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Abstract
The dopamine D2/3 system is fundamental for sensory, motor, emotional, and cognitive aspects of behavior. Small-scale 
human histopathological and animal studies show high density of D2/3 dopamine receptors (D2/3DR) in striatum, but 
also demonstrate the existence of such receptors across cortical and limbic regions. Assessment of D2/3DR BPND in the 
extrastriatal regions with [11C]raclopride has long been considered unreliable due to the relatively low density of D2/3DR 
outside the striatum. We describe the distribution and interregional links of D2/3DR availability measured with PET and 
[11C]raclopride across the human brain in a large sample (N = 176; age range 64–68 years). Structural equation modeling 
revealed that D2/3DR availability can be organized according to anatomical (nigrostriatal, mesolimbic, mesocortical) and 
functional (limbic, associative, sensorimotor) dopamine pathways. D2/3DR availability in corticolimbic functional subdivi-
sions showed differential associations to corresponding striatal subdivisions, extending animal and pharmacological work. 
Our findings provide evidence on the dimensionality and organization of [11C]raclopride D2/3DR availability in the living 
human brain that conforms to known dopaminergic pathways.

Keywords  [11C]raclopride · Dopamine D2/3 receptors · Inter-individual differences · Structural-equation modeling · 
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Introduction

Positron emission tomography (PET) can be used to quantify 
dopamine (DA) receptors in the human brain, using radioli-
gands that bind selectively to the receptors of interest. [11C]

raclopride is a well-validated tracer for assessment of stri-
atal D2/3 DA receptor (D2/3DR) availability (or binding 
potential to non-displaceable tissue uptake; BPND) (e.g., de 
Manzano et al. 2013; Egerton et al. 2010; Kim et al. 2014; 
Volkow et  al. 2009). Competitive assay experiments in 
rhesus monkeys (Lidow et al. 1989) have documented that 
raclopride is a potent and selective D2/3DR ligand, which 
can be displaced from its binding sites only by D2/3DR-
selective drugs in striatal and extrastriatal regions alike. 
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Assessment of D2/3DR BPND in extrastriatal regions with 
[11C]raclopride has long been considered unreliable due 
to the relatively low density of D2/3DR outside the stria-
tum (Hall et al. 1994; Farde et al. 1988). However, a study 
reported acceptable reliability for BPND based on [11C]
raclopride in brain areas with low D2/3DR densities (n = 7; 
Alakurtti et al. 2015). More specifically, intraclass correla-
tion coefficients (ICCs) for cortical areas indicated mod-
erate to good reproducibility (e.g., temporal cortex: 0.79; 
dorsolateral prefrontal cortex: 0.86; superior and inferior 
frontal gyrus: 0.64 and 0.67). A more recent study reported 
similarly high ICCs across 7 months for [11C]raclopride 
BPND in both striatal and extrastriatal brain regions (n = 27; 
ICCs > 0.9 for frontal and temporal cortex; Karalija et al. 
2019). This suggests that extrastriatal [11C]raclopride BPND 
values represent a true signal rather than mere noise. Here, 
we describe the ”landscape” of [11C]raclopride BPND in the 
human brain and investigate whether D2/3DR availability is 
organized according to anatomical and functional dopamine 
pathways, which would support the validity of extrastriatal 
[11C]raclopride measurements.

Dopaminergic projections, originating from the midbrain, 
densely innervate the striatum via the nigrostriatal pathway 
and, to a lesser degree, limbic and cortical areas via the 
mesolimbic and mesocortical pathways (Fig. 1a; Foote and 
Morrison 1987; Martinez et al. 2003; Haber and Knutson 
2010; Cervenka et al. 2008). Striatum can also be function-
ally subdivided into limbic, associative, and sensorimotor 
parts based on corticostriatal projections (Foote and Mor-
rison 1987; Haber and Knutson 2010; Tziortzi et al. 2014; 
Haber et al. 2006; Fig. 1b). The associative and sensorimotor 
pathways receive common dopaminergic innervation from 

the substantia nigra. The ventral tegmental area (VTA) pro-
vides dopaminergic input to the ventral striatum, as well as 
to limbic and neocortical areas via the mesolimbic and mes-
ocortical pathways (Fig. 1a). With respect to the corticos-
triatal projections, the ventral striatum receives projections 
from the medial and orbitofrontal cortex, anterior cingulate 
cortex, as well as hippocampus and amygdala. The associa-
tive circuit involves dorsolateral prefrontal cortex, anterior 
cingulate cortex, and associative striatum (pre-commissural 
putamen and dorsal caudate nucleus). The anterior cingulate 
cortex is anatomically considered part of the limbic system, 
but is also connected to the associative cortices and projects 
to the associative striatum (Haber et al. 2006). Finally, the 
sensorimotor circuit encompasses the sensorimotor stria-
tum (post-commissural part of dorsal putamen) and cortical 
areas, such as the precentral gyrus, postcentral gyrus, and 
superior parietal cortex.

