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Background. Recent clinical trials using regulatory T cells (Treg) support the therapeutic potential of Treg-based therapy in
transplantation and autoinflammatory diseases. Despite these clinical successes, the effect of Treg on inflamed tissues, as well
as their impact on immune effector function in vivo, is poorly understood. Therefore, we here evaluated the effect of human
Treg injection on cutaneous inflammatory processes in vivo using a humanized mouse model of human skin inflammation
(huPBL-SCID-huSkin). Methods. SCID beige mice were transplanted with human skin followed by intraperitoneal (IP)
injection of 20‐40 × 106 allogeneic human PBMCs. This typically results in human skin inflammation as indicated by
epidermal thickening (hyperkeratosis) and changes in dermal inflammatory markers such as the antimicrobial peptide hBD2
and epidermal barrier cytokeratins K10 and K16, as well as T cell infiltration in the dermis. Ex vivo-expanded human Treg
were infused intraperitoneally. Human cutaneous inflammation and systemic immune responses were analysed by
immunohistochemistry and flow cytometry. Results. We confirmed that human Treg injection inhibits skin inflammation and
the influx of effector T cells. As a novel finding, we demonstrate that human Treg injection led to a reduction of IL-17-secreting
cells while promoting a relative increase in immunosuppressive FOXP3+ Treg in the human skin, indicating active immune
regulation in controlling the local proinflammatory response. Consistent with the local control (skin), systemically (splenocytes),
we observed that Treg injection led to lower frequencies of IFNγ and IL-17A-expressing human T cells, while a trend towards
enrichment of FOXP3+ Treg was observed. Conclusion. Taken together, we demonstrate that inhibition of skin inflammation by
Treg infusion, next to a reduction of infiltrating effector T cells, is mediated by restoring both the local and systemic balance
between cytokine-producing effector T cells and immunoregulatory T cells. This work furthers our understanding of Treg-based
immunotherapy.

1. Introduction

Regulatory T cells (Treg) play a central role in immune
homeostasis and prevention of autoimmune diseases [1–3].
In a variety of transplantation and autoimmune mouse
models, injection of Treg prevented immune pathology
[4–7]. Promising clinical effects of Treg therapy with
expanded Treg in the treatment of patients with graft versus

host disease (GvHD) have been demonstrated [8–10]. More-
over, Treg therapy is currently tested in solid organ trans-
plantation [7, 11, 12]. In living donor liver transplantation,
a pilot study with ex vivo-expanded Treg was shown to be
effective and to induce operational tolerance [13]. Also, in
autoimmunity and chronic inflammatory diseases, Treg ther-
apy is studied with the aim to control the disturbed immune
balance. Already promising results were obtained in small-

Hindawi
Journal of Immunology Research
Volume 2020, Article ID 7680131, 11 pages
https://doi.org/10.1155/2020/7680131

https://orcid.org/0000-0001-7792-9369
https://orcid.org/0000-0001-8636-2974
https://orcid.org/0000-0001-8787-4648
https://orcid.org/0000-0003-1534-5039
https://orcid.org/0000-0002-6955-8817
https://orcid.org/0000-0003-2950-4977
https://orcid.org/0000-0003-1210-7502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7680131


scale phase I/II clinical trials in type 1 diabetes (T1DM)
[14, 15], Crohn’s disease [16], and uveitis [17]. As Treg are
dysfunctional in psoriatic patients [18, 19], Treg-based ther-
apy might be an interesting treatment option for patients
with severe psoriasis.

Treg-based therapy could reduce toxicity and side effect
in comparison with immunosuppressive drugs. The ultimate
goal of Treg therapy would be induction of tolerance without
immune suppression-related development of malignancies
and infections [4, 5, 20]. Despite the current successes of
Treg-based therapy, it is still not precisely known how and
where immune regulation by injected Treg take place and
in which anatomical side the inflammatory processes are
controlled. Studies in mouse models have already shown that
Treg often accumulate at the site of inflammation, most likely
to control the duration and the extent of inflammation and in
doing so protect the host from immune-mediated patholo-
gies [12–14]. Physiological trafficking and migration to tis-
sues and secondary lymphoid organs are crucial for Treg
suppression functions in vivo [21].

