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Abstract: Semiconducting polymer nanoparticles (SPN) have been emerging as novel functional
nano materials for phototherapy which includes PTT (photo-thermal therapy), PDT (photodynamic
therapy), and their combination. Therefore, it is important to look into their recent developments
and further explorations specifically in cancer treatment. Therefore, the present review describes
novel semiconducting polymers at the nanoscale, along with their applications and limitations
with a specific emphasis on future perspectives. Special focus is given on emerging and trending
semiconducting polymeric nanoparticles in this review based on the research findings that have been
published mostly within the last five years.

Keywords: semiconducting polymers; photo-therapy; applications; limitations; future scope

1. Introduction

Cancer has been one of the deadliest diseases that human society has ever witnessed [1–11].
Though there have been dramatic improvements in early diagnosis, detection, and therapy, it
still remains as deadly as ever before. With the advanced developments in cancer nanomedicine,
it is now possible to combat cancers if detected early [12]. Nanomedicine [13–16], particularly
use both fundamental science and bio-molecular engineering, in order to have better
precision medicines [17]. Even though there have been various treatment regimens using
nanomedicines, phototherapy is of great importance as it is minimally invasive and causes
no side effects on the body [18–22]. There are two main streams of phototherapy, namely
photo-thermal therapy (PTT) and photo-dynamic therapy (PDT), and both of them use
light as their main source of action.

Typically, PTT works by absorbing infra-red (NIR) light (by rationally engineered
photo absorbing agents) and converting it into therapeutic heat [23]. On the other hand,
PDT use light energy to generate reactive oxygen species (ROS), particularly singlet oxy-
gen (1O2), that can effectively hinder pathogenesis [24]. These two mechanisms can be
combined to have multi-effect on better therapeutic outcome. A variety of nanomaterials
such as organic and inorganic NIR sensitive agents have been explored for photo-therapy.
Among them, semiconducting polymer nanoparticles (SPN) became very attractive recently
due to their opto-electronic characteristics [25–36].

SPN have been used for photo-therapy including PTT, PDT and their combination
owing to its aromatic structure with π-π interactions generating heat when exposed under

Polymers 2021, 13, 981. https://doi.org/10.3390/polym13060981 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5424-8322
https://doi.org/10.3390/polym13060981
https://doi.org/10.3390/polym13060981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13060981
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13060981?type=check_update&version=1


Polymers 2021, 13, 981 2 of 26

NIR light [37,38]. Various semiconducting polymers (SPs) and conjugated polymers (CPs)
have been identified, including polyaniline (PAN), polypyrrole (PPy), polydopamine (PDA)
etc. [39–41]. The most important thing is that such SPs can easily form self-assembled
structures at the nanoscale level, forming different types of SPN [42] (Table 1). Since SPN
are considered as novel class of organic optical nanosystems, they have various benefits
having brilliant opto-electrical properties with an excellent photostability, easy modification
properties with a good biocompatibility for various biomedical applications including drug
delivery[43] and bio-imaging [44].

Table 1. Various emerging SPN systems studied during last 5 years (2015–2020).

Materials Specification (PTCE) * SPN Formulation
Method Applications Ref(s)

Diketopyrrolopyrrole
polymer P(AcIIDDPP)

200 nm sized SPN
with very good

stability
49.5%

Stille cross-coupling
reaction followed an

emulsification method

Improved PTT on human
epithelial cervix

adenocarcinoma (HeLa)
bearing mouse model

[45]

Thiadiazoloquinoxaline-based
semiconducting polymer

Hydrodynamic size of
SPNs is 58.9 ± 1.4 nm

and the PDI is 0.35.
21.2% Nanoprecipitation

method

PTT on human brain
glioblastoma cell line (U87)

xenograft model
[46]

Dibenzothiophene-S,S-dioxide
derivatives

High photostability,
improved tissue

penetration
66% ** Nano-precipitation

method

Improved PDT on human
epithelial cervix

adenocarcinoma (HeLa)
bearing mouse model

[47]

Thiophene based
conjugate polymers

30 nm sized
conjugated polymer 65% Nano-precipitation

method

Improved PTT effects on
mouse epithelial mammary
gland metastatic cancer cells
(4T1) bearing tumor model

[48]

4,8-bis[5-(2-
ethylhexyl)thiophen-2-yl]-2,6-

bis(trimethylstannyl)benzo[1,2-
b:4,5-b′]dithiophene-6,6′-

dibromo-N,N′-(2-
ethylhexyl)isoindigo

(BDT-IID) Pdots

20 nm sized Pdots 45% Nanoprecipitation
method

PTT on Human epithelial
mammary gland

adenocarcinoma cell line
(MCF7) bearing tumor model

[49]

Gd3+-PMA–PDI–PEG NPs
(Gd3+-chelated

poly(isobutylene-alt-maleic
anhydride) (PMA) framework

pendent with perylene-3,4,9,10-
tetracarboxylic diimide (PDI)
derivatives and poly(ethylene

glycol) (PEG))

101.9 ± 2.8 nm
(PMA–PDI–PEG

NPs)72.6 ± 2.4 nm
(Gd3+-PMA–PDI–PEG

NPs)

40% Nanoprecipitation
method

PTT on human epithelial
cervix adenocarcinoma

(HeLa) tumor model
[50]

PolyPyrrole-PEG NPss 7 nm 33.35% (808 nm),
41.97% (1064 nm)

Self assembling
method

Multimodal imaging and
PTT on human brain

glioblastoma cell line bearing
mouse tumor model

[51]

poly(cyclopentadithiophene-
alt-benzothiadiazole)

(PCPDTBT)
47 nm with −20 mV Not given Nanoprecipitation

method

Combined PTT/PDT on
mouse epithelial mammary
gland metastatic cancer cells
(4T1) tumor bearing mouse

[52]

Poly vinylene based SPN 36 nm Not given Nanoprecipitation
method

Improved PAI/PTT effects
on mouse epithelial

mammary gland metastatic
cancer cells (4T1) tumor

bearing model

[53]

BODIPY-TPA (Triphenylamine)
80 nm in size with
−35.5 mV surface

charge
20.7% Nano-precipitation

method

Improved PTT/PDT in-vitro
on human epithelial lung
carcinoma cell line (A549)

[54]

diketopyrrolopyrrole-based
semiconducting polymer and

polystyrene-b-poly(N-
isopropyl acrylamide-co-acrylic
acid) (PDPP3T@PSNiAA NPs)

70 nm sized NPs
showed photo chemo

effects in-vitro and
in-vivo

34.1% Co-precipitation
method

High photo chemo effects on
human epithelial cervix
adenocarcinoma (HeLa)

bearing tumor model

[55]

* PTCE-Photo thermal conversion efficiency; ** photoluminescence quantum efficiency; PDI-Polydispersity index.

