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Lyssaviruses cause the disease rabies, which is a fatal encephalitic disease resulting in
approximately 59,000 human deaths annually. The prototype species, rabies lyssavirus, is
the most prevalent of all lyssaviruses and poses the greatest public health threat. In Africa,
six confirmed and one putative species of lyssavirus have been identified. Rabies
lyssavirus remains endemic throughout mainland Africa, where the domestic dog is the
primary reservoir – resulting in the highest per capita death rate from rabies globally.
Rabies is typically transmitted through the injection of virus-laden saliva through a bite or
scratch from an infected animal. Due to the inhibition of specific immune responses by
multifunctional viral proteins, the virus usually replicates at low levels in the muscle tissue
and subsequently enters the peripheral nervous system at the neuromuscular junction.
Pathogenic rabies lyssavirus strains inhibit innate immune signaling and induce cellular
apoptosis as the virus progresses to the central nervous system and brain using viral
protein facilitated retrograde axonal transport. Rabies manifests in two different forms - the
encephalitic and the paralytic form - with differing clinical manifestations and survival times.
Disease symptoms are thought to be due mitochondrial dysfunction, rather than neuronal
apoptosis. While much is known about rabies, there remain many gaps in knowledge
about the neuropathology of the disease. It should be emphasized however, that rabies is
vaccine preventable and dog-mediated human rabies has been eliminated in various
countries. The global elimination of dog-mediated human rabies in the foreseeable future
is therefore an entirely feasible goal.
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INTRODUCTION

Lyssaviruses are responsible for rabies, which is arguably the deadliest encephalitic disease known.
The prototype, rabies lyssavirus (RABV), is thought to be able to infect all terrestrial mammals.
Transmission is through virus-laden saliva, typically through the bite of an infected animal, but
sometimes through other means such as scratches and in rare occasions, organ transplants and
other means (1, 2). The genus Lyssavirus (family Rhabdoviridae) is presently composed of 17 viral
species and one putative (3). All lyssaviruses are bullet-shaped particles containing negative sense
RNA genomes of approximately 11 000 nucleotides in length. The genome encodes 5 structural
proteins, namely the nucleoprotein, phosphoprotein, matrix protein, glycoprotein, and the
polymerase (5’-N-P-M-G-L-3’) with a 5’ – 3’ transcriptional bias (4, 5). The N protein
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encapsidates the viral RNA, and together with the P and L
proteins, forms the ribonucleoprotein (RNP) complex, which
can initiate viral transcription and replication (6). The M protein
condenses the RNP into the characteristic bullet-shape and
recruits the RNP to the cellular membrane during replication.
The M protein is also essential for the budding of the enveloped
virus from the cell and specifically interacts with the G protein –
also known as the transmembrane spike protein, which is the
primary antigenic determinant (7, 8).

RABV is not only the type species of the genus, but by far
poses the most significant public health threat among all the
lyssaviruses. The domestic dog is the primary reservoir for RABV
in dog-rabies endemic countries, but several other terrestrial
mammalian species can maintain transmission – most notably
carnivores such as raccoons, skunks, foxes, and jackals.
THE GLOBAL BURDEN OF DOG RABIES

Globally, an estimated 59,000 people die from dog-mediated
rabies every year, of which approximately 40% are children
under the age of 15 years (9). Rabies affects the poorest and
most underserved communities, with the burden being greatest
in developing countries of Africa and Asia (10). However, the
disease is seriously underreported for a variety of reasons and
remains among the most significant diseases of neglect in the
world (11).
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By continent, Africa has the second highest burden of rabies,
with an estimated 23,500 deaths annually, and has the highest
per capita death rate (9). RABV is endemic throughout mainland
Africa, with only a handful of island nations having never
detected rabies in domestic or wildlife species (e.g., La
Réunion, Mayotte, Mauritius) (12).

Of the seventeen recognized lyssavirus species, six confirmed
and one putative species have been identified in Africa, namely,
RABV, Duvenhage virus (DUVV), Lagos bat lyssavirus (LBV),
Mokola lyssavirus (MOKV), Ikoma lyssavirus (IKOV), Shimoni
Bat Lyssavirus (SHIBV) and the putative Matlo lyssavirus. Of
these, only DUVV (n=3), MOKV (n=2) and RABV have been
associated with human fatalities (13). While RABV is only
associated with non-volant terrestrial mammals in Africa,
DUVV and LBV are both associated with bat reservoirs, while
IKOV and MOKV have yet unidentified reservoirs (14, 15).
PATHOPHYSIOLOGY

Viral Entry, Spread and Proliferation
Themost commonmethod of viral entry is through the injection of
virus-containing saliva into the muscle tissue or other peripheral
tissue through the bite of an infected animal (Figure 1). After
inoculation, RABV typically infects muscle cells — thought to be
facilitated through the nicotinic acetylcholine receptor — and
replicates therein at a low rate (16). The virus remains localized to
FIGURE 1 | Key insights of Rabies lyssavirus (RABV) entry, spread and proliferation, and some important functionalities of each RABV protein. IFN, Interferon; CNS,
Central nervous system; PNS, Peripheral nervous system; RNP, Ribonucleoprotein complex.
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the inoculation site for variable periods—whichmay contribute to
the variable incubation period characteristic of rabies (17). In
contrast, in the case of higher titers of inoculum, RABV can infect
motor endplates without the need for the initial replication in the
muscle (18). RABV gains entry into the peripheral nervous system
(PNS) viamotor endplates at the neuromuscular junction, but the
exact means of virus internalization remains poorly understood.