Humanized mouse models (i.e., immune-deficient mice
equipped with both human tissue and a competent human
immune system) provide a useful in vivo preclinical tool for
assessment of the human immune system and its influence
on inflammatory processes of human tissue [22, 23]. How-
ever, reports characterizing the immune responses after Treg
therapy are scarce [8–10, 24–27].

Here, we used the huPBL-SCID-huSkin allograft model
[28], which enables quantitative analysis of the human
dermal inflammatory response and the systemic immune
response in vivo [29], to study the effect of human Treg
infusion. We here demonstrate that normalization of the
inflammatory skin response by Treg injection, next to
inhibiting T cell infiltration, is the result of both local and
systemic immunosuppression of T cell-mediated effector
cytokine production as well as fostering a relative increase
in immunosuppressive FOXP3+ Treg in the skin.

2. Materials and Methods

2.1. Mice. The huPBL-SCID-huSkin allograft model used in
this study is described in detail by de Oliveira et al. [29].
Female B17.B6-PrkdcscidLystbg/Crl (SCID beige) mice, 6-8
weeks old (Charles River Breeding Laboratories), were trans-
planted with human skin from healthy individuals obtained
after abdominal plastic surgery at Bauland Kliniek (Mill,
Netherlands). After healing of the human skin (21 days),
2‐4 × 107 (depending on the available cell numbers)
peripheral blood mononuclear cells (PBMCs) were injected
intraperitoneally (IP) in the absence or presence of an
equal number of Treg (ratio of 1 : 1, PBMC :Treg).

The experiments in our current study were performed
using 3 series of experiments using the skin from 3 different
skin donors. Every series of experiments consisted of 3
groups: a PBS group, a human PBMC group, and a human
PBMC+expanded Treg group. The number of experiments
that could be performed was dependent on the numbers of
human cells that were obtained from the buffy coats and fol-
lowing Treg expansion, resulting in 2–5 animals per group;

overall, the PBS, PBMC, and PBMC+Treg consisted of
n = 6, n = 13, and n = 8 mice. Unless stated otherwise, these
numbers were used for analysis. All animal experimental
procedures were in accordance with the international welfare
guidelines and approved by the institutional animal ethical
committee of the Radboud University in Nijmegen (DEC
2010-153). Mice were sacrificed 3 weeks after cell injection
by cervical dislocation.

2.2. HumanMaterials. The use of human skin and peripheral
blood was approved and in accordance with the regulations
set by the Medical Ethical Committee for human research
of the Radboudumc. Human skin and buffy coats (Sanquin
Blood Bank, Nijmegen, Netherlands) were obtained from
healthy donors, who gave written consent for scientific use
according to the Declaration of Helsinki. All experiments
were performed in accordance with relevant guidelines and
regulations.

2.3. Cell Isolation and Regulatory T Cell Expansion. Human
PBMC were isolated by Ficoll density gradient separation
(Lymphoprep, Nycomed-Pharma AS, Norway) of buffy
coats. Approximately 200 × 106 PBMCs were stored in liquid
nitrogen, and from the remaining PBMC, CD4+ cells were
isolated by negative selection using MACS anti-CD4
microbeads according to the manufacturer’s instructions.
Thereafter, CD25+ cells were isolated by positive selection,
using magnetic separation by MACS anti-CD25 microbeads
(Miltenyi Biotec, Germany) combined with a MS column
and a Vario MACS magnetic cell sorter (Miltenyi, Biotec,
Germany) according to the manufacturer’s instructions. This
typically resulted in >90% pure Treg, based on FOXP3
expression. Isolated CD4+CD25+ cells were expanded for 7
days in vitro by stimulation with αCD3/αCD28 stimulator
beads (Invitrogen, United Kingdom) in a 1 : 2 bead to cell
ratio in the presence of 250U/ml IL-2 (Proleukin (Alloga,
United Kingdom)). A second expansion round of 6 days
was performed with αCD3/αCD28 beads in a 1 : 4 bead to cell
ratio in the presence of 1000U/ml IL-2. Before injection, the
expanded Treg were allowed to recover for one day in
medium+IL-2 (200U/ml). Thawed PBMC and expanded
Treg were injected IP in a ratio of 1 : 1 in PBS.