We use structural equation modeling that accommodates 
the formation of latent factors that represent the common 
variance of their indicators. This method effectively sepa-
rates out measurement error, and hence yields better esti-
mates of factor variances and covariances (Little et al. 1999).
We investigate between-person differences in D2/3DR avail-
ability across targeted brain regions belonging to anatomi-
cally defined pathways (i.e., striatal, limbic, neocortical). 
Given that corticostriatal projections impose a specific func-
tional organization upon the striatum (Haber and McFarland 
1999), we also examine whether individual differences in the 
[11C]raclopride BPND data support a functional subdivision 
of cortical areas, such that target regions belonging to the 
same functional loop also load on the same latent factor. 
A good fit for these models would support the use of [11C]

Fig. 1   a Schematic illustration of the major dopaminergic pathways 
in the brain. Adapted from Li et  al. (2009), with permission from 
Oxford University Press. b Schematic illustration of corticostriatal 
projections and spiral striato-midbrain–striatal pathways. MPFC 
medial prefrontal cortex, OFC orbitofrontal cortex, ACC​ anterior cin-

gulate cortex, DLPFC dorsolateral prefrontal cortex, VST ventral stri-
atum, AST associative striatum, SMS sensorimotor striatum, VTA ven-
tral tegmental area, SN substantia nigra. Reprinted from Rieckmann 
et al. (2011), with permission from Oxford University Press
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raclopride BPND data to measure D2/3DR availability along 
known dopaminergic pathways across the brain. Moreover, 
we study whether the resulting functional corticostriatal fac-
tors are specifically related to their corresponding striatal 
targets.

Materials and methods

The Cognition, Brain, and Aging (COBRA) study design, 
recruitment procedure, imaging protocols, and details of 
the cognitive and lifestyle battery have been reported else-
where (Nevalainen et al. 2015). The study was approved 
by the local Ethical and Radiation Safety Committee of 
Umeå, Sweden, and all participants provided signed writ-
ten informed consent prior to testing. Written consent was 
also acquired for storage of blood samples at Norrland’s 
University Hospital.

Participants

The initial sample included 181 healthy older individuals 
(64–68 years of age; mean = 66.2; SD = 1.2; 81 women) 
who were randomly selected from the population register 
of Umeå, a city in northern Sweden. [11C]raclopride BPND 
data were excluded for four individuals with imperfect seg-
mentation of MR images and PET–MR image coregistration 
and for one individual with pathological deviations in the 
brain observed on the MR images. Thus, the effective sam-
ple included 176 individuals.

PET image acquisition

All participants underwent a PET scan (Discovery PET/CT 
690; GE Healthcare) performed during resting-state condi-
tions following an intravenous bolus injection of 250 MBq 
[11C]raclopride. Preceding the injection, a 5-min low-dose 
helical CT scan (20 mA, 120 kV, 0.8 s per revolution) was 
obtained for the purpose of PET-attenuation correction. Fol-
lowing the bolus injection, a 55-min 18-frame dynamic scan 
was acquired. Attenuation- and decay-corrected PET images 
(47 slices, field of view 25 cm, 256 × 256-pixel transaxial 
images, voxel size 0.977 × 0.977 × 3.27 mm3) were recon-
structed with the iterative VUE Point HD-SharpIR algorithm 
(GE Healthcare); 6 iterations, 24 subsets, 3.0 mm postfilter-
ing, yielding full width at half maximum of 3.2 mm (Wall-
sten et al. 2013). For comparative purposes, reconstruction 
was also performed with filtered-back projection (FBP; fil-
ter size: 6.4 mm). FBP is a reconstruction technique, which 
is often seen as a quantitative “gold standard” for larger 
regions. However, the image noise is rather high, which may 
cause FBP images to contain pixels with negative uptake 

values. Iterative techniques produce less noisy images, but 
converge at different rates for high and low uptakes. Thus, 
iterative techniques produce less noise, but at a possible cost 
of bias, especially at lower ranges (Walker et al. 2011; Jian 
et al. 2015; van Velden et al. 2009). Therefore, it is essen-
tial to validate extrastriatal findings with FBP reconstruc-
tion. Head movements during the imaging sessions were 
minimized with an individually fitted thermoplastic mask 
attached to the bed surface.

