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A B S T R A C T

Blood tests play an essential role in everyday medicine and are used by doctors in several diagnostic procedures.
Moreover, this data is multivariate – and often some diseases, such as COVID-19, could have different symptom
manifestations and outcomes. This study proposes a method of extracting useful information from blood tests
using UMAP technique - Uniform Manifold Approximation and Projection for Dimension Reduction combined
with DBSCAN clustering and statistical approaches. The analysis performed here indicates several clusters
of infection prevalence varying between 2%–37%, showing that our procedure is indeed capable of finding
different patterns. A possible explanation is that COVID-19 is not just a respiratory infection but a systemic
disease with critical hematological implications, primarily on white-cell fractions, as indicated by relevant
statistical test 𝑝-values in the range of 0.03–0.1. The novel analysis procedure proposed could be adopted in
other data-sets of different illnesses to help researchers to discover new patterns of data that could be used in
various diseases and contexts.
1. Introduction

COVID-19 (Coronavirus Disease) caused by SARS-Cov-2 virus came
under intense scrutiny worldwide throughout 2020–2021. Some coun-
tries are already seeing hospitalization rates dropping due to mass
vaccination campaigns, social distancing, and lockdown measures. In a
sad turn of events, Brazil is one of the biggest economies still witnessing
death and hospitalization rates which were high at the beginning of
2021 (especially in the North region), according to Johns Hopkins
Coronavirus Resource Center [1]. More than ever all the tools available
to understand the infection scientifically in a precise and structured
way.

In this study, we propose an exploratory and descriptive data analy-
sis using a bi-dimensional representation generated by UMAP - Uniform
Manifold Approximation and Projection for Dimension Reduction [2],
followed by a DBSCAN clustering and posterior usage of statistical tests
on the clusters obtained to reveal (non-causal) relationships between
different parameters of blood-test data and their diagnostic counter-
parts. As with any study that aims only to describe data (and therefore
do not make any predictions or offer any recommendations for action),
we will not perform test and training samples for our dataset.
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Data was obtained from the Albert Einstein Hospital in Sao Paulo,
Brazil [3]. The data consist of patients’ blood tests, providing informa-
tion about whether or not a given patient had COVID-19 and if the
patient needed special care or not (hospitalization in standard, semi,
and intensive care units).

The main purpose of this article is to show that techniques previ-
ously considered to belong to the theoretical world of data science can
be successfully applied to blood test data. Furthermore, our aim is to
explore where techniques such as these can be used more frequently
by medical science researchers. We believe that studies organized with
a greater amount of data (both in number of people and in number
of variables), greater representativeness of the samples and greater
variability can benefit from what we discuss here and use the proposed
procedures with little modification regarding to the original experi-
ments. We also believe that in the future our methodology can be easily
extended to data that do not come from blood samples.

This article is organized as follows: in Section 2, we examine
the most up-to-date literature regarding Machine Learning applied
to model blood test results and explain their results. In Section 3
we present the method used to perform the two data experiments,
revealing their results in Section 4. In Sections 5 and 6, we outline
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the results and discuss the limitations and possible implications of this
study.

2. Literature review

In this section, some studies from the literature are presented that
inspired and laid the authors’ foundations to create their analysis
and perspective. Some interesting results were obtained without using
machine learning (ML) and should be encouraged as a first-line open-
access tool available to most researchers. In [4], it can be observed that
statistically significant differences were found using two-way tables
based on blood test data from a hospital in Italy, which is a quick and
cheap solution to detect infections. A new study is [5], which is much
more focused on hematological data and sheds light on significant
statistical differences and possible risk factors associated with different
patients. One specific meta-analysis, including the results of 35 other
studies [6], indicated factors that contribute the most to non-severe
patients to develop severe diseases.

Using blood tests with machine learning seems to have gained
attraction since the beginning of the pandemic. Theoretical justification
and groundwork for supervised ML techniques can be observed in
several articles. In [7], attention is paid to possible combinations of
models that could be used with results varying between the values of
0.6–0.9 area under the Receiver Operating Characteristic Curve (ROC)
to detect infected patients. In [8], similar results were obtained using
the same dataset we adopted in this study. Amalgamating the results of
these articles and some others, it can be observed that [9] which uses
ensembles and achieves 99.88% accuracy in predicting infections.

Other articles with similarity but not identical purposes are avail-
able. [10] uses several ML models in a dataset provided by the Sírio
Libanês Hospital, in Brazil, to predict special-care probability and the
number of days under special care, obtaining a value of 0.94 area
under the ROC curve for the first target. In [11], we see a prime
example of how a system could be implemented to detect COVID-19
in a given patient. This study also stands out as it uses a small sample
and optimization techniques to find the most important variables for
the problem.