2.4. In Vitro Suppression Assay. The in vitro suppressive func-
tion of the expanded human Treg was assessed in a coculture
suppression assay. To this end, autologous CD4+CD25- cells
(25 × 103) were stimulated with αCD3/αCD28 stimulator
beads in a 1 : 5 bead to cell ratio and cocultured with grading
numbers of expanded Treg. Titration of the CD4+CD25-
cells was included for control purposes. Proliferation was
measured at day 5 by an addition of 0.5μCi 3H-Thymidine
(Amersham Biosciences, Piscataway, NJ) for at least 6 h.
Tests were set up in triplicate. Based on the 3H-Thymidine
data, the percentage inhibition was calculated as mean
percentage inhibition ± SEM of 8 independent experiments
performed with cells from different donors as shown.

2.5. Flow Cytometry and Antibodies. Cell phenotype was
analysed by a multicolor flow cytometer Navios (Beckman-
Coulter, Mijdrecht, Netherlands). For surface staining, the
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following anti-human conjugated monoclonal antibodies
were used: CD3-(UCHT1) ECD, CD4-(13B8.2) PC5.5,
CD45-(J33) KO, CD25-(MA251) PECY7 BD, CD8-(B9.11)
APC700, or APC750 (all from Beckman-Coulter). In addi-
tion, the following anti-human conjugated monoclonal anti-
bodies were used for intracellular and cytokine
measurements: IFN-γ-(4S.B3) PECY7, IL17A-(eBio64-
DEC17) APC-e780, and FOXP3-(PCH101) PB (all from
eBioscience) and Ki67 (B56) Alexa-Fluor 488 (BD Biosci-
ence). Intracellular analysis was performed after fixation
and permeabilization, using a Fix and Perm reagent
(eBioscience) according to the manufacturer’s instructions.
Before intracellular cytokine measurements, the cells were
stimulated for 5 h with PMA (12.5 ng/ml), ionomycin
(500 ng/ml), and Brefeldin A (5μg/ml) (all from Sigma-
Aldrich). Fluorescence minus one (FMO) stainings were
used to control and determine gate settings.

2.6. Histology and Immunohistochemistry.Human skin grafts
were fixed in neutral buffered 4% formalin (Mallinckrodt
Baker Inc., Deventer, Netherlands) for 4 h, processed, and
embedded in paraffin. Then, 6μm sections were cut and the
slides were stained with hematoxylin-eosin (HE) or proc-
essed for immunohistochemical staining. The following
human monoclonal antibodies were used: anti-CD3 (clone
7.2.38, Abcam, Cambridge, UK), anti-FOXP3 (PCH101,
eBioscience), anti-Keratin-10 (K10, RKSE60; euro-
diagnostica), anti-Keratin-16 (K16, LL025; Monosan),
anti-β-defensin-2 (hBD2, Abcam, Cambridge, UK), anti-
CD4 (Santa Cruz BC/F6), anti-CD8 (144B DAKO) and
anti-IL-17 (Polyclonal goat IgG, R&D Systems). To detect
K10, K16, hBD2, CD4, and CD8, the sections were incu-
bated with EnVision labeled polymer anti-mouse (DAKO)
and visualized using 3,3′-diaminobenzidine (DAB). To
detect CD3, FOXP3, and IL-17, sections were stained
using the Labeled Streptavidin Biotin method (Universal
LSAB+ Kit/AP, DAKO) and visualized using Permanent
Red (DAKO). Antibody stainings were visualized using the
Dako Cytomation EnVision+ System-HRP (ABC) kit
(DAKO, Glostrup, Copenhagen, Denmark) combined with
3,3′-diaminobenzidine tetrahydrochloride (DAB, brown,
Sigma-Aldrich). Immunohistochemistry control staining
was conducted by omitting the primary antibody staining
step. In the absence of primary antibodies, no staining was
detected (not shown). Sections were photographed at the
indicated magnification using a microscope (Axioskop 2
MOT; Zeiss) and a digital camera (Axiocam MRc5; Zeiss)
and AxioVision software (Zeiss).