SPN comprise mainly of hydrophobic but opto-electronically active SPs and am-
phiphilic polymer matrices [56]. The photo characteristics of SPN are mainly determined
by the molecular structures of SPs. Such specific characteristics enable SPN to have rela-
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tively higher absorption coefficients and photo-stability compared to small molecular dyes
and their self-assemblies [57]. Additionally, the organic and biologically inert nature of
SPN reduces the risk of potential toxicity to living organisms, making it a perfect thera-
nostic nanoagent for various photo-therapeutic strategies, including PTT, PDT, and their
combined therapeutic strategy.

Since these SPN based nanomaterials are a new class of functional nanoparticles
(NPs), it is important to have an overall insight into what has been going on in very recent
years. The application of such NPs in imaging guided photo-therapy has to be reviewed.
Therefore, we focus on reviewing details on recent development about design, synthesis,
and application of SPNs for anti-cancer research area.

Various novel polymeric structures have been designed through chemical functional-
ization via nanotechnology, which can improve its overall performance for phototherapy.
In addition, such novel functionalized SPN have tunable optoelectronic properties im-
proving photo-stability in terms of their fluorescence, chemiluminescence etc. In addition,
such modified NPs have improved biocompatibility, and imaging capabilities either via
photo-acoustic or NIR fluorescence imaging in in-vivo animal models [29,31,58–61].

Previously there were few similar review articles published, particularly for photo
acoustic imaging (PAI) [62] by Zhou et al. (2018), whereas a review article by Chan et al. (2015)
focused on “semiconducting polymer nanoparticles as fluorescent probes for biological
imaging and sensing” [63]. Pu et al. (2016) also published a similar review article on recent
advances in semiconducting polymer nanoparticles in in-vivo molecular imaging [64],
Even though these review articles are not exactly similar to what we are trying to address,
the one published in 2018 by Li et al. is somewhat similar to the scope of our current review.
Li et al. combined applications of SPN on imaging methods and phototherapy [65]. Having
said that, our current review article will be focusing on SPN based emerging NPs only on
the phototherapy. In particular, emerging and trending SPN systems in the very recent
research papers and those published in the last five years will be discussed for their wide
range of applications.

Thus, the present review will be focused on design, applications, and future scope of
such SPN in detail. We believe that this review would enlighten readers to understand
the advantages and limitations of SPN research so that they can come up with improved
scientific solutions to solve such issues. We also highlight SPN and its future perspectives
in the current review article.

2. Semiconducting Polymer Nanoparticle (SPN)—How Do They Work?

There have been wide varieties of SPs reported in the literature (Figure 1). The whole
idea of such chemical modification seems to come up with either novel structures or
enhancing the photostability as well as targetability to cancer cells. Most of the organic
polymers are basically insulators. These kinds of organic polymers become conductors
only when they have π-conjugated structures, in which variety of mechanisms exist, such
as hopping, tunneling etc., aiding a smooth electron motion along the polymer backbone
via overlaps in π-electron clouds. Generally, such π-electronic polymer systems in their
pristine states are wide-band-gap semiconductors, also known as semiconducting polymers.
As per discoveries in the 1970s, organic conjugated polymers and oligomers were found
to have metallic traits upon heavy doping [66], as a term originally taken from inorganic
semiconductor chemistry. The fact is that the conjugated polymer has a doping mechanism
through oxidation (p-doping) or reduction (n-doping), respectively [67]. On the other
hand, SPN based drug delivery systems became attractive mainly due to its opto-electronic
properties in particular for various photo-thermal applications for anticancer therapy. In
addition, they have tunable optoelectronic characteristics of metals or semiconductors and
can still bear their innate mechanical characteristics and ease of preparation/manufacturing
benefits, being polymers [68].
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Figure 1. Shows various semi conducting polymers from first to third generations: PA-poly
acetylene; PV-poly paraphenylene vinylene; PPP-poly para phenylene; PT-poly thiophene; PPy-
poly pryrrole; PEDOT-poly ethylene dioxythiophene; P3AT-poly 3(alkyl) thiphene (R-Alkyl
group); PCPDBT-poly(2,6-[4,4-bis-(2-ethylhexyl) 4H-cyclopenta (2,1-b;3,4-b1)dithiophene-alt-4,7-
(2,1,3-benzothiadiazole)]; PSBTBT-Poly [(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-
alt-(2,1,3-benzothiadiazole)-4,6-diyl]; FBT2-poly(9,9-dioctylflourene-co-bithiophene); PBTTT-poly(2,5-
bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene respectively.

Even though there have been various SPN for bio-imaging and drug delivery
applications [69], little is known for the applications in PTT, PDT, combined PTT/PDT,
photo-immuno and photo-radio therapy. Thus, it is very important to have an overall look
at their recent developments.
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3. Design and Formulation Strategies of SPN

It is of great importance to understand the major synthetic strategies of SPN based NPs
to modify their drawbacks, so that one can come up with better formulation strategies. Most
of the SPN based theranostic NPs were made using nano-precipitation, co-precipitation,
emulsification and self-assembly methods.

For example, NIR absorbing diketopyrrolopyrrole polymer P(AcIIDDPP) based NPs
(DPP-IID-FA) were made via an emulsion method [45]. Similarly, thieno-isoindigo
derivative-based donor acceptor (D-A) polymer (PBTPBF-BT) NPs have been made for
NIR-II bio window for PTT against MDA-MB-231 xenograft mouse model [70]. On the
other hand, the nanoprecipitation approach was used for thiadiazoloquinoxaline-based SPN
for simultaneous imaging guided phototherapy by PAI/PTT for glioblastoma under NIR-II
light range [46]. The same technique was adapted for two NIR absorbing molecules such as
poly(cyclopentadithiophene-alt-benzothiadiazole) (SP1) and poly(acenaphthothienopyrazine-
alt-benzodithiophene) (SP2) to prepare SPN [69].

In another work, the architecture of the organic SPNs+ has triple sections including a
hydrophobic SP core, an anionic interlayer, and a cationic shell (+). The SP core acts as the
PAI agent under NIR-I or NIR-II laser excitation, which was encapsulated by amphiphilic
poly (styrene maleic anhydride) (PSMA) to obtain water-dispersed NPs (OSPNs−) with an
anionic surface for further modification. Poly(L-lysine) (PLL) was subsequently adsorbed
onto the OSPNs− surface via electrostatic interactions to enhance the cellular uptake. These
SPN was made by nanoprecipitation method [71].

D–A CPs containing dibenzothiophene-S,S-dioxide based NPs have been developed
using the nanoprecipitation method as effective photosensitizers. The obtained PTA5
copolymer had bright green emission and high photoluminescence quantum yields via
the intercrossed excited state of local existed and charge transfer states. The PTA5 NPs
were developed by loading them into a biocompatible polymer matrix [47]. In another
study, immuno/phototherapeutic nano adjuvants were made using a hydration–sonication
method [72].