As an example of unsupervised learning techniques, a study that
can be mentioned is [12], which uses a model to predict infection
and compares COVID-19 manifestations with other diseases using t-
distributed stochastic neighbor embedding (similar to the purpose of
UMAP), concluding that blood parameters of those affected with severe
COVID-19 resemble more bacterial than viral infections, which was a
very surprising result.

Therefore, considering what will be shown in this article, our main
contributions will be in the use of a set of computational techniques
to discover hidden patterns in blood test data, using a well-known
cluster technique combined with a very recent dimensionality reduction
technique that has gained adherents in several more applied areas of
activity. This reduction in dimensionality, studied primarily as a purely
mathematical exercise by the authors of the original article, has been
pivotal in discovering previously unknown patterns in several areas and
we believe that the methods to be presented here can be extrapolated
with broad generality to other investigations in medicine and biological
sciences.

The key difference between this study and the others mentioned
above is the fact that we are not pursuing the creation of a fully
supervised model. Instead, we aimed to test the ‘‘manifold hypothesis’’
on this data to check the existence of different groups where the
manifestations of the disease could be different, providing researchers
a whole new set of techniques to apply in other data sets in a similar
context.

Table 1 shows some articles using UMAP as a basis for dimension-
ality reduction in several different contexts related to medicine and
biology in general over the last few years, demonstrating the versatility
2

and power of the technique we propose to use.
Table 1
Selected references for UMAP usage in medicine and biology.

Publication year Reference Application/Usage

2019 [13] Single-cell visualization using UMAP
2019 [14] Population patterns in genomic cohorts
2021 [15] UMAP in population genetics
2021 [16] Artifacts in microbiome data
2021 [17] Transfer learning on molecular fingerprints
2021 [18] Molecular dynamics simulations

Table 2
Parameter grid and intervals used in the clustering procedure.

Parameter Interval Description

neighbors [1,+∞) Balance between local and global data representation
spread [0,+∞] Minimum distance allowed between points in representation
eps [0.01, 0.5] Maximum neighborhood distance in DBSCAN

The use of clustering techniques is widespread in medical sciences
in general. In a first class of articles, patient characteristics are used
to unveil some hidden data structures present for diagnosing or un-
derstanding the disease’s progression, such as [19,20]. Another class
of studies tends to use more comprehensive statistical analysis with
clustering to separate manifestations and possible patterns arising in
a more specific group of patients, as in [21,22].

Although this study offers non-causal inference, it is relevant to
point out sources such as [23] that mixes up causal inference and
clustering in a medical setting; something we believe that should be
further explored whether any other dataset allows us to do so.

3. Method

The procedure for our analysis primarily consists of two phases. In
the first phase, we project high-dimensional laboratory exam data into a
two-dimensional subspace using UMAP (tuning two hyperparameters),
making the dataset more amenable to clustering techniques. In the
second step, we cluster the data representation using DBSCAN [24] to
find any patterns that may arise. The number of clusters obtained is a
consequence of the hyperparameter tuning method used. Here, we used
DBSCAN as a clustering alternative because the number of clusters is
not specified upfront. By doing that, we assume more neutrality when
analyzing the data structure.

The ‘‘overall quality’’ of fit for a specific combination of hyperpa-
rameters is measured without resorting to the target’s current value,
using the silhouette coefficient for a given arrangement [25]. We then
compare different arrangements using this metric, selecting the one
with the maximum value overall. Table 2 summarizes all hyperparam-
eters used in the cluster tuning procedure. Obtained parameter values
will be discussed in Section 4.

As know in data science, high-dimensional data has fewer degrees
of freedom than one might initially assume, which is known as the
‘‘Manifold Hypothesis’’. [26] presents a complete description of the
hypothesis and several demonstrations on the subject. In Appendix,
we present a small application of UMAP to a dataset well known to
the general public to demonstrate what the expected results are for the
type of analysis we conducted in this study.

The hypothesis and the dimensional reduction provided by UMAP
allows to analyze blood test data within a new perspective: different
groups with different manifestations of the disease could be traced
using this technique, as these groups will tend to cluster together in the
low-dimensionality representation. Moreover, more significant factors
could give us some clues about the disease and its progression.

Therefore, we propose two experiments. In the first, we analyze
data from all patients in our dataset with blood tests measurements
(red and white series) and then use the procedure outlined above. In

the second one, we filter out our patient data keeping only those with
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confirmed COVID-19 and comparing the results using the targets for
both situations. It is worth mentioning at this point that none of our
analysis aims to be causal. The study was not conceived in this way,
and the data are observational. For this purpose, we suggest using
Causal Forests [27], which can deal with observational data and make
a satisfactory causal inference whether the number of samples is high
enough as the method needs several data splits.