PET data analyses

D2/3DR availability was determined by calculating [11C]
raclopride BPND (Mintun et al. 1984; Innis et al. 2007; 
Logan et al. 1996). In brief, the PET emission scan format 
was converted from DICOM to NIfTI, corrected for head 
movements, and then coregistered to the corresponding MR 
image using the Statistical Parametric Mapping software 
(SPM8; Ashburner and Friston 2005). Regions of inter-
est were delineated with the FreeSurfer 5.3 segmentation 
software (Han and Fischl 2007; Fischl et al. 2004; Fischl 
et al. 2002). Time–activity curves for striatal and extras-
triatal regions and the cerebellum were used to calculate 
BPND using the Logan et al. (1996) graphical analysis, using 
perpendicular linear regression to minimize bias (Varga and 
Szabo 2002). The cerebellar gray matter was used as a refer-
ence region due to negligible D2/3DR expression (Camps 
et al. 1989; Farde et al. 1986; Levey et al. 1993). Median 
BPND data were extracted for all regions of interest based 
on the subcortical parcellations in FreeSurfer and the Desi-
kan–Killiany atlas (Desikan et al. 2006) for extrastriatal 
regions. In addition, Brodmann areas 9 and 46 were defined 
based on masks from the MRIcron atlas (http://peopl​e.cas.
sc.edu/rorde​n/mricr​on/index​.html), as those are not available 
in the Desikan–Killiany atlas.

Notably, there are several possibilities in PET that could 
cause inflated extrastriatal BP or bias, all of which can be 
ruled out in our data set. First, bias could be introduced 
by iterative reconstruction methods, which is not present 
in FBP analysis. Toward this end, the correlations among 
brain regions are virtually identical in size when using 
FBP (see Table S1). A second possibility for a bias is 
noisy data in Logan analysis (Slifstein and Laruelle 2000). 
A method to remove such bias has been reported applying 
perpendicular linear regression (Varga and Szabo 2002), 
which was also done here before calculating BPs. Third, 
partial-volume effects due to the PET resolution may cause 
“spill-out” of radioactivity outside the high striatal uptake 
to nearby areas. The distance of this potential spill-out is 
related to the PET resolution, which for our scanner and 
iterative reconstruction algorithm was 3.2 mm radially 
and 4.7 mm axially full-width half maximum (Wallsten 

http://people.cas.sc.edu/rorden/mricron/index.html
http://people.cas.sc.edu/rorden/mricron/index.html
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et al. 2013). This resolution may give appreciable spill-
over at distances of the order of the resolution and this 
effect falls off quickly with distance, so that at four times 
the resolution (20 mm), no measurable effect is expected. 
Therefore, partial-volume effects are highly unlikely to 
cause measurable spillover from striatum to most cortical 
areas. That said, we cannot rule out some spillover to a few 
cortical regions, which are close enough. For instance, the 
most posterior part of the OFC may show some influence 
from the most anterior ventral striatum, and binding in 
the amygdala could impact adjacent parts of the temporal 
cortex.

A fourth origin of incorrect BP estimation and inflated 
correlations between regions has to do with reconstruction 
of projection data. Such effects are short range and also 
less of an issue with iterative reconstructions than with 
FBP (Razifar et al. 2005).

Functional segmentation of striatum

To segment the striatum into its functional pathways (lim-
bic, associative, sensorimotor), we followed the proce-
dures described by Tziortzi et al. (2014), who performed 
tractography on a younger sample (aged 25–55 years). 
Instead of using the available masks from Tziortzi et al., 
we used the available segmentation results from one of our 
previous studies (n = 58; aged 64–78 years), where DTI 
data was acquired on the same scanner and the age range 
was more similar to the COBRA study (Jonasson et al. 
2016). Therefore, we considered our seeds as being better 
suited for analyzing the functional subdivisions. Subject-
specific striatal seeds were derived from FreeSurfer 5.3 
(concatenated caudate, putamen, and nucleus accumbens), 
and Andri Tziortzi (GlaxoSmithKline) provided the three 
cortical target masks (limbic, associative, sensorimotor; 
see Tziortzi et al. (2014), for definition of masks).In short, 
using the FMRIB’s diffusion toolbox (http://www.fmrib​
.ox.ac.uk/fsl/), a model estimating crossing fibers within 
voxels was run on eddy current corrected and betted diffu-
sion weighted volumes (Behrens et al. 2007). Fibers origi-
nating from the striatum were tracked until they termi-
nated in either of the three cortical targets. On the subject 
level, each striatal voxel was assigned to the cortical target 
to which it had the most terminating fibers to produce a 
subject-specific functional segmentation. This segmenta-
tion was then transformed to standard space by applying 
a transform created by normalizing a T1-weighted scan to 
the 1 mm non-linear MNI template using FMRIB’s non-
linear registration toolbox (FNIRT). In standard space, 
each striatal voxel was assigned to the functional target 
to which most subjects had their corresponding voxels 
assigned.

Statistical analyses

One-sample t tests were conducted to determine whether 
D2/3DR availability were reliably greater than zero, particu-
larly for extrastriatal regions. To facilitate comparability, we 
describe mean [11C]raclopride BPND for the same regions of 
interest as used by Hall et al. (1994), who quantified D2/3DR 
availability in six post-mortem brains using [3H]raclopride. 
We directly compare their measure of receptor density (i.e., 
Bmax) with our data of BPND at the group level, using Spear-
man’s correlations. Values for Bmax based on [3H]raclopride 
from Hall et al. (Fig. 1b in the original publication) were 
digitized with the PlotDigitizer software (http://plotd​igiti​
zer.sourc​eforg​e.net) and are reported in the supplementary 
(Table S2). Moreover, we also compared regional [11C]raclo-
pride BPND values with values determined with the high-
affinity ligand [18F]fallypride (Seaman et al. 2019; https​://
osf.io/h67k4​/). [18F]fallypride data were obtained from older 
adults with a similar age range as in the COBRA study (aged 
60–67, n = 17).