Detailed information of synthetic methods for various SPN is shown in Figure 2.
Typically, nano-precipitation has been found to be ideal for making synthetic polymer
NPs [73] and can be extended for SPN formulation as well. This is mainly due to the
following reasons such as ease of making, separation and high yield. However, in most of
the cases, detailed mechanisms of such NPs were missing, and therefore, careful attention
is required. What exactly happens in such formulation methods should be thoroughly
understood as there will be always something interesting as we move from material to
material, modifying their functionalities.
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Permission from American Chemical Society, 2020) [46]; (b) Molecular structures of SP1 and SP2 used
for the preparation of SPN1 and SPN2, respectively. SPNs made through nanoprecipitation. SP is
represented as a long chain of chromophore units (red oval beads). DPPC contains a short hydropho-
bic tail and a charged head and is illustrated as a string with a dark green ball at its end. (Reprinted
permission from Nature Nanotechnology, 2014) [69]; (c) illustration of the preparation procedure
of OSPNs+ and the photoacoustic labeling of hMSCs after transplantation. (Reprinted permission
from American Chemical Society, 2018) [70]; (d) Molecular engineering and nano functionalization of
Squaraine dye SQ1 for NIR-II/PA Bimodal Imaging and Photo-thermal ablation of metastatic breast
cancer. (Reprinted permission from American Chemical Society, 2020) [74]; (e) Schematic Illustration
of PLD-Activatable Tumor Image and PTT/PDT Combined Therapy (Reprinted permission from
American Chemical Society, 2021) [75]; (f) Chemical structure of pBODO-PEG-VR and preparation
of APNA (Reprinted permission from Nature, 2021) [76]; (g) Schematic illustration of preparation
for Pdots (Reprinted permission from American Chemical Society, 2016) [48]; (h) Synthetic route of
conjugated polymer BDT-IID (*) Pd(PPh3)4 and toluene, 110 ◦C and preparation of BDT-IID Pdots
for PAI-guided PTT (Reprinted permission from American Chemical Society, 2018) [49].

4. SPN in Photo-Therapy

Phototherapy, especially in treating cancers has been emerging since it can have
minimal side effects compared to the existing conventional treatment modalities [77].
Cancer phototherapy approaches employ three main strategies: (1) PTT and (2) PDT and
(3) Combined PTT/PDT. PTT or PDT or together can be combined with other therapies
such as radiotherapy, immunotherapy etc. [23]. Therefore, it is important to have an overall
view at each of these individual research areas in detail.

4.1. PTT

Theranostic NPs which can offer bright fluorescence and imaging capability with
prominent photostability under laser irradiation is having great scope in terms of clinical
applications. Especially NIR-II Window (1000–1700 nm) responsive SPN are far advan-
tageous as they can be used for treating deep routed tumors easily, thanks to their low
toxicity and high penetration capability of non-ionizing NIR-II waves [78]. However in
reality, it is still challenging to develop such stable and ultra-small theranostic NPs for
multi-purpose applications.

A molecular engineering strategy has been utilized to make NIR-II emitting squaraine
dyes. Initially, NIR-I squaraine dye SQ2 was made via ethyl-grafted 1,8-naphtholactam
as donor units and square acid as acceptor unit in a donor–acceptor–donor (D–A–D)
structure. A strong electron-withdrawing like Malonitrile, was added to enable square acid
acceptor stronger, thereby shifting fluorescence towards NIR-II window. To translate NIR-II
fluorophores SQ1 into effective theranostic agents, fibronectin-targeting SQ1 nano-probe
consisting of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000 (DSPE-PEG2000) and pentapeptide CREKA was functionalized over these
NPs. These nanoprobes showed high NIR-II imaging capability as confirmed on aa tumor
model. Furthermore, the SQ1 nanoprobe could be used for PAI and PTT of tumors and
was confirmed using 4T1 tumor bearing mouse model (Figure 3) [74].

PTT is one of the best non-invasive cancer treatments and a highly effective PTT always
need safe and excellent PTT agents. To achieve this, Li et al. (2016) and team developed
a 30 nm sized, highly photostable Pdots having 65% PTCE. The Pdots contain CPs and
DPP with various thiophene derivatives (monothiophene, thienothiophene, bithiophene,
and benzodithiophene) synthesized by a Stille coupling reaction. A nanoprecipitation
technique was utilized to make 30 nm sized CPs NPs. According to the in-vitro and in-vivo
analysis using a 4T1 tumor bearing mouse model, it was found that they were potential
candidate for photo-thermal applications [48].
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Figure 3. PTT effects of Squarine dye based copolymer NPs on breast tumor burden on s mice. (a) Thermal imaging;
(b) Thermal variations in tumor during PTT; (c) Tumor growth inhibition and (d) body weight analysis during treatment
period; (e) Weight measures of tumor lesions post treatment with PBS, PBS + L, SQ1 NP, SQ1 NP + L. L refers NIR laser
(915 nm, 0.5 W/cm2). Data present as mean ± SD, n = 5 (*** p < 0.01). (f) Histochemical analysis of tumor sections treated
with PBS, PBS + L, SQ1 NP, SQ1 NP + L. The scale bar is 50 µm. (Reprinted permission American Chemical Society,
2020) [74].

One of the major limitations associated with the PTT theranostic agents is poor stability
and photothermal conversion efficiency (PTCE) and this could limit their clinical applicabil-
ity. Novel CPs based Pdots have been reported to realize PAI-guided PTT. The Pdots were
comprised of 4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]-2,6-bis(trimethylstannyl)benzo[1,2-b:4,5-
b′]dithiophene-6,6′-dibromo-N,N′-(2-ethylhexyl)isoindigo (BDT-IID) and were made via
nanoprecipitation technique. These highly non-toxic stable Pdots had high PTCE ~ 45%.
Figure 4 shows their PTT properties. As expected, the developed Pdots had improved
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PAI along with high PTT on MCF-7 tumor bearing mouse in their in-vivo analysis. These
unique properties make them a suitable candidate for future clinical applications [49].
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Figure 4. PTT characteristics of BDT-IID Pdots. PTT heating curves of the BDT-IID Pdots (a) with
different concentrations upon 200 mW/cm2 laser exposure at 660 nm and (b) with different laser
power densities at 100 µg/mL. (c) Photothermal effect of the BDT-IID Pdots dispersions under laser
irradiation at 660 nm (200 mW/cm2). Irradiation terminated after 600 s. (d) Time constant for heat
transfer was determined to be τs = 145 s by applying the linear time data from the cooling period
(after 600 s) versus negative natural logarithm of driving force temperature, obtained from the cooling
stage of (c); (e) thermal variations of the Pdots under laser exposure at 200 mW/cm2 for seven light
on/off cycles (10 min of irradiation for each cycle). (f) Change in absorbance intensity of BDT-IID
Pdots and ICG after repeated laser irradiation (n = 7). The figure inserts show the changes of BDT-IID
Pdots and ICG after repeated laser irradiation (n = 7). (Reprinted Permission American Chemical
Society 2018) [49].