Fig. 1 summarizes all the steps in both experiments. Silhouette
coefficient is used to select the number of clusters for our experiments
prior to statistical analysis.

3.1. On the dimensionality reduction technique

Dimensionality reduction techniques have already become com-
monplace in the data science community. Among the most usual tech-
niques, we can mention statistical techniques already considered ‘‘clas-
sic’’, such as PCA [28] and ICA [29]. More modern developments
include t-SNE [30] and the aforementioned UMAP, both classified as
modern developments of manifold learning.

We expect data from blood tests to be highly non-linear, and their
lower dimensional representations to be dominated by complex terms.
PCA and ICA should therefore be disregarded as techniques to be used
for dimensionality reduction in these cases as they are based on linear
relationships/filters between variables. As for t-SNE, we discard its use
based on scalability as the number of samples grows, as we want our
methodology to be applied to arbitrary size datasets. Another major
disadvantage of this method is that it does not allow the transformer
object to be reused in other datasets different from the initial set.

UMAP is entirely based on Riemannian geometrical assumptions
(uniform distribution, locally constant metric tensor and local connec-
tivity). It models the data using a fuzzy topological structure. The math
behind the method is fairly advanced and will not be discussed in this
article. We suggest the reader consult [2] for more details.

3.2. On the clustering technique

Various clustering techniques have been widespread in the data sci-
ence field in recent decades. One of the first examples that was widely
discussed more since the 1960s. We can cite as examples most used by
the community the k-means [31], fuzzy c-means [32], OPTICS [33] and
DBSCAN [24] techniques.

The main differences among these techniques are on scalability
(both in number of clusters and in number of samples), the capacity to
detect clusters of different formats and detection of outliers built into
the procedure.

We can consider that our data will not present trivial geometry
after the dimensionality reduction process, thus invalidating the use
of techniques such as k-means, which tend to separate clusters more
uniformly and with more ‘‘circular’’ geometry.

Likewise, we can expect that our techniques can be applied to new
datasets in a scalable way and with a high degree of reproducibility.
This invalidates the use of the fuzzy c-means technique given the high
need for components that introduce unwanted ‘‘degrees of freedom’’ to
the method. Furthermore, we want an element to belong to a single
cluster.

Therefeore, DBSCAN was the selected technique due to its scalabil-
ity, detection of clusters in geometries that are not necessarily circular
and the ability to filter outliers in different contexts. Furthermore,
the main programming languages already have the algorithm included
in their packages, which helps to implement and disseminate of the
concepts presented in this article. The technique assumes that regions
of clusters have a higher density of points, separated by lower den-
sity regions. The minimum density requirements are codified in the
parameters shown in Table 2, when considering Euclidean distances.
3

Fig. 1. Steps synthesizing our method for both experiments proposed.

4. Computational results

4.1. Data

The data contains anonymous information about 598 patients ad-
mitted to the Albert Einstein Hospital during the COVID-19 pandemic.
Eighty one patients tested positive for infection (13%) and 128 patients
needed special care treatment (21%, not only related to COVID-19).
There are available parameters related to red and white cell counts
for each patient, all of them normalized by the mean and standard
deviation (z-scores). Table 3 summarizes all the variables used for the
study.

To further expand on the data, Fig. 2 presents white cell distribution
for all 598 patients (blue dots show negative infection whereas orange
dots are positive). No univariate pattern was observed emerging in the
data, which leads us to using a multivariate technique.

As mentioned above, two data experiments were performed. The
first experiment consists of all 598 patients and tries to understand
whether there are groups with high prevalence (greater than the av-
erage of the dataset) and to point out the main characteristics of
these groups. In the second experiment, the focus is primarily on the
confirmed COVID-19 diagnostic, aiming to discover any groups with
more prominent special care needs than the whole dataset.

4.2. Experiment I: All patients, focusing on the confirmed COVID-19 results

In this first analysis, after performing the aforementioned dimen-
sionality reduction with UMAP and the clustering of the resulting
2-dimensional space variables, we obtained a value of 0.12 for the
silhouette coefficient (the clusters obtained are very packed together).
Overall, 7 clusters were obtained with COVID-19 prevalence in the
range of 3−35%. Moreover, 29 patients did not meet any of the DBSCAN
similarity criteria and were not assigned any cluster, thus they were
removed from the analysis (see Fig. 3). A close inspection of Tables 4
and 5 reveals that most extreme values reside on the first two clusters
for white-cell counts. This fact could be interpreted in a two ways:
patients could have comorbidities and be more susceptible to being
infected by COVID-19, thus having greater white-cell counts, as pointed
out by [34]. On the other hand, COVID-19 could be responsible for the
values themselves. One observation is about the number of platelets,
which is very low, much in line with discoveries shown in [35–38].

