cos )/ (16)n n
1

Here θP (cos )n
1  is the associated Legendre function of the first kind of degree n and order 138.
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