The “easy to make” versatile, economic and theranostic nanomaterials having imaging
and therapeutic properties are of great interest in drug-delivery and imaging. To achieve
such properties, a Gd3+-chelated poly(isobutylene-alt-maleic anhydride) (PMA) framework
pendent with perylene-3,4,9,10-tetracarboxylic diimide (PDI) derivatives and PEG as ef-
fective theranostic nanostructure was developed for bi-modal PAI and MRI-guided PTT.
Thus, the developed NPs chelated with Gd3+ (PMA–PDI–PEG–Gd NPs) showed a high T1
relaxivity coefficient (13.95 mM–1 s–1), even at the higher magnetic fields. Intravenously in-
jected PMA–PDI–PEG–Gd NPs in Hela tumor bearing mouse model showed EPR assisted
accumulation post injection of 3.5 h, as confirmed through PAI and MRI [50].
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Customized medicines are always preferred as ideal theranostic agents. However,
combined PTT and PAI agents with high biodegradation capability are rare. Lyu et al.
(2018) studied such biocompatible and biodegradable SPNs having very high PAI capability
along with improved PTT efficacy. These SPN were made of enzyme responsive vinylene
bonds and can readily be transformed into a water-soluble matrix. Such vinylene backbone
enhanced the PTCE to a great extent (~3-fold). These SPN based theranostic NPs showed
better PAI and PTT on a 4T1 bearing tumor model [53].

A novel SPN (L1057 NPs) for NIR-II fluorescence imaging and PTT was made using
nano-precipitation method. Under 980 nm laser exposure, when two laser fluences were
applied via low (25 mW/cm2) and high (720 mW/cm2) power densities, these developed
SPN showed significantly better NIR-II brightness compared to the organic NIR-II fluores-
cent agents, owing to their excellent stability and several other parameters such as high
quantum yield etc. The improved biocompatibility along with high NIR-II fluorescence
allowed them to utilize this for a real-time, whole-body visualization of glial vessels along
with cerebral ischemic stroke detection in tumors with extra clarity. The significant PTT
effects and NIR-II imaging capability of these NPs were realized on 4T1 tumor bearing
mouse model (Figure 5) [61].

Colorectal cancers (CRC) are often difficult to treat due to their relapsing nature and
cannot be completely eliminated either by surgery or by chemotherapy. Therefore, ther-
anostic NPs having imaging and photo sensitivity would be useful, particularly for the
detection and treatment of disseminated small nodules. McCarthy et al. (2021) developed
a tumoroid technology for the clear understanding of NPs interaction with the 3D tumor
micro-environment. CD44 targeting hyaluronic acid (HA) coated hybrid D-A polymer par-
ticles (HDAPPs) was developed to demonstrate the proof of this concept. These hybrid NPs
were composed of photosensitive polymer, poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-
b’]dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe), functionalized
with HA, to form HA-BSe NPs, and evaluated in 3D. Monitoring of NPs transport in 3D
organoids showed uniform diffusion of non-targeted HDAPPs in comparison to attenuated
diffusion of HA-HDAPPs due to the nanoparticle-matrix interactions. Computational
diffusion analysis has provided more information, and thereby proved that HA-HDAPPs
transport was due to the diffusion. On laser irradiation, only HA-BSe NPs were capa-
ble of substantially enhanced the tumoroid toxicity. Nevertheless, the restricted entry
of CD44-mediated theranostic NPs in the tumoroid, their targeting localization, and en-
hanced PTT in 3D tumeroid might be beneficial for understating a more complex tumor
micro-environment in-vivo [79].

Another critical problem in translating theranostic nanomaterials into clinical side is
associated with its severe side effects which are due to the long-term accumulation inside
the body. It has been therefore, a great challenge to integrate non-accumulated character-
istics, diagnosis, therapeutic functions under single room of nanomedicine. Specifically,
NIR responsive functional materials with deep penetration and low scattering properties
are hardly explored for developing novel NIR sensitive hybrid materials. One of the
most dangerous issues related to novel nanomaterials is the bio-safety in terms of accu-
mulation in the body when administered orally or parenterally [80–86]. The 2 nm sized
PPy-based functional NPs were made by single step green technique, having fluorescence
(FL)/PAI/NIR II trimodal imaging. These photostable NPs had 33.35% PTCE at 808 nm and
was increased to 41.97% at 1064 nm, respectively. The well-designed ultra-small PPy-PEG
NPs showed an improved tumor homing function along with better renal clearance. These
highly biocompatible, photo theranostic NPs had excellent in-vitro and in-vivo results for
NIR-II-imaging guided PTT effectively [51].



Polymers 2021, 13, 981 11 of 26

Polymers 2021, 13, x FOR PEER REVIEW 11 of 26 
 

 

PEG NPs showed an improved tumor homing function along with better renal clearance. 
These highly biocompatible, photo theranostic NPs had excellent in-vitro and in-vivo re-
sults for NIR-II-imaging guided PTT effectively [51]. 

 
Figure 5. Real-time in-vivo NIR-II fluorescence microscopic imaging of mouse brain vasculature. (a) 
Cerebrovascular imaging at various depths (100–900 μm) after the intravenous injection of L1057 
NPs. The excitation wavelength was 980 nm. Scale bar: 100 μm. (b) Cross-sectional fluorescence 
intensity profiles (and Gaussian fits (red) with fwhm indicated by arrows) along the red lines circled 
with green in panel a; PTT efficacy of L1057 NPs on tumors. (c,d) PTT images (c) and corresponding 
temperature changes (d) of 4T1-tumor-bearing mice under irradiation with an 808 (0.33 W/cm2) or 980 
nm (0.72 W/cm2) laser. (e,f) Body weight (e) and tumor volume (f) curves of tumor-bearing mice at 
different time points after receiving PTT. (g,h) Tumor weight (g) and H&E staining (h) of the tumor 
tissues from mice sacrificed at day 18 post-PTT treatment. Scale bar: 100 μm. Results are presented as 
the mean ± S.D., n = 5. Statistical significance was calculated using one-way ANOVA with the Tukey 
posthoc test. *** p < 0.001. (Reprinted Permission from American Chemical Society, 2020) [61]. 