No extreme values were found in red cell samples for high COVID-
19 prevalence clusters, but the close observation of the tables regarding
the prevalence and the number of people in each cluster may help
to ‘‘name’’ each cluster, a procedure that is made when clusters are
applied in several contexts. For example, cluster 1 could be named
‘‘Non-symptomatic patients’’, although more data is needed to make

such an affirmation.
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Table 3
Variables used for study.

Fraction Components

Red Cell Hematocrit, Hemoglobin, Red Cells, MCHC, MCH, MCV, RDW
White Cell Platelets, MPV, Lymphocytes, Leukocytes, Basophils, Eosinophils, Monocytes
Fig. 2. White cell blood count distributions, normalized for 598 patients.
Table 4
Means for variables in clusters found in experiment I (Red components - extreme values in bold).

Hematocrit Hemoglobin Red Cells MCHC MCH MCV RDW Covid-19 (%) Patients
Cluster

2 0.449555 0.360825 0.403754 −0.219273 −0.129423 −0.025629 −0.192997 34.6 26
4 0.331591 0.353596 0.177950 0.187976 0.259933 0.197007 −0.155573 23.1 39
6 0.890685 0.947817 0.910157 0.404758 −0.046087 −0.249906 −0.234152 19.4 31
0 −0.123704 −0.160615 −0.269449 −0.167212 0.249553 0.363449 0.330257 17.9 145
5 −0.566416 −0.606294 −0.369784 −0.313489 −0.400994 −0.312915 0.680545 16.0 25
1 −0.015429 0.021216 0.056257 0.141979 −0.079685 −0.156664 −0.216660 7.4 269
3 −0.285210 −0.324563 −0.527503 −0.212740 0.398023 0.565605 −0.133359 2.9 34
4
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Table 5
Means for variables in clusters found in experiment I (White components - extreme values in bold).

Platelets MPV Lymphocytes Leukocytes Basophils Eosinophils Monocytes Covid-19 (%) Patients
Cluster

2 −0.566694 0.092664 0.365603 −0.408745 0.880585 −0.018652 0.227241 34.6 26
4 −0.327375 −0.262615 −0.127550 −0.291689 −0.231599 −0.303903 0.100975 23.1 39
6 0.244400 −0.376571 0.014347 0.068407 0.130960 0.072528 −0.105025 19.4 31
0 −0.129383 0.287677 −0.154026 −0.031201 0.037454 0.068019 0.019385 17.9 145
5 −0.108903 −0.016250 −0.803715 0.207712 −0.419260 −0.301180 −0.465017 16.0 25
1 0.115441 −0.031031 0.160436 0.065219 −0.026183 0.058192 −0.004671 7.4 269
3 0.555883 −0.477694 −0.118372 0.242435 −0.133926 0.023392 −0.575570 2.9 34
Table 6
Means for variables and respective t and KS tests for clusters found in experiment II (Red components - no significant 𝑝-values in bold).

Hematocrit Hemoglobin Red Cells MCHC MCH MCV RDW Special Care (%) Patients

Mean - Cluster 1 0.192373 0.228284 0.124672 0.187246 0.152039 0.078920 −0.227019 7.0 14
Mean - Cluster 2 0.276826 0.302162 0.261730 0.166864 0.034623 −0.037691 −0.194673 61.0 67

t-test 0.638796 0.619572 0.701361 0.466539 0.285301 0.295333 0.562766 – –
KS-test 0.440488 0.675420 0.788581 0.458707 0.284728 0.348343 0.863925 – –
Table 7
Means for variables and respective t and KS tests for clusters found in experiment II (White components - significant 𝑝-values in bold).

Platelets MPV Lymphocytes Leukocytes Basophils Eosinophils Monocytes Special Care (%) Patients

Mean - Cluster 1 −0.445631 0.331228 0.063713 −0.537869 0.016237 −0.305755 0.858424 7.0 14
Mean - Cluster 2 −0.734901 0.263530 −0.049911 −0.741464 −0.205530 −0.516632 0.406545 61.0 67

t-test 0.061341 0.399595 0.331979 0.150230 0.156617 0.056762 0.088217 – –
KS-test 0.034455 0.689187 0.272100 0.564482 0.284728 0.030776 0.105875 – –
Fig. 3. DBSCAN cluster results for Experiment I. On the right, all COVID-19 patients
with clusters associated.