Further analyses were conducted within the structural 
equation modeling framework, using AMOS 7.0 (Arbuckle 
2006). We estimated two hierarchical models. Whereas 
the anatomical model explored the factor structure among 
striatum, limbic system, and neocortex (Fig. 2), the second 
model postulated that the functional subdivision of the lim-
bic system and neocortex was a good representation of the 
BPND data (Fig. 3).

Structural-equation modeling combines confirmatory fac-
tor analysis and multiple regression or covariance analysis, 
accommodating the specification of a theory-based statis-
tical model. The confirmatory factor model part enables 
defining latent factors based on measured variables. One of 
the advantages of structural-equation models (SEM) is that 
latent factors are considered free of error. All variance com-
mon to the observed variables will be represented in their 
latent factor and all remaining variance is estimated as error 
(i.e., residual) variance. The regression or covariance part 
enables examining relationships among latent factors. Both 
parts are specified in a single model and the entire model 
is fitted to the data simultaneously. That is, variances and 
covariances of all variables in the data are compared to the 
variances and covariances implied by the model. A number 
of well-established fit indices are used to evaluate how well 
the model fits the data. If a specific model does not represent 
the data well, then this will be reflected in unacceptable fit 
indices and should be rejected (for further information on 
the use of SEM in cognitive neuroscience, see Kievit et al. 
2017).

Following standard notation (Boker et  al. 2009), in 
Figs. 2 and 3 boxes indicate observed variables, circles 
represent latent factors, arrows denote factor loadings, and 

http://www.fmrib.ox.ac.uk/fsl/
http://www.fmrib.ox.ac.uk/fsl/
http://plotdigitizer.sourceforge.net
http://plotdigitizer.sourceforge.net
https://osf.io/h67k4/
https://osf.io/h67k4/
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double-headed arrows indicate correlations. In both models, 
[11C]raclopride BPND of each region of interest (ROI) in 
the left and right hemisphere were used to reflect first-order 
latent factors, extracting the common variance across hemi-
spheres (Raz et al. 2005). The second-order factors repre-
sent variance that is common to the first-order factors. To 
define a metric for the factors, one loading on each factor 
was fixed to 1. To estimate latent means for the best fit-
ting models, the intercept of the scaling indicators of each 
first-order factor was fixed to zero, providing a scale for the 
latent mean. Indicators for neocortical latent factors in Fig. 2 
are unit-weighted composite scores based on all available 
regions in the Desikan–Killiany atlas for the frontal, tempo-
ral, occipital, and parietal cortex (Desikan et al. 2006). For 
comparative purposes, we also fitted an alternative model 
positing that common variance across the indicators (Fig. 2) 
generalizes across the brain, so that all indicators load on 
one general factor (Figure S1).

To reduce model complexity for the functional subdivi-
sions and have a comparable number of regions of interest 
across functional loops (Fig. 3), we focused on a limited 
number of target regions within the limbic (hippocampus, 
amygdala, orbito-frontal cortex, anterior cingulate cortex), 
associative (anterior cingulate cortex, Brodmann areas 9 and 

46), and sensorimotor (precentral gyrus, postcentral gyrus, 
superior parietal cortex) regions. Given that the anterior 
cingulate cortex (ACC) is associated with both the limbic 
and associative loops, as described above, its first-order 
latent factor loads on both the limbic and associative factor. 
Again, for comparative purposes, we fitted an alternative 
model positing that common variance across the indicators 
(Fig. 3) generalizes across the brain, so that all indicators 
load on one general factor (Figure S1).

In the next step, the latent factors of the corticolimbic 
subdivisions were related to the corresponding BPND values 
for ventral, associative, and sensorimotor striatum. When-
ever a particular striatal subdivision of interest was associ-
ated with multiple corticolimbic factors, we report associa-
tions adjusted for the other two subdivisions to determine 
the unique links. Residual variances, which are variances 
not explained by the latent factors, were allowed to covary 
between neighboring brain areas in all models (Figs. 2, 3). 
We evaluated whether the models provided a good repre-
sentation of the data, using the root mean square error of 
approximation (RMSEA) and the comparative fit index 
[CFI; see Kline 2005, for interpretation of these indices)]. 
Values ≤ 0.08 for RMSEA and ≥ 0.90 for CFI were consid-
ered to indicate good model fit.