RABV travels through the PNS towards the CNS via
microtubule dependent retrograde fast axonal transport (19,
20). The virus travels from neuron to neuron, replicates, and
continues its progression towards the CNS and the brain (21).
This neuronal spread is facilitated by the p75NTR receptor,
which is non-essential for infection, but facilitates directed and
more rapid transport of RABV to the CNS (22). The L protein
manipulates microtubules for improved transport efficiency (23),
while the M protein facilitates the depolymerization of
microtubules resulting in improved viral transcription and
replication efficiency (24) (Figure 1). While retrograde
transport occurs at an approximate rate of 50 – 100mm per
day in humans [with species-dependent variation (20, 25)],
evidence also suggests that RABV undergoes active, G protein-
dependent anterograde transport in peripheral neurons - such as
Dorsal Route Ganglion (DRG) neurons — at a rate three times
faster than that of retrograde transport (25). However, the
significance of this anterograde transport mechanism is
unclear, but recent evidence signifies its importance in the
spread of RABV through the PNS (including to non-neuronal
organs) after centrifugal spread from the CNS (26), contrasting
previous evidence that suggested that RABV spreads by both
axonal and trans-synaptic transport exclusively in the retrograde
direction (21, 27). Once in the CNS, RABV continues to spread
via retrograde axonal transport thought to be facilitated by
metabotropic glutamate receptor subtype 2, which is a cellular
entry receptor that is abundant throughout the central nervous
system (CNS) (28). The virus reaches the brainstem and
subsequently the brain, where it proliferates and clinical
symptoms manifest. It spreads to the salivary glands along
terminal axons via anterograde transport (29) where it
continues to proliferate and is subsequently shed in the saliva
for transmission to another host. RABV can spread to peripheral,
non-neuronal organs anterograde transport, and can be detected
in these sites after the onset of clinical symptoms (21, 26).

Symptoms, Disease Progression,
Prevention, and Treatment
Rabies presents with a wide variety of clinical manifestations that
vary depending on multiple factors, many of which remain
unknown. However, the species of lyssavirus or the strain of
RABV influences the presentation of differing clinical symptoms.
For example, bat RABV infections more commonly present with
tremors and involuntary twitching/jerking (myoclonus), while dog
strains more frequently present with classical hydrophobia and
aerophobia (30).Moreover, the presentation of symptoms localized
to the wound were more common in bat rabies exposures than in
dog-rabies exposures (30). Two forms of rabies can manifest,
namely encephalitic (furious or classical) and paralytic (dumb)
rabies. The encephalitic form of rabies is more common and
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presents in approximately 80% of patients, of which between 50 –
80% present with the classic symptoms such as hydrophobia and
aerophobia– symptoms that are unique to rabies (31, 32).However,
the remaining symptoms are common to many encephalitic
diseases, especially in African countries where diseases such as
cerebral malaria are endemic and can result in misdiagnosis of
rabies (33). Encephalitic rabies typically progresses to severe flaccid
paralysis, coma and death caused by multiple organ failure, in
contrast to paralytic rabies whichmanifests with prominentmuscle
weakness early in the course of illness (31). While there remains a
gap in the understanding of the causes for themanifestationof these
two different forms of rabies, it is known that the anatomical site of
the exposure is unrelated (34). Initially rabies symptoms were
thought to be caused by large-scale neuronal cell death, but
neuronal apoptosis is only stimulated during infection with low
pathogenicity strains (35, 36). Rather, symptoms are thought to be
due to neuronal cell dysfunction (35, 37–41), partly induced by the
increased production of Nitric Oxide (NO) via inducible nitric
oxide synthase (iNOS) in neurons and macrophages (42–44).
Elevated levels of NO produced by iNOS leads to mitochondrial
dysfunction and as a result, axonal swelling (44, 45)— a pathology
that is associated with the onset of symptoms (41, 46), and
hypothetically explains the development of encephalitic
symptoms (47). Another mechanism behind neurological
dysfunction and the onset of neurological symptoms has been
demonstrated to be reliant upon a host-derived mechanism that
results in the loss of axons and dendrites as a means to prevent the
spread of the virus (48).