2.7. Immunohistochemistry Quantification and Determination
of Epidermal Thickness. To analyse human CD4 and CD8
cells, representative pictures were taken at 10x magnification
and pictures were analysed using ImageJ software. A represen-
tative region of interest (ROI) was drawn from the lowest
epidermal papilla till 300μmdepth into the dermis. Cell quan-
tification was performed by setting a threshold and relating
this to a number of cells per mm2. The total epidermal area
and K10, K16, and hBD2-positive area were measured using
ImageJ in the region of interest (ROI) and displayed as

%K10, %K16, or %hBD2-positive epidermal area. The average
epidermal thickness (μm) was calculated by taking the mean
of multiple thick and thin parts of the epidermis (using
ImageJ).

2.8. Statistical Analysis. The results were statistically analysed
by a one-tailedMann–WhitneyU test using GraphPad Prism
software version 5.03. Differences with a p value of <0.05
were considered significant and are indicated with an asterisk
(∗): p value < 0.01 (∗∗), p value < 0.001 (∗∗∗). The experimen-
tal groups were blinded for the animal caretakers and techni-
cians who analysed the animals and tissues. This information
was only available to the responsible researcher. Unless stated
otherwise, all results are biological replicates.

3. Results

3.1. Suppression of Human Skin Inflammation by Ex
Vivo-Expanded Human CD4+ Regulatory T Cells. To evalu-
ate the functional suppressive capacity of ex vivo-expanded
Treg in vivo, we have used the huPBL-SCID-huSkin allograft
model. The experimental protocol is visualized in Figure 1(a).
Human peripheral blood CD4+CD25+ Treg were isolated by
positive isolation using magnetic beads. The isolated CD4
+CD25+ cells were 94-98.9% pure as indicated by coexpres-
sion of CD25 and FOXP3 (Figure 1(b)). These isolated CD4
+ Treg were expanded ex vivo in two subsequent expansion
cycles using αCD3/αCD28 bead stimulation in the presence
of exogenously added human recombinant IL-2. This
resulted in a more than 100-fold expansion in cell number
(data not shown). After expansion, the cells retained expres-
sion of CD4, CD25, and FOXP3 (Figure 1(b)) and revealed
potent suppressive capacity in vitro (Figure 1(c)). As
expected, injection of PBMC alone led to inflammation of
the transplanted human skin as indicated by a clear increase
in the epidermal thickness of the human skin. Coinjection
of human ex vivo-expanded Treg, at a PBMC :Treg ratio
of 1 : 1, successfully suppressed cutaneous inflammation
induced by allogeneic PBMC, and prevented epidermal thick-
ening. (Thickness PBS=66.61μm±6.25, PBMC = 325:3 μm
± 33:98, and PBMC + Treg = 182:8 μm± 37:36. PBS vs.
PBMC: p = 0:0001, PBMC vs. Treg: p = 0:0156.)
(Figure 2(a)). To study the effect of Treg coinjection on the
dermal inflammatory response as induced by PBMC injec-
tion, we analysed the expression of the skin pathology-
related proteins Keratin-10 (K10) (PBS = 66:61% ± 6:25,
PBMC = 17:18% ± 5:62, and PBMC + Treg = 43:81% ± 6:60.
PBS vs. PBMC: p = 0:0016, PBMC vs. PBMC+Treg:
p = 0:0055) (Figure 2(b)), Keratin-16 (K16) (PBS =
10:59% ± 4:52, PBMC = 37:86% ± 4:98, and PBMC +
Treg = 19:90% ± 3:81. PBS vs. PBMC: p = 0:0028,
PBMC vs. PBMC+Treg: p = 0:0056) (Figure 2(c)),
and human β-defensin-2 (hBD2) (PBS = 12:50% ± 0:87,
PBMC = 29:98% ± 4:10, and PBMC + Treg = 12:15% ± 2:60.
PBS vs. PBMC: p = 0:0104, PBMC vs. PBMC+Treg:
p = 0:0106) (Figure 2(d)) using immunohistochemistry. As
reported previously [15], injection of PBMC led to downregu-
lation of K10 and a parallel induction of K16 and hBD2
expression (Figures 2(b)–2(d)). Here, we demonstrate that
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coinjection of Treg inhibited K10 downregulation as well as
the induction of K16 and hBD2 (Figures 2(b)–2 (d)) and thus
normalizes epidermal inflammation.