Figure 5. Real-time in-vivo NIR-II fluorescence microscopic imaging of mouse brain vasculature.
(a) Cerebrovascular imaging at various depths (100–900 µm) after the intravenous injection of L1057
NPs. The excitation wavelength was 980 nm. Scale bar: 100 µm. (b) Cross-sectional fluorescence
intensity profiles (and Gaussian fits (red) with fwhm indicated by arrows) along the red lines circled
with green in panel a; PTT efficacy of L1057 NPs on tumors. (c,d) PTT images (c) and corresponding
temperature changes (d) of 4T1-tumor-bearing mice under irradiation with an 808 (0.33 W/cm2) or
980 nm (0.72 W/cm2) laser. (e,f) Body weight (e) and tumor volume (f) curves of tumor-bearing mice
at different time points after receiving PTT. (g,h) Tumor weight (g) and H&E staining (h) of the tumor
tissues from mice sacrificed at day 18 post-PTT treatment. Scale bar: 100 µm. Results are presented
as the mean ± S.D., n = 5. Statistical significance was calculated using one-way ANOVA with the
Tukey posthoc test. *** p < 0.001. (Reprinted Permission from American Chemical Society, 2020) [61].
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Various SPN based multifunctional theranostic nanomaterials with PAI guided PTT
therapeutic capability have been studied for noninvasive mode of cancer detection and
tumor ablation. To achieve such desired properties, it is mandatory to have excellent opti-
cal properties such as significantly high absorption along with PTCE. Chang et al. (2019)
designed theranostic Pdots, which were composed of BDT (Benzodithiophenedione-based
polymer), made by a simple nano-precipitation method. The Pdots had high cytocompati-
bility, along with excellent stability with improved optical properties. The in-vitro/in-vivo
experiments confirmed its potential application as dual functional PAI/PTT using MCF-7
cells and tumor model. Even a low dose of this nanomaterials enabled excellent therapeutic
benefits on in-vivo model (MCF-7 cancer cell bearing tumor model [87].

Photo-sensitive theranostic NPs in the NIR-II window (1000–1700 nm) have been
emerging as an excellent platform for personalized medicine mainly due to their low
cytotoxicity and high tissue permeability via non-invasive mode. There have been various
such NPs for multi-purpose. The development of metabolizable NIR-II nanoagents for
imaging-guided treatment are of great importance for noninvasive diagnosis of pathological
conditions such as tumors and eradicating them effectively. To realize such goal, Men et al.
(2020) developed metabolizable and highly NIR-II absorbing Pdots, for the first time, for
PAI guided PTT. The ultrasmall (4 nm) sized Pdots were composed of D-A π-conjugated
polymer (DPP-BTzTD) and were made using nano-reprecipitation method. These pdots
showed good biocompatibility, significant photostability, bright photoacoustic signals
along with high 53% PTCE. Intravenously injected Pdots showed excellent PTT under a
1064 nm laser irradiation condition with 0.5 W cm−2, on 4T1 tumor-bearing mice model
and showed a rapid clearance from the body. The pilot study paves a way and clearly
indicates their efficacy for future clinical experiments [88].

A photo-chemo approach by SPN based theranostic system was studied by
Chen et al. (2019), where they have combined diketopyrrolopyrrole-based SP and polystyrene-
b-poly(N-isopropyl acrylamide-co-acrylic acid) (PDPP3T@PSNiAA NPs) as pH/NIR light-
sensitive DOX release in-vitro and in-vivo. This strategy was achieved by well-designed
fabrication of photo/pH-responsive PSNiAAx by RAFT polymerization method. Later,
PSNiAA was modified with PDPP3T in order to simultaneously achieve both PTT and
pH/thermo-sensitive DOX release in single entity. The as-made 70nm sized NPs showed
very high PTCE (η = 34.1%) and excellent photoacoustic (PA) brightness. The in-vivo
analysis on HeLa tumor nearing mouse model confirmed its potential benefits for photo-
chemotherapy [55].

4.2. PDT

For excellent PDT benefits on various cancers, it is important to have photosensitizers
with high photo-induced ROS generation efficiency, high biocompatibility with significant
photo toxicity. To achieve this, a D-A CPs of dibenzothiophene-S,S-dioxide were made as
effective photosensitizing agents (PTAs) for PDT. The resulting copolymer PTA5 (4-octyl-
N,N-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline with 3,9-dibromo-
11,11-dioctyl-11H-benzo[b]fluoreno[2,3-d]thiophene-5,5-dioxide) showed strong green light
emission with high photoluminescence quantum yields owing to the intercrossed excited
state of local existed and charge transfer states. Polymer Pluronic F127 matrix was used
to encapsulate these active moieties and showed 79–91 nm with negative surface charge
(−35.7 to −27.3 mV). Under 800 nm excitation, those developed NPs had large two-photon
absorption cross section of 3.29 × 106 GM along with good aqueous photostability and was
determined to be good in bio-imaging as well. PTA5 NPs had very high tissue-permeability
up to 170 µm for hepatic vessels and 380 µm for blood vessels as confirmed on mouse
ear. In addition, the developed PTA5 NPs exerted high ROS generation property upon
laser irradiation. PTA5 NPs showed excellent tumor inhibition effects under 400–700 nm
light irradiation at 50 mW cm–2/5 min every other day. These findings clearly showed that
PTA5 NPs can be utilized as excellent PTAs for PDT [47].
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It is a well-known fact that PDT effects can be hindered by hypoxia in tumors [89].
In order to overcome this limitation, SPN nanoprodrug (SPNpd) have been made which
generate ROS and imparted hypoxia sensitized chemotherapy. These self-assembled
prodrug NPs were composed of grafted PEG conjugated with a chemo agent, via hypoxia-
sensitive linkers. The 30 nm sized NPs showed tumor localization in 4T1 xenograft model,
where it exerted PDT/chemo effects synergistically, inhibiting the tumor growth. This
study showed the first hypoxia-activatable phototherapeutic polymeric prodrug system
with a high potential for cancer treatments [90].

The therapeutic outcome in PDT is greatly influenced by the structural and functional
property of photosensitizers used. Tang et al. (2017) developed Chlorin e6 (Ce6) doped with
photo-cross-linkable Pdots for PDT. This smart engineered Pdots had side chains of oxetane
groups specifically for photo-controllability. The leaching of entrapped Ce6 molecules
can be avoided greatly because of the photo-cross-linking reaction by which it forms an
interpenetrated structure with SPN moiety of Pdots. The in-vitro therapeutic effects on
gastric adenocarcinoma cells showed significantly better PDT effects via ROS generation
under low dose of light irradiation (∼60 J/cm2). The in-vivo therapeutic analysis on human
gastric cancer cell (SGC-7901) tumor-bearing nude mice (Figure 6) proved their efficacy
and could be beneficial for treating many such solid tumors. It was apparently proved
that photo-cross-linkable Pdots doped with photosensitizer could be excellent candidates
for PDT [91].