The survival time for patients manifesting paralytic rabies is
approximately 41% longer than that of patients with encephalitic
rabies (30, 49), yet the incubation periods for both forms remain
similar – ranging from 2 weeks to several months. For most cases,
the incubation period is 2 – 3 months in humans, but some
exceptional cases have been documented with an incubation
period of more than a year and even up to 8 years (50, 51). There
is no known accepted treatment for rabies after the onset of clinical
symptoms. Palliative care is recommended for rabies patients,
which is aimed to reduce suffering and may temporarily prolong
survival time, but in all but themost exceptional circumstances, the
victim succumbs to the disease (32, 50). However, effective pre- and
post-exposure prophylaxis exists for those viruses that fall within
lyssavirus phylogroup 1 [RABV, European bat lyssavirus-1 and -2,
Bokeloh bat lyssavirus, DUVV, Australian bat lyssavirus, Aravan
lyssavirus, Khujand lyssavirus, Irkut lyssavirus, Taiwan bat
lyssavirus, Gannoruwa bat lyssavirus (GBLV)]. Experimental
evidence suggests that the vaccines are not effective against
phylogroup 2 (LBV, MOKV, SHIBV) or phylogroup 3
lyssaviruses (IKOV, West Caucasian bat lyssavirus, Lleida bat
lyssavirus) (50, 52–56).
IMMUNE RESPONSE AND IMMUNE
EVASION

Upon initial infection, the innate immune response is triggered
in the periphery and evidence suggests that this response is
December 2021 | Volume 12 | Article 786953
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partially effective against even the most pathogenic strains, with
some viral particles being eliminated (57). However, further
clearance is not achieved as pathogenic strains poorly stimulate
and inhibit the activation and maturation of dendritic cells,
resulting in a poorer antibody immune response (58–60). This
prevention of the maturation of DCs is achieved through the
inhibition of the interferon (IFN) autocrine feedback loop that is
dependent on JAK-STAT signaling, which is specifically
inhibited by the P protein (61).

The ability of lyssaviruses to evade the immune response is
directly correlated to its pathogenicity, with pathogenic strains
inducing a minimal response and successfully evading immune
clearance (18). All the RABV proteins are multifunctional, with
roles in viral entry, replication and spread, as well as in the
sequestration of the immune system – either directly or indirectly
(62). This ability is reliant solely on the immune-suppressive
capabilities of viral proteins - primarily being the P, G and N
proteins. The P protein is typically involved in sequestering the
innate immune response by inhibiting the production of multiple
antiviral products such as MxA, OAS1 and IFN-stimulated gene
products (62). Furthermore, the P protein inhibits type I IFN
responses and subsequent innate and adaptive immune responses
through the inhibition of various IFN-related signaling pathways
(63–67). The evasion of IFN responses in infected neurons is likely
to be essential for the spread of RABV through the PNS, enabling
the virus to reach the brainstem and eventually the salivary glands
for spread to a new host (57). Similarly, theN is also predominantly
involved in the sequestration of the innate response, primarily
through the inhibition of RIG-I activation (68–70). Apoptosis in
macrophages, T cells (including infiltrating T cells in the CNS) and
microglia plays an important role in immune evasion and is
stimulated by the G protein of pathogenic strains (71, 72), which
appears to assist in the effective infiltration, replication and spread
of the virus in the CNS (36, 73, 74).
DISCUSSION

While rabies has arguably been recognized for thousands of years,
there remain many gaps in scientific knowledge of the disease and
its causal agents. The rapid detection of 10 novel lyssaviruses in the
past two decades raises multiple public health concerns, with their
broader distribution and possible public health impact being yet
unknown (13, 75). While information relating to many of the
lyssavirus species remains poor, studies suggest that sustained
spillover events from non-RABV lyssaviruses are likely to be rare,
as almost all lyssaviruses – except for RABV and ABLV – are
restricted to a single host species (76). However, many lyssavirus
species have only a single, or few, isolates, including the novel
Frontiers in Immunology | www.frontiersin.org 4
GBLV which has a recent common ancestor with ABLV (56). In
addition, host shifts in areas where RABV is endemic are likely to
remain undetected due to poor surveillance (76). While host shift
events remain rare, their impact can be devastating. North
America alone is endemic for multiple terrestrial RABV
variants, each being resultant of a host shift event (77). While
host shift events may be geographically restricted, the potential for
the translocation of the virus through human means remains a
distinct possibility and risk (78–81). For example, the largest
epizootic in recorded history resulted from the human-mediated
translocation of a raccoon from the south-east of the United States
to the north-eastern states (82). Further evidence suggests that
raccoon rabies was enzootic at low levels for many years before its
detection, natural spread, and subsequent human translocation
(83). The raccoon RABV variant now accounts for nearly 75% of
all terrestrial rabies cases in the USA and resulted in a significant
increase in the number of human exposures in those areas where it
is endemic (84). Thus, despite the rabies-related viruses not posing
a significant health threat at present, continued efforts need to be
made to ensure public health safety based on the limited
knowledge and surveillance data available.

Despite the availability of an effective prophylactic treatment
before the onset of symptoms, there remains no cure once
rabies symptoms manifest. In addition, the majority of
immunopathological knowledge available pertains to RABV, with
limited studies being available for the rabies-related lyssaviruses.
Therefore, there is a need for continued investigation into the
mechanisms of infection, disease progression, host biology and a
better understanding of bat immunology. Over and above, there is a
dire need for improved global surveillance for all lyssaviruses. Given
the significant public health threat posed by dog-mediated RABV,
such surveillance data should play a critical role in the elimination of
thedisease fromthosedogpopulationswhere it is still rampantdue to
a failure to effectively break transmission through mass vaccination.
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