3.2. Human Treg Injection Inhibits Skin Inflammation by
Reducing Effector T Cell Infiltration and Enrichment of
FOXP3+ Treg. As previously shown [29], following injec-
tion of PBMC human CD4+ and CD8+, T cells can be
detected in the skin of the human skin transplant and
secondary organs. Coinjection of ex vivo-expanded Treg
significantly inhibited accumulation of human CD8+ T cell
(PBMC = 1121 cells/mm2 ± 91:80, PBMC + Treg = 349:8
cells/mm2 ± 61:18, p = 0:0383) in both epidermis and dermis
while CD4+ T cell numbers (PBMC = 1253 cells/mm2 ±
50:28, PBMC + Treg = 1329 cells/mm2 ± 287:8, NS) remained
unchanged (Figures 3(a) and 3(b)). Injection of PBMC in the
huPBL-SCID-huSkin model typically results in human skin-
infiltrating IL-17+ cells [29]. Coinjection of ex vivo-expanded

human Treg led to a significant inhibition of IL-17+ cells
(PBMC = 92:96 cells/mm2 ± 6:56, PBMC + Treg = 59:10 cells
/mm2 ± 6:39, p = 0:032) (Figure 3(c)). Coinjection of Treg
led to a relative increase of human FOXP3+ cells in the trans-
planted human skin, as indicated by the significantly increased
FOXP3+ :CD3+ T cell ratio (PBMC = 0:28 ± 0:012, PBMC
+ Treg = 0:5675 ± 0:04732, p = 0:0097) (Figure 3(d)).

3.3. Treg Injection Affects Circulating Human T Cell Numbers
and Their Proinflammatory Cytokine-Producing Potential.
Injection of PBMC results in repopulation of human
CD4+ and CD8+ T cells in the SCID beige mice. Coinjec-
tion of ex vivo-expanded human Treg inhibits this repop-
ulation as indicated by a strong reduction of T cells in the
spleen (PBMC = 1:61% ± 0:31, PBMC + Treg = 0:17% ±
0:03, p = 0:0286) (Figure 4(a)). However, similar CD4+
(PBMC = 38:77% ± 8:19, PBMC vs. Treg 29:38% ± 4:07,
NS) and CD8+ (PBMC = 45:02% ± 8:28, PBMC + Treg =
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Figure 1: Expanded human Treg maintain their suppressive capacity in vitro. (a) Schematic representation of the huPBL-SCID-huSkin
allograft model with adoptive transfer of PBMC combined with or without Treg (1 : 1 ratio). (b) Flow cytometric analysis of Treg before
and after expansion. Representative dot plot showing CD25 and FOXP3 expression of input cells and expanded human Treg, respectively.
(c) Suppressive capacity of the ex vivo-expanded Treg was examined using an in vitro suppression assay. The graph shows the
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43:46% ± 6:45, NS) percentages were observed in the
spleen in the absence and presence of injected Treg
(Figure 4(b)). Inhibition of CD4+ and CD8+ T cell prolif-
eration by coinjected Treg was supported by Ki67 staining
of CD4+ and CD8+ cells (Figure 4(c)) Notably, Treg