The ROS responsive SPN-based pro-therapeutic agents were engineered through
covalent modification of SPNs with caged therapeutic agents via hypoxia- or 1O2-cleavable
linkers. When photo-irradiated, SPNs utilize oxygen to produce singlet oxygen, enabling
PDT, while breaking hypoxia- or ROS-cleavable linkers to have on-demand drug release
and in-situ remote activation of pro-therapeutic agents. Such remote activation of SPN-
based pro-therapeutic agents would be beneficial for inducing DNA damage, RNA degra-
dation, protein biosynthesis crippling, or activation of the immune system in tumors.
Integration of such strategies, where PDT and NIR synergistically eradicate tumors, and
metastases without even a chance for relapse [92]. PAI guided PDT organic agents toward
lysosome-targeting is of great challenge, though they are highly effective incase developed
strategically. Lysosome-targeting boron-dipyrromethene (BODIPY) NPs were designed by
loading NIR absorbed BODIPY dye within amphiphilic DSPE-mPEG5000 for lysosomal
PAI and acid-sensitive PDT against cancer cells under NIR light [93].

Real-time intra tumoral molecular O2 detection by SPN is important in early cancer
diagnosis. Conversely, PDT could be achieved by super toxic 1O2 produced on site, with O2
sensing, and is a very significant cancer therapeutic strategy. To do so, negatively charged
iridium (III) complex-hyperbranched phosphorescent CP dots for hypoxia imaging and
effective PDT were systematically developed. The incomplete energy transfer between
the polyfluorene and the iridium (III) complexes enabled ratiometric accurate O2 sensing.
Furthermore, the O2-dependent emission lifetimes were also used in photoluminescence
lifetime imaging and time-gated luminescence one for eliminating the autofluorescence
remarkably to enhance the signal-to-noise ratio of imaging. Interestingly, the designed
Pdots were able to generate toxic 1O2 efficiently in aqueous media. Image-guided PDT on
cancer cells was studied in detail by confocal laser scanning microscope. To the best of our
knowledge, it represents the first example of the negatively charged conjugated polymer
dots hyperbranched with the cored iridium(III) complex for both hypoxia imaging and
PDT of cancer cells simultaneously [94].

The cell penetrating peptide (CPP) modified SPN Pdots were doped with a photosen-
sitizer for PDT applications. The as-made SPN dots showed excellent 1O2 production. Both
in-vitro and in-vivo analysis confirmed that the CPP functionalized SPN Pdots possessed
high cellular uptake which in turn improved the anti-cancer efficacy. Such novel CPP
modified Pdots loaded photosensitizer theranostic systems hold great opportunities in
treating various cancers. In-vitro efficacy was assessed using SGC-7901 cells (Human
gastric cancer cell line) which was translated in to an in-vivo tumor model [95].
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The degree of intracellular O2 level or hypoxia has been considered as an early indi-
cator of cancers, and many efforts have been made to develop responsive drug delivery
systems and SPN based NPs for targeting such hypoxic environments in cancers [96–102].
PDT agents can typically make use of such low oxygen environments to generate ROS,
which in turn effectively eradicate cancerous tissues and cells. An early diagnosis and
therapeutic platform based on phosphorescent Pdots having Pt(II) porphyrin as an oxygen-
sensitive phosphorescent group and 1O2 photosensitizer was developed. The as-made
Pdots were able to detect O2 levels, and the results showed that HepG2 cells when incu-
bated with Pdots showed longer lifetimes under hypoxia, and time-resolved luminescence
images showed a higher signal-to-noise ratio after gating off the short-lived background
fluorescence. Quantification of O2 is realized by the ratiometric emission intensity of
phosphorescence/fluorescence and the lifetime of phosphorescence. As such, these Pdots
demonstrated excellent PDT effects in-vitro. The major limitation in this study was the lack
of further investigation on toxicity and efficacy using animal model [103].
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4.3. Combined PTT/PDT

Integrated theranostic nanoplatforms for targeted PTT/PDT strategy is having high
relevance in the medical arena but is still challenging. Recently a “sense-and-treat” regimen
based on SPNs was developed for ratiometric bioimaging of phospholipase D (PLD) activity
and combined PTT/PDT. Thus, the developed PSBTBT NPs served not only as PPT agents
but also as fluorescent quenchers of Rhodamine B (Rhod B) through a PLD-cleavable
linker. Ce6 was used as a PDT agent. The obtained nanoplatform (PSBTBT-Ce6@Rhod
NPs) showed high PDT/PTT performance upon single laser irradiation. The PTT/PDT
combined therapy achieved more efficient tumor inhibition results as compared with the
single treatments. In addition, the overexpressed biomarker PLD in tumor tissue will cleave
Rhod, leading to the fluorescence recovery of Rhod B and thus allowing the activatable
fluorescence imaging of tumor and targeted phototherapy [75].

In another report, SPN was used for PAI-guided combined PTT/PDT. Authors made
triplet tellurophene-based SP (PNDI-2T) with efficient tin-free direct heteroarylation poly-
condensation. The PNDI-2T NPs displayed substantial NIR absorption with high cyto
compatibility along with an enhanced ROS generation, high PTCE ~ 45% and a high ROS
yield (Φ∆ = 38.7%) when exposed under 808 nm laser irradiation. 4T1 tumor model was
used to confirm their efficacy and proved that these well-made NPs could be a potential PAI-
guided PTT/PDT agents for cancer theranostics (Figure 7). This study provides a new route
to developing highly efficient and low cytotoxic agents for PAI-guided PTT/PDT [104].
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Biomimetic phototheranostic nano-agents that are capable for targeting cancer-specific
fibroblasts in the tumor microenvironment are very promising candidates, especially
for personalized anti-cancer medicines. Though such theranostic agents have various
applications, their efficacy could be hindered by various tumor micro environmental
factors such as hypoxia. Herein, organic multimodal PTT nanoagents for the improved
multimodal imaging-guided has been developed for cancer theranostic purpose. These
NPs contains NIR absorbing SPN further covered with the cell membranes of activated
fibroblasts (AF) to finally have AF-SPN for selectively targeting cancer-specific fibroblasts,
allowing better tumor localization than the un-coated one after systemic administration in
living mice. AF-SPN were able to produce enough PTT/PDT effects along with their dual
imaging capability via PAI and NIR fluorescence. The in-vitro experimental results were
further extended to in-vivo 4T1 bearing tumor model [52].
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SPs with high photostability, strong NIR absorptivity, and efficient PTCE are highly
desired to be considered as an ideal photo theranostic agent. Here, a heavy atom free tri-
component SPs of PTVT has been made through a Stille coupling reaction. PTVT showed
high singlet oxygen quantum yield (1O2 QY) ~42.2% in DCM and the 1O2 generation ability
for the DSPE-PEG coated PTVT NPs remained higher. These multifunctional NPs were
made through nanoprecipitation technique. Owing to the PDT and PTT synergistic therapy
(with PTCE ~ 52.6%), PTVT NPs had low IC50 of 5.9 µg/mL on A549 cell-line under
NIR exposure. The dark toxicity of such NPs was minimal even at high concentrations.
In in-vivo study, a similar pattern was observed with exceptionally high PTT and PDT
efficacies on living mice model with a good organ compatibility for the NPs as confirmed
by histopathology [105].