Fig. 2   Hierarchical factor model portraying the relationship between 
[11C]raclopride D2/3DR BPND in striatum, limbic system, and neo-
cortex. The figure shows standardized factor loadings and factor cor-
relations for this model. Pt putamen, Cd caudate, Hc hippocampus, 
Amy amygdala, FC frontal cortex, OC occipital cortex, TC temporal 

cortex, PC parietal cortex, L left hemisphere, R right hemisphere, e 
error. Errors represent hemisphere-specific variance and hemisphere-
specific measurement error. For any indicator, the variance accounted 
for by its error term corresponds to one minus the square of its factor 
loading
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Both univariate (± 3.29 SD) and multivariate outliers 
(Mahalanobi’s distance; p < 0.001 threshold for the χ2 value) 
were excluded from analyses and treated as missing by the 
program (< 1% of values; Tabachnick and Fidell 2006). All 
variables displayed acceptable skewness and kurtosis (i.e., 
values not exceeding ± 1.5). In all analyses, the alpha level 
for statistical decisions was set to 0.05.

Results

Landscape of D2/3DR availability in neocortical 
and subcortical areas

Figure 4 depicts D2/3DR BPND values for striatal and 
extrastriatal regions (see Table S3 for specific values). All 
values, except for the corpus callosum, were reliably dif-
ferent from zero (ps < 0.05). The corresponding numbers 
for data based on FBP reconstruction were highly similar 
(Figure S2). Importantly, D2/3DR BPND correlates very 
highly with Bmax reported by Hall et al. (Fig. 5b), sup-
porting the validity of our data (Spearman’s correlation: 
r = 0.841; p = 0.000). The correlation was attenuated after 
excluding the striatum and globus pallidus (Spearman’s 
correlation: r = 0.533, p = 0.139; Fig. 5a). Note, however, 
that Bmax values varied largely across frontal regions 

(Table S2 in supplementary). Bmax of the superior frontal 
cortex was five times greater than Bmax in the medial and 
three times greater than Bmax in the orbitofrontal cortex, 
suggesting an overestimation of the superior frontal cor-
tex. The very high Bmax for the superior frontal cortex is 

Fig. 3   Hierarchical factor model reflecting interrelations of [11C]
raclopride D2/3DR BPND between functional subdivisions in extras-
triatal regions. The figure shows standardized factor loadings and 
factor correlations for this model. Hc hippocampus, Amy amygdala, 
OFC orbito-frontal cortex (lateral, medial), ACC​ anterior cingulate 
cortex, BA9 Brodmann Area 9, BA46 Brodmann Area 46, Precen-

tral precentral gyrus, Postcentral postcentral gyrus, Superior pari-
etal superior parietal lobule, L left hemisphere, R right hemisphere, e 
error. Errors represent hemisphere-specific variance and hemisphere-
specific measurement error. For any indicator, the variance accounted 
for by its error term corresponds to one minus the square of its factor 
loading

Fig. 4   Mean [11C]raclopride D2/3DR BPND across brain regions. FC 
frontal cortex (superior, medial, oribital), TC temporal cortex (supe-
rior, middle), EC entorhinal cortex, CC corpus callosum, ACC​ ante-
rior cingulate cortex, PCC posterior cingulate cortex, Hc hippocam-
pus, PHc parahippocampus, Amy amygdala, Pt putamen, Cd caudate, 
NAc nucleus accumbens, GP globus pallidus, TH thalamus. Error 
bars represent 95% confidence intervals around the means
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also inconsistent with [18F]fallypride-PET data, which 
suggest similar levels of D2/3DRs across superior and 
medial frontal areas and relatively higher D2/3DR lev-
els in orbital areas (Seaman et al., 2019). Excluding the 
superior frontal cortex revealed a strong correlation among 
regions with very low D2 density (Spearman’s correlation: 
r = 0.767, p = 0.016). In line with the post-mortem data, 
BPND based on [11C]raclopride correlated very highly with 
previously published [18F]fallypride BPND across extrastri-
atal regions (Spearman’s correlation: r = 0.907; p = 0.002; 
Fig. 5c), which was similar to the association obtained 
when including regions with high D2 density (Spearman’s 
correlation: r = 0.964; p = 0.000; Fig. 5d). Notably, the 
positive correlation between our BPND estimates and both 
post-mortem and [18F]fallypride data occur despite differ-
ences in ROI definition. Data from Seaman et al. are based 

on the Hammers atlas, whereas our ROI data are based on 
the Desikan–Killiany atlas.

Finally, Figures  S3 and S4 illustrate similarities in 
time–activity curves and kinetics for regions with high (stri-
atum) and low receptor density (frontal cortex), as compared 
to the reference region.

Model including striatal, limbic, and neocortical 
factors

A model representing striatal, limbic, and neocortical sec-
ond-order latent factors (Fig. 2) showed good fit, χ2 (75, 
n = 176) = 147.2, p < 0.05, CFI = 0.97, RMSEA = 0.074, 
CIRMSEA (0.056, 0.092). Correlations among indicators for 
this model are also shown in Table S4. Standardized fac-
tor loadings of the indicators for the first-order factors were 
high, reflecting high correlations between hemispheres. 