4.3. Experiment II: COVID-19 patients, focus on special care

In this analysis, we obtained a value of 0.40 for the silhouette
coefficient (the clusters obtained seem very separated, as shown in
Fig. 4). Overall, two clusters were obtained, with COVID-19 prevalence
in the range of 7–61%. No patients without clusters were obtained in
this analysis.

The number of clusters obtained allows us to go one step further
in the analysis. We conducted two-sample one-sided (lower) t- and KS-
statistical tests. Tables 6 and 7 show the 𝑝-values associated with one of
these tests in every parameter. The result is very similar to Experiment
I. Red cell components do not display any statistical differences be-
tween the two groups, however white cell components show statistical
differences. Once more, platelets appear as a significant factor, once
again indicating a relationship between coagulation factors, COVID-19
and a possible patient prognostic.
5

Fig. 4. DBSCAN cluster results for Experiment II. On the right, all special-care patients.

5. Limitations and possible extensions

There are two limitations to this study. The first one is data: the
variables to be analyzed (‘‘wider’’: more columns) and the number of
patients (‘‘higher’’: more rows) could lead to a substantial improvement
in the outcomes achieved so far, allowing us to separate the clusters
better.

More variables for each patient also mean that different represen-
tations could be obtained. In medical terms, more complex relation-
ships could be extracted. Restricting ourselves only to blood exams,
C-reactive protein, AST, ALT, GGT, and LDH could be excellent ad-
ditions to the analysis. Other data sources could be leveraged: social
and economic data could help to trace relationships between infection
severity and social strata. Genetic markers could help to understand
whether some populations are more susceptible to infections than
others. Medical imaging data could help to associate blood parameters
with physiological changes in organs and tissues, and so on.



Informatics in Medicine Unlocked 28 (2022) 100828V.P. Bezzan and C.D. Rocco
Fig. 5. MNIST data [39] examples. Each example is a 28 × 28 pixel image.

Fig. 6. UMAP dimensionality reduction results on MNIST data. Each one of the colors
represents a different number (the coordinates were omitted). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

The second point is the non-causality of analysis. None of this
study’s conclusions are causal for two reasons: the data is observa-
tional, and the number of patients and parameters is not large. This
reveals an excellent opportunity for researchers because the procedure
applied here could be used to control the experiment data without any
modifications. There are some studies in the literature that combine
cluster analysis with causal inference but they are still very sparse [23].
Statistically significant samples and more parameters could help to
create groups of patients where a treatment (or protective measures)
could be tailored for each group. Other diseases could also benefit from
the same approach presented here.

Considering the nature of this research, other epidemics (e.g. Dengue
fever, Zika Virus, Ebola) could be an excellent investigation opportu-
nity, as the primary source of data used here is inexpensive and could
be collected even in developing and emerging countries.

6. Final remarks

Using only data science methods, we were able to demonstrate that
different prevalence subgroups exist, and that these groups have differ-
ent medical interpretations that make sense. This study opens a window
of opportunity for those with access to individual and more granular
blood data for patients, paving the way for a more comprehensive
6

analysis with more factors to be analyzed. Moreover, we aim to help
to demonstrate that COVID-19 is not only ‘‘a simple flu’’ with only
respiratory effects but a more complex disease with several potential
implications and outcomes, particularly hematological as described by
relevant statistical testing.

Special implications in platelets (which control coagulation),
eosinophils and monocytes (related to infection control and adaptive
immunity) further disclose that COVID-19 is a multi-systemic, multi-
implication disease that must be analyzed from a multi-disciplinary
perspective and the clusters found can be the first indication that
several approaches must be taken by medical staff, policymakers and
governments. In the future, we can use similar techniques with aug-
mented data to address different problems related to COVID-19 such as
vaccine distribution, field hospital construction, disease spread analysis
and other issues. The approach presented here can be also easily
adapted to other diseases.
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Appendix. UMAP example on MNIST data

A good way to visualize the dimensional reduction performed by
UMAP is by comparing Figs. 5 and 6. Fig. 5 shows elements of the
so-called MNIST dataset [39], which consists of 28 × 28 pixel images
(784 dimensions) of thousands of handwritten digits. In Fig. 6, after the
UMAP algorithm, we can see that similar points tend to cluster closely,
and non-similar digits tend to be more distant. The overall distance
is controlled by the parameters’ neighbors and spread in Table 2. We
selected here a specific two-dimensional representation of our data
for viewing purposes, knowing that high-dimensional representations
could be necessary to deal with very-high dimensionality data/ or
complex behaviors.
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