coinjection led to a significant reduction of IL-17A
(PBMC = 81:65% ± 1:91, PMBC + Treg = 60:97% ± 4:81,
p = 0:0242) as well as IFNγ (PBMC = 66:01% ± 7:43,
PBMC + Treg = 35:78% ± 5:85, p = 0:0485) expressing human
CD4+ T cells in the mouse spleen (Figure 4(d)), while a trend
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towards an increase in the relative numbers of FOXP3+ cells
was observed (PBMC = 0:0357 ± 0:0081, PBMC + Treg =
0:0833 ± 0:0277, p = 0:1101) (Figure 4(e)).

4. Discussion

Humanized mouse models offer the opportunity to study the
human immune response in vivo and to perform preclinical
immune intervention studies [22, 23, 28, 30, 31]. The
huPBL-SCID-huSkin allograft model allows to study skin
inflammation and intervention of T cell-driven skin inflam-
mation [29]. Here, we used this huPBL-SCID-huSkin allo-
graft model to study the in vivo suppressive potential of
ex vivo-expanded human Treg on skin inflammation thereby
focusing on regulation of dermal inflammatory markers and
on effector cytokine expression by T cells.

It has been demonstrated that Treg injection in human-
ized mouse models prevents expansion of the human T cells.
In the presented work, we elaborate further on the immuno-
suppressive mechanism of Treg in vivo by demonstrating
that inhibition of skin inflammation by the injection of
ex vivo-expanded Treg is mediated by inhibition of cytokine
effector T cell function and enrichment of FOXP3+ Treg.
Treg injection inhibited epidermal thickening and restored
inflammation-related aberrant epidermal expression of
K10/K16 and hBD2 expression. This Treg-mediated dermal
restoration is most likely explained by both local and sys-
temic effects. Systemically, in the spleen, Treg injection led
to reduction of the absolute numbers of circulating T cells
and these T cells revealed a reduced potential to produce
INFγ and IL-17. Additionally, a trend towards increased
FOXP3 :CD4 ratio was observed. Locally, in the skin, a
reduced CD8+ T cell influx was observed that was paralleled
by a relative increase of FOXP3+ regulatory T cells and
reduced numbers of IL-17 expressing cells. Thus, Treg injec-
tion promotes immune homeostasis in our humanized
mouse model. This is in line with findings of others that

studied Treg infusion in alternative humanized mouse
models [26, 32, 33].

Inflammatory cytokines like IL-17 and IFNγ play a key
role in the pathology of (auto)inflammatory diseases [34].
In our current work, we demonstrate that Treg injection
inhibits the expression of the proinflammatory cytokines
IFNγ and IL-17 by T cells in vivo. IFNγ is a cytokine involved
in T helper-1-driven immune responses inducing inflamma-
tory responses and apoptotic cell death. T cell-derived IFNγ
is one of the most potent activators of the proinflammatory
functions of keratinocytes, resulting in the expression of a
wide array of chemokines, cytokines, and membrane mole-
cules that orchestrate the recruitment, activation, and reten-
tion of specific leukocyte subpopulations in the skin [35].
IL-17 is important for host defense but has also been associ-
ated with chronic inflammation and autoimmunity [36]. The
proinflammatory effect of IL-17 is further potentiated when
IFNγ is also present [19]. Both IFNγ and IL-17 promote
expression of the skin antimicrobial peptide hBD2 [18].
hBD2 promotes the recruitment of a variety of immune cells
by interacting with chemokine receptors such as CCR6 [37].
The mutual activation of T lymphocytes and keratinocytes
has a primary role in the amplification of skin inflammation
during immune-mediated skin diseases [20]. In our human-
ized mouse model, we demonstrate that the peripheral
human T cells express both IFNγ and IL-17 and we found a
parallel increase of epidermal hBD2 expression. Injection of
ex vivo-expanded Treg led to a reduction in the numbers of
circulating human T cells that reveal reduced expression of
IFNγ and IL-17A as well as reduced hBD2 expression by
the keratinocytes. Together, this suggests that inhibition of
skin inflammation by Treg injection results in increased Treg
in the skin and reduced proinflammatory cytokine produc-
tion of IFNγ and IL-17A by the human T cells, which in turn
results in normalization of epidermal marker expression and
prevention of epidermal thickening.