Fig. 5   Relationship between [11C]raclopride D2/3DR BPND in 
COBRA and receptor density (Bmax) in post-mortem brains as 
reported by Hall et  al. (1994) across extrastriatal regions of interest 
(a) and including the striatum and globus pallidus (b). Relationship 
between [11C]raclopride D2/3DR BPND in COBRA and BPND based 
on [18F]fallypride (Seaman et  al. 2019) across extrastriatal regions 
of interest (c) and including the striatum and globus pallidus (d). FC 
frontal cortex (Hall superior, medial, orbital in a and b, Seaman mid-
dle, superior, and inferior frontal gyrus, in c and d, COBRA superior 
frontal gyrus, rostral middle-frontal gyrus, medial orbital frontal cor-

tex in a and b and superior frontal and rostral middle-frontal gyrus 
in c and d), TC temporal cortex (Hall superior and middle-temporal 
cortex in a and b, Seaman superior, middle, and inferior temporal 
gyrus in c and d, COBRA superior and middle-temporal gyrus); EC 
entorhinal cortex, CC corpus callosum, ACC​ anterior cingulate cor-
tex, OFC orbitofrontal cortex (Seaman, anterior, medial, lateral, and 
posterior orbital gyrus, COBRA medial orbital frontal cortex), PCC 
posterior cingulate cortex, Hc hippocampus, PHc parahippocampus, 
Amy amygdala, Pt putamen, Cd caudate, NAc nucleus accumbens, GP 
globus pallidus, TH thalamus
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Similarly, the first-order factors loaded highly on the sec-
ond-order factors, indicating high correlations among hier-
archically organized striatal, limbic, and neocortical regions. 
Finally, striatal D2/3DR BPND was positively correlated 
with neocortex (r = 0.30) and the limbic system (r = 0.53), 
although these two correlations could not be constrained 
to be equal without loss in fit (Δχ2 (1, n = 176) = 18.6, 
p < 0.05). The inter-factor correlation between D2/3DR 
BPND in limbic system and neocortex (r = 0.83) was only 
significantly higher than the striatum–neocortex associa-
tion (Δχ2 (1, n = 176) = 12.2, p < 0.05). Constraining this 
correlation to 1 resulted in a significantly worse fit, Δχ2 (1, 
n = 176) = 11.2, p < 0.05. This suggests that, despite the high 
correlation between the limbic system and neocortex, these 
two factors are separable. To test whether between-person 
differences generalize across the indicators, we also fitted 
a model in which all indicators load on one general fac-
tor. This model exhibited poor fit, χ2 (86, n = 176) = 1012.8, 
p < 0.05, CFI = 0.64, RMSEA = 0.248, CIRMSEA (0.235, 
0.262), suggesting that it represents the data inadequately 
(Table S5 for factor loadings). Latent means for first-order 
factors of the model shown in Fig. 2 are presented in Table 1.

Functional subdivision of limbic and neocortical 
regions

A model postulating a functional subdivision of limbic 
and neocortical regions (Fig. 3) showed good fit, χ2 (116, 
n = 176) = 236.2, p < 0.05, CFI = 0.96, RMSEA = 0.077, 
CIRMSEA (0.063, 0.091; see Table S6 for interrelationships 
among regions). Again, factor loadings for the first-order 
factors were high, reflecting high correlations between 
hemispheres. With respect to second-order factor loadings, 
ACC had equally high loadings on the limbic and associa-
tive factors, which is in line with its structural and functional 

associations in the brain (Haber et al. 2006). All other lim-
bic, associative, and sensorimotor first-order factors loaded 
well on their respective second-order factors. Interestingly, 
the sensorimotor factor correlated similarly strongly with 
both the limbic (r = 0.62; p < 0.05) and associative (r = 0.66; 
p < 0.05) factors, whereas the relationship between the 
limbic and associative factors was significantly weaker 
(r = 0.19; p < 0.05), as indicated by a significant loss in fit 
after equating correlations (ps < 0.05 for Δχ2). An alternative 
model positing that D2/3DR availability generalizes across 
functional DA pathways showed unacceptable fit, χ2 (129, 
n = 176) = 1247.3, p < 0.05, CFI = 0.61, RMSEA = 0.223, 
CIRMSEA (0.211, 0.234), again suggesting that such a model 
represents the data inadequately (see Table S7 for factor 
loadings). Latent means for first-order factors of the model 
shown in Fig. 3 are presented in Table 2.