Even though most of the organic SPN are having excellent characteristics for pho-
totherapy, their weak emission spectra, mainly due to the aggregation-caused quenching
phenomenon (ACQ), have been limiting their bio-imaging capability. D–A–D type com-
pound namely BODIPY-TPA was designed by conjugating triphenylamine (TPA) with a
BODIPY structure. PEG functionalization was given to BODIPY core in order to enhance
the bio-safety of the developed SPN. Through self-assembly mechanism, BODIPY-TPA
could be formed as NPS (BODIPY-TPA NPs) and it showed remarkable NIR fluorescence
due to its AIE mechanism, owing to the twisted structure of TPA. Additionally, BODIPY-
TPA NPs generated 1O2 and heat simultaneously on a single laser (635 nm) irradiation.
The PTCE was found to be 20.7%. The lysosome targeting property was confirmed on
A549 cell-line, in-vitro and it had IC50 ~ 28.45 µg/mL. These preliminary studies would
open up new ventures for BODIPY based NPs for bioimaging guided combined PDT/PTT
synergistic cancer treatment [54].

High ROS generation and PTCE are the key requirements for emerging therapeutic
materials for combined PDT/PTT therapy. Conversely, organic nanomaterials showed poor
photostability in aqueous media due to ACQ, and could negatively affect their bio-imaging
applications. To troubleshoot this, D–A–D fashioned organic small molecule (T-BDP)
NPs were made of BODIPY and TPA meticulously. Moreover, electron-withdrawing
1,8-naphthalenediimide (NI) was functionalized onto the BODIPY core to enhance in-
tramolecular charge transfer, enabling a red shift towards the NIR window. T-BDP showed
significantly high AIE performance, owing to the twisted TPA attached on the BODIPY.
T-BDP NPs showed high NIR emission in water when exposed to mono laser treatment at
635 nm, which in turn result in the simultaneous generation of ROS and heat. The PTCE of
T-BDP NPs was determined to be 50.9%. The low dark toxicity and high photocytotoxic-
ity of T-BDP NPs were confirmed on A549 cells using the MTT and the AM/PI staining
method. Due to the strong emission of T-BDP NPs, their accumulation and subcellular
localization in cancer cells were observed using a laser confocal fluorescence microscope.
The results demonstrated that T-BDP NPs were mainly located in the lysosomes of cancer
cells. Thus, the as-prepared small molecule-based AIE nanoparticles hold great potential
for fluorescence imaging-guided PDT/PTT synergistic tumor therapy [106].

Phototherapeutic limitations, such as low light penetration depth and insufficiency of
photothermal agents, often hamper the efficacy of PDT and PTT. To solve these, Peroxyni-
trite (ONOO−), an oxidizing and nitrating agent involved in various physiological and
pathological processes, has been generated in-situ by SPN. For this, a cyanine dye-based
(Cy7) SPN was developed for improved phototherapy by in situ generation of ONOO−.
The Cy7 units in the SPN have dual functions as photosensitizer to produce ROS for PDT,
and heat source for PTT by NO gas release from N-nitrosated napthalimide (NORM) at
the same time. Since NO can react quickly with superoxide anion to generate ONOO−,
the enhanced phototherapy could be achieved by in-situ ONOO− produced by PCy7-NO
under NIR conditions [107].

Multifunctional theranostic systems having imaging and theranostic properties are
of great interest especially in clinical applications. For example, a mono-laser activatable
lipid-micelles modified SPN dots and a photosensitizer (Pdots/Ce6@lipid–Gd–DOTA
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micelles) for combined MRI/PAI and PDT/PTT bi-modal strategy have been developed
for therapeutic benefits on cancer. The aqueous dispersible SPN micelles were composed
of poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-
benzo-thiadiazole)] dots (Pdots) core having Ce6 molecules within them, followed by
lipid–PEG outlayer functionalized with gadolinium-1,4,7,10-tetraacetic acid. The prepared
Pdots/Ce6@lipid–Gd–DOTA micelles had excellent cytocompatibility, with significantly
relevant MRI/PAI capability, enabling simultaneous structural as well as topological
information concerning malignancies. The loaded Pdots and Ce6 within the micelles
had high NIR absorption at 670 nm enabling simultaneous PTT/PDT to obtain improved
synergistic anti-cancer effects both in-vitro and in-vivo. A HepG2 bearing tumor model was
used to confirm the efficacy of the prepared Pdots/Ce6@lipid–Gd–DOTA micelles [108].

4.4. Photo-Immuno Therapy

One of the great advantages of phototherapy is that it can effectively kill tumor cells
while inducing immunogenic cell death (ICD) to kick off a systemic antitumor immune
responses by redistributing and activating immune effector cells, cytokines and memory
T lymphocytes transformation [109]. Both PTT and PDT therapeutic strategies have been
combined with immunotherapy for better efficacy [110]. Even though there have been
various NPs based on inorganic/inorganic and their composites [111], little is known
for SPN based systems. Li et al. (2021), developed a SP nanoadjuvant (SPNIIR) for
photo-activable drug release for NIR-II/ PTT/immunotherapy. The nano adjuvants were
made using hydration-sonication method. SPNIIR consisted of a SPN core as an NIR-
II photothermal converter, which is doped with a toll-like receptor (TLR) agonist as an
immunotherapy adjuvant and coated with a thermally responsive lipid shell. Upon NIR-II
photoirradiation, SPNIIR effectively generated not only thermal effects enabling ICD, but
also the melting of lipid layers for effective on-demand release of the TLR agonist. It was,
therefore, concluded that the combination of ICD and activation of TLR7/TLR8 could
enhance the maturation of dendritic cells, resulting in the amplification of anti-tumor
immune responses [72].

One of the most relevant goal of combining nanomedicine with immunotherapy is to
have patient compliance and safety during treatment period with excellent efficacy. How-
ever, one of the main challenges in immunotherapy is its difficulty in controlling immune
response with spatiotemporal precision. To overcome such limitations, photo-sensitive
activatable polymeric pro-nanoagonist (APNA) have been reported. APNA was selectively
controlled by NIR-II waves for combined photo immunotherapy. These smart NIR probes
were made by covalent conjugation of an immunostimulant onto semiconducting trans-
ducer via heat sensitive linker molecule. Interestingly, when the NIR-II sensitive probes
were exposed under NIR-II laser, it had not just PTT tumor ablation and immunogenic cell
death, but additionally the heat sensitive linker molecules broke to un-cage the agonist
for in-situ immune activation in 8 mm seated solid 4T1 mouse tumor as well. This kind
of well-regulated combined PTT/in-situ immunotherapy could have great potential for
treating highly metastatic cancers (Figure 8) [76].