In our humanized model, we have been studying
Treg : PBMC ratios of 1 : 1, which cannot be considered as
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Figure 4: Treg infusion affects systemic proinflammatory cytokine production by T cells. Representative flow cytometry pictures and
quantitative analysis of systemic human CD45+ and CD3+ T cells harvested from the mouse spleen of SCID beige mice infused with
PBMC with or without Treg. (a) Percentage of human CD45 cells. (b) Percentage of human CD4+ and CD8+ cells within human CD45+
cells. (c) Representative example of the percentages of dividing (Ki67+) CD4+ and CD8+ cells (n = 3). (d) Percentage of human IFNγ and
IL-17A-secreting T cells. (e) Frequency of CD4+CD25+FOXP3+ cells within CD45+ cells and Treg : CD4 ratio analysis. Mean ± SEM is
shown for (a, b, d) (n = 3‐8). Statistical significance was analysed by the Mann–Whitney U test. ∗p value < 0.05; ∗∗p value < 0.01.
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physiological ratios. In other humanized mouse models,
Treg : PBMC ratios of 1 : 5/1 : 10 were required to inhibit the
inflammatory response against islet [38], arterial [27], and
skin [29, 39] allografts. In a similar humanized skin allograft
BALB/c Rag2−/−cγ−/−model, it has been demonstrated that
at a Treg : PBMC ratio of 1 : 10, the immunosuppressive effect
of Treg infusion was lost [40]. Using our humanized mouse
allograft SCID/beige model, similar observations were made.
Interestingly, intradermal Treg injection at Treg : PBMC
ratios of 1 : 400 [31] still resulted in the inhibition of skin
inflammation revealing that alternative administration
routes should be considered for clinical application of
Treg-based therapy.

Administration of Treg resulted in both systemic and
local (i.e., human inflamed skin) immune suppression as
indicated by the reduced influx of human T cells in the
human-transplanted skin and the reduced presence of
human T cells in the spleen. In addition, Treg injection led
to a clear local enrichment of FOXP3+ Treg in the trans-
planted human, and we observed a trend towards an increase
of FOXP3+ cells in the periphery. Probably, the infused
Treg expand in the draining lymph nodes and migrate
specifically to the skin. It has been shown in humans that
lymph nodes facilitate Treg expansions [41] and that hom-
ing marker expression of cutaneous leukocyte antigen
(CLA) on Treg promotes Treg migration to the human
skin [40]. Dynamic Treg tracking experiments are needed
to further understand their migratory route and clarify
the specific site of action of injected Treg. This knowledge
and a better understanding of how chemokines and integ-
rins control the migration and survival of distinct Treg
subsets might enable selection of Treg subsets with defined
homing potential that can be applied to specifically target
inflamed tissues such as in Crohn’s disease, psoriasis,
and transplantation [40, 42].

In conclusion, we here demonstrate that inhibition of
skin inflammation by the injection of ex vivo-expanded
human Treg in vivo in a humanized mouse model, next to
reducing the influx of T cells, depends on inhibition of effec-
tor cytokine production by T cells and enrichment of FOXP3
+ regulatory T cells. Altogether, this prevents dermal inflam-
matory pathology. These results further support the use of
Treg-based cell therapy.
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