Next, we correlated the latent factors (Fig. 3) with the 
functional segmentation of the striatum (ventral, associa-
tive, sensorimotor; mean of left and right). In line with the 
hypothesized functional subdivisions, BPND in the ventral 
striatum was positively related to BPND for the cortical lim-
bic factor (r = 0.27; p < 0.05), whereas the relations to the 
associative (r = − 0.02; n.s.) and sensorimotor (r = − 0.05; 
n.s.) factors were not significant. Likewise, the associa-
tive striatum correlated positively with the associative fac-
tor (r = 0.30; p < 0.05), after adjusting for the limbic and 
sensorimotor striatum. The correlations with the limbic 
(r = − 0.14; n.s.) and sensorimotor (r = 0.01; n.s.) factors 
were not reliable. Significant and non-significant correla-
tions were reliably different from each other (p < 0.05 for Chi 
square difference tests, after equating correlations pairwise). 
Finally, the sensorimotor striatum correlated positively with 

Table 1   Latent mean estimates of the hierarchical factor model por-
traying the relationship between [11C]raclopride D2/3DR BPND in 
striatum, limbic system, and neocortex

ROI region of interest, Pt putamen, Cd caudate, Amy amygdala, Hc 
hippocampus, FC frontal cortex, TC temporal cortex, PC parietal cor-
tex, OC occipital cortex, SE standard error
All latent means are significantly different from zero at p < 0.001

ROI Latent mean SE

Pt 3.06 0.020
Cd 2.21 0.020
Amy 0.41 0.005
Hc 0.27 0.004
FC 0.19 0.003
TC 0.25 0.003
PC 0.20 0.003
OC 0.24 0.003

Table 2   Latent mean estimates of the hierarchical factor model 
reflecting interrelations of [11C]raclopride D2/3DR BPND between 
functional subdivisions in extrastriatal regions

ROI region of interest, Hc hippocampus, Amy amygdala, OFC orbito-
frontal cortex (lateral, medial), ACC​ anterior cingulate cortex, BA9 
Brodmann Area 9, BA46 Brodmann Area 46, Precentral precentral 
gyrus, Postcentral postcentral gyrus, Superior parietal superior pari-
etal lobule, SE standard error
All latent means are significantly different from zero at p < 0.001

ROI Latent mean SE

Hc 0.27 0.004
Amy 0.41 0.005
OFC 0.24 0.003
ACC​ 0.24 0.004
BA9 0.09 0.003
BA46 0.17 0.003
Precentral 0.15 0.003
Postcentral 0.11 0.003
Superior parietal 0.16 0.004
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the sensorimotor factor (r = 0.28; p < 0.05), after adjusting 
for the ventral and associative striatum. In this case, a posi-
tive, albeit weaker, correlation was also observed with the 
limbic factor (r = 0.21; p < 0.05), whereas the association 
with the associative factor was not significant (r = 0.10; n.s.). 
Notably, the association with the sensorimotor factor was 
not reliably different from that with the limbic factor, but 
differed from the link to the associative factor (p < 0.05 for 
Chi square difference tests). All critical correlations survived 
Bonferroni correction for nine comparisons (p = 0.006).

Discussion

We investigated the distribution and interregional associa-
tions of [11C]raclopride BPND across the brain in a sam-
ple of 176 older adults. Between-person differences in 
D2/3DR availability measured with [11C]raclopride could 
be accounted for by an anatomical model (striatum, limbic 
system, and neocortex) as shown previously with the high-
affinity ligand [18F]fallypride (Zald et al. 2010). Importantly, 
we extended that study by showing that the data are organ-
ized according to known dopaminergic pathways across the 
striatum and cortex (limbic, associative, and sensorimotor), 
and by showing specific associations between the corre-
sponding striatal and cortical functional divisions.

The use of [11C]raclopride to measure extrastriatal 
D2/3DR availability has long been considered unreliable due 
to the low density of D2/3DR (Farde et al. 1986). However, 
recent studies provided evidence of good test–retest reli-
ability for raclopride in extrastriatal regions (Alakurtti et al. 
2015; Karalija et al. 2019). There are several indications why 
[11C]raclopride is suitable for measuring the distribution of 
D2/3DR across the brain. First, we show that [11C]raclopride 
BPND in extrastriatal regions is correlated with post-mortem 
(Hall et al. 1994) and [18F]fallypride estimates of D2/3DR 
receptor density. Second, the SEM analyses further support 
both reliability and validity of [11C]raclopride in measuring 
extrastriatal D2/3DR BPND. The good model fit indicates 
both convergent and discriminant validity, as the organiza-
tion of [11C]raclopride BPND is in line with anatomical and 
functional DA pathways. Convergent validity is supported by 
the higher associations among regions that should, accord-
ing to theory, correlate with each other (i.e., the strongest 
correlations were found between hemispheres and within 
DA pathways). At the same time, discriminant validity is 
supported by relatively weaker associations among regions 
that, according to theory, should be less strongly correlated. 
Further, the fact that the left and right hemisphere show such 
strong correlations, resulting in very high first-order factor 
loadings (around 0.9) suggests that there is a lot of shared 
variance, supporting the reliability of the measurements. 
Thus, overall, our findings demonstrate that extrastriatal 

D2/3DR estimation with [11C]raclopride is associated with 
measures and patterns that result from target binding, rather 
than represent noise.