Tumor immunometabolism contributes substantially to tumor proliferation and im-
mune cell activity, and thus plays a crucial role in the efficacy of cancer immunotherapy.
Modulation of immunometabolism to boost cancer immunotherapy is mostly based on
small-molecule inhibitors, which often encounter the issues of off-target adverse effects,
drug resistance, and unsustainable response. In contrast, enzymatic therapeutics can po-
tentially bypass these limitations, but have been less exploited. Herein, an organic polymer
nanoenzyme (SPNK) with NIR photoactivatable immunotherapeutic effects was reported
for photodynamic immunometabolic therapy. SPNK was composed of a SP core conju-
gated with kynureninase (KYNase) via PEGylated singlet oxygen (1O2) cleavable linker.
Upon NIR photoirradiation, SPNK generates 1O2 not only to exert photodynamic effect
to induce the immunogenic cell death of cancer, but also to unleash KYNase and trigger
its activity to degrade the immunosuppressive kynurenine (Kyn). Such a combinational
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effect mediated by SPNK promoted the proliferation and infiltration of effector T cells,
enhancing systemic antitumor T cell immunity, and ultimately permitting inhibition of
both primary and distant tumors in living mice. Therefore, this study provided a promising
photodynamic approach toward remotely controlled enzymatic immunomodulation for
improved anticancer therapy [112].
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4.5. Photo-Radio Therapy

Photo-radio therapy typically combines principles of phototherapy along with radia-
tion therapy and such combinatorial therapy is expected to improve the clinical outcome
than that of their individual therapies [113–120].

For example, radio therapy suffers from tumor hypoxia [121–124], and in such cases,
it is important to supply sufficient O2 in the tumoral area to enhance the growth of tumor
cells, as they are in need of metabolizing O2 [125]. These limitations can be avoided by
hybrid semiconducting organosilica-based O2 nanoeconomizer pHPFON-NO/O2 platform.
There are two major mechanisms; (1) When pHPFON-NO/O2 interacts with the acidic
tumor microenvironment, releases sufficient NO for effective O2 conservation endoge-
nously; (2) O2 generation was in response to mild PTT effect for O2 infusion exogenously.
Additionally, PTT effect can be increased for ablating residual tumor cells with radio-
characteristic nature of NPs. This “reducing expenditure of O2 and broadening sources”
technique substantially enhance significantly reduce tumor hypoxia through many ways,
improving the therapeutic efficacy in-vitro and in-vivo. The preliminary experimental
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results clearly demonstrated the synergy between on-demand thermo-regulated PTT and
oxygen-elevated radiotherapy for complete tumor eradication (Figure 9) [126].
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Figure 9. (a) Synthetic procedures. First, sub-50 nm SP brush/fluorocarbon/phenylene triple-hybridized HPFON prepared
by deposition of bissilylated organosilica precursors onto an MSN template via hydrolysis based on the chemical homology
principle and selective MSN etching through an ammonia-assisted hot water etching strategy. Then, an in situ polymerization
method is applied to conjugate alkyl chains and PEG polymers onto the inner and outer shell of the HPFON for enhanced
hydrophobic drug loading as well as improved biocompatibility. Finally, SNAP and O2 were loaded onto the resultant
pHPFON to generate the pHPFON-NO/O2. (b) Schematic illustration of the binary “reducing expenditure and broadening
sources” tumor oxygenation strategy by programable delivery of NO and O2 with pHPFON-NO/O2 to overcome hypoxia-
associated therapy resistance for boosted anti-cancer radiotherapy. (Reprinted Permission from Nature, 2021 under creative
common license) [126].
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5. Future Perspectives

Even though there has been tremendous progress in SPN based theranostic drug
delivery systems, it is hard to believe that most of the work stopped just as “published
article”. Therefore, one has to critically think of bringing them from lab to market. In most
cases, the in-vivo results proved that SPN are nontoxic to major organs, such as the liver,
kidney, heart, brain, stomach, and intestine, owing to their neutral character. However,
novel and complex SPN systems have to be carefully evaluated for their long-term toxicity.
In many cases, the novel SPN based work limited to in-vitro experiments making it difficult
to understand their applicability for clinical purposes.

In the majority of the experimental results, in-vitro results look promising, however,
clinical relevance was not discussed or studied, and this must be taken into account.
Wide variety of semi conducting polymers have been synthesized not just for PTT/PDT
applications, but for imaging guided phototherapy as well, showing the huge progress in
organic synthesis. However, chemists need to understand the urge of in-depth testing of
such novel organic/inorganic hybrid materials in detail prior to biological applications.
Just in-vitro analysis would not be sufficient in most of cases, and in those situations,
in-vivo assessment of novel SPN based photo agents should be tested vigorously for its
long term exposure to human body and the environment.

It is a well-known fact that ultra-small sized NPs have easy renal clearance from the
body, and it is very important to reduce the long-term accumulation of novel NPs inside
the human body. One has to critically think of reducing particle size to ultra-small nano
range, typically less than 10 nm. While there are few such reports, as discussed in our
article, at the same time, many SPN have larger particle size (>10 nm to 200 nm) and their
in-vivo fate in terms of body accumulation and clearance is still questionable. Typically, an
ideal SPN system should possess good anti-cancer therapeutic efficacy without damaging
the neighboring or surrounding cells with an easy body clearance. The selectivity of SPN is
also an issue on which researchers should give more attention for further improving the
therapeutic outcome.

Nano-precipitation was reported to be the most well used method for synthesizing
NPs of semiconducting polymers, however, the obtained NPs, had size in the range of
10–200 nm depending up on the type of material as shown in Table 1. One has to think
of utilizing other methods that could produce better size in the ultra-small range, which
might facilitate easy renal clearance, reducing the risk of long-term accumulation in the
body as mentioned before.

In addition, scientists have to think of making composites or hybrids of SPN with
inorganic clay materials which might be useful for improving not only the efficacy but also
enhancing bio-availability with reduced organ toxicity. Clay materials, such as layered
double hydroxide (LDH), montmorillonite (MMT), and halloysite NPs, possess great
functionality owing to their easy modification properties and intercalating nature into the
interlayers. Typically, suitable drug molecules can be stabilized in the interlayer space of
such clay NPs so that one can achieve pH responsive drug delivery during SPN assisted
phototherapy. These kinds of approaches would protect the integrity of loaded therapeutic
agents until they reached the targeted tumor sites.

6. Conclusions

The semi conducting polymer based theranostic nanomaterials are expected to hold
great future in phototherapy, especially for PTT and PDT as mono and combined therapy,
owing to their exceptionally good opto-electronic properties. There have been tremen-
dous progress in developing new materials for phototherapy along with immuno/radio
therapies. However, the major issues such as long-term toxicity of SPN based theranostic
NPs remain unresolved. It is certain that SPN based research will keep growing, however
scientists have to focus on their negative side as well, making them highly suitable for
actual applications in cancer therapy. We believe that future studies on their safety, long
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term accumulation and clearance etc. would be highly beneficial for bringing SPN from
bench to market.
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