Our SEM analyses demonstrate good fit for a model 
assuming separate factors for striatal, limbic, and neocortical 
BPND, which are positively correlated. The link between the 
limbic system and neocortex was particularly high, which 
may be due to both being innervated by the VTA via the 
mesocortical and mesolimbic pathways (Fig. 1a). Impor-
tantly, our data are in line with a study using the high-affinity 
ligand [18F]fallypride (Zald et al. 2010) to investigate inter-
individual differences in D2/3DR availability: Individual 
differences in D2-like BPND were accounted for by three 
distinguishable factors, representing striatal, neocortical, 
and limbic regions. Moreover, only 10% of the variance in 
the overall cortical D2-like BPND was accounted for by stri-
atal D2-like BPND, which is almost identical to the current 
pattern of data (9% of explained variance). Thus, our con-
clusions regarding the anatomical factor structure based on 
extrastriatal [11C]raclopride data are highly similar to those 
derived from [18F]fallypride data. Whereas our study is well 
powered and supports the reliability and validity of extrastri-
atal D2/3DR assessments with [11C]raclopride, high-affinity 
ligands such as [11C]-FLB457 (Halldin et al. 1995) and [18F]
fallypride (Mukherjee et al. 2004) may still be more benefi-
cial for extrastriatal D2/3DR assessments in studies with 
small sample sizes due to higher signal-to-noise ratios.

Furthermore, the structure of individual differences 
suggests that neocortical and limbic BPND data are organ-
ized in accordance with functional subdivisions of the DA 
system (limbic, associative, sensorimotor). The associa-
tion between the limbic and associative factors was reli-
ably lower than that between the associative and sensori-
motor factors. This likely reflects common dopaminergic 
innervation from the substantia nigra for the latter two cor-
tical subdivisions (Martinez et al. 2003; Rieckmann et al. 
2011). By contrast, mesolimbic and mesocortical areas 
both receive input from the VTA (Fig. 1). The functional 
subdivision pertaining to the corticolimbic BPND data is 
further supported by the specificity of correlations for the 
limbic and associative factors with the corresponding stri-
atal subdivisions. For the sensorimotor striatum, positive 
associations were observed with both sensorimotor and 
limbic regions. The latent correlations between the limbic 
and sensorimotor factors were high as well. Toward this 
end, a PET imaging study showed that administration of 
amphetamine induces larger reduction in D2/3DR avail-
ability in the ventral and sensorimotor striatum compared 
to associative regions (Martinez et al. 2003). As noted by 
Trifilieff and Martinez (2014), the sensorimotor striatum 
shares histochemical features with the ventral striatum 
(Fudge and Haber 2002) and receives glutamatergic input 
from amygdala and other limbic regions (Fudge and Haber 
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2002; Fudge et al. 2004). This suggests that the sensori-
motor striatum may also involve a limbic component, as 
reflected by the observed associations between D2/3DR 
BPND in the sensorimotor striatum and corticolimbic areas.

DA-PET studies are typically characterized by relatively 
small sample sizes, which preclude examining interregional 
correlations of BPND values in latent space. The observed 
interindividual differences in anatomical and functional DA 
pathways in the current sample likely originate from genetic 
influences that are further augmented by recursive relations 
between epigenetic and environmental factors that operate 
across the lifespan (Beam and Turkheimer 2013). Research 
shows that different interventions, such as cognitive training 
and physical exercise, can have selective effects on differ-
ent parts of the DA system. For example, exercise training 
across 8 weeks in methamphetamine users increased their 
D2/3DR binding in striatum, with no effects in extrastriatal 
regions (Robertson et al. 2015). An intervention study target-
ing D2/3DR demonstrated increased striatal DA release fol-
lowing 5 weeks of working-memory training (Bäckman et al. 
2011). Furthermore, candidate gene studies have reported 
that variations in the same single-nucleotide polymorphism, 
located in the D2 gene, influence D2/3DR BPND differently 
in striatal (Hirvonen et al. 2009a) and extrastriatal (Hirvonen 
et al. 2009b) brain areas. These genetic effects may become 
magnified in aging (Papenberg et al. 2015), contributing to 
between-person differences in D2/3DR availability across 
the brain. Finally, the SEM approach enables studying 
D2/3DR distributions within and between anatomical and 
functional DA pathways. The novel models proposed may 
prove useful when investigating selective decline within and 
across pathways associated with the discussed genetic and 
lifestyle factors, but also in healthy aging (Bäckman et al. 
2006) and neurological disorders (Heckman et al. 2016).

Collectively, our findings provide evidence on the dimen-
sionality and organization of D2/3DR availability in the 
living human brain and support the reliability and validity 
of whole-brain measurements of D2/3DR availability with 
[11C]raclopride.
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