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Abstract

ChIP-seq, which combines chromatin immunoprecipitation (ChIP) with next-generation parallel sequencing, allows for the
genome-wide identification of protein-DNA interactions. This technology poses new challenges for the development of
novel motif-finding algorithms and methods for determining exact protein-DNA binding sites from ChIP-enriched
sequencing data. State-of-the-art heuristic, exhaustive search algorithms have limited application for the identification of
short (l, d) motifs (lƒ10, dƒ2) contained in ChIP-enriched regions. In this work we have developed a more powerful
exhaustive method (FMotif) for finding long (l, d) motifs in DNA sequences. In conjunction with our method, we have
adopted a simple ChIP-enriched sampling strategy for finding these motifs in large-scale ChIP-enriched regions. Empirical
studies on synthetic samples and applications using several ChIP data sets including 16 TF (transcription factor) ChIP-seq
data sets and five TF ChIP-exo data sets have demonstrated that our proposed method is capable of finding these motifs
with high efficiency and accuracy. The source code for FMotif is available at http://211.71.76.45/FMotif/.
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Introduction

Protein-DNA interactions play key roles in several cellular

processes and functions including DNA transcription, packaging,

replication, and repair. Identification of regions such as transcrip-

tion factor binding sites (TFBSs), which are targeted by proteins

called transcription factors (TFs), is crucial for a better under-

standing of transcriptional regulation. Although traditional

footprinting assays can accurately identify the precise binding

sites of any factor, this low-throughput method is highly technical

and can only be used to analyze a single small region (v1 kilobase

pairs (kb)) at a time. Chromatin immunoprecipitation followed by

high-throughput deep sequencing (ChIP-seq) enables genome-

wide detection of transcription factor binding sites as well as the

localization of epigenetic regulatory markers on a genomic scale

[1,2]. It typically returns millions of short (~35–50 base pairs (bps))

sequence tags mapped onto a reference genome from a sample

organism. Putative binding sites with high confidence can be

extracted from peak-enriched regions in the genome by peak-

calling programs [3]. However, the resolution of binding regions

identified from ChIP-seq can be a few hundred base pairs and is

one or two orders of magnitude larger than a typical TFBS. By

using an exonuclease that trims DNA regions at a precise distance

from binding sites, the novel ChIP-seq technique ChIP-exo is able

to locate binding sites at high resolution [4]. However, according

to the results in Rhee and Pugh [4], binding regions identified

from ChIP-exo experiments may be tens of bps away from the

exact binding locations, although some of them at the location

indicated by the experiments. Computational methods are still

needed to identify the exact binding locations of a TF in ChIP-seq

or ChIP-exo data sets.

Binding sites for a specific TF are often highly conserved and

have strong evidence for sequence specificity [5]. An actual DNA

region interacting with and bound by a single TF usually ranges in

size from 8–10 to 16–20 bps. In the past two decades, numerous

programs have been developed to identify over-represented DNA

sequence motifs from the promoters of co-regulated or homolo-

gous genes [6]. These programs can be divided into two groups.

The first includes profile-based methods such as CONSENSUS

[7], MEME [8], Gibsampler [9], AlignACE [10], PROJECTION

[11], and CRMD [12], each of which attempts to maximize a

statistic- or entropy-related score from a profile matrix (also called

a position weight matrix (PWM)). The second group is comprised

of consensus-based methods, which include SPELLER [13],

WEEDER [14,15], MITRA-count [16], Voting [17], PMSprune

[18], WINNOWER [19], iTriplet [20], VINE [21], Stemming

[22], and RecMotif [23]. These progams are designed to find

potential (l,d) motifs within DNA sequences [19], where l is the

length of a motif and d is the maximum number of mutations

between a predicted binding site and the motif consensus. In most

cases, profile-based methods are faster but suffer from lower
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accuracy due to their tendency to be trapped in a local optimum.

Consensus-based methods are more accurate but slower due to the

exponential growth of the search space with increasing values of l
and d.

Consensus-based methods can be further divided into two

categories: pattern-driven and sample-driven approaches [16]. A

pattern-driven approach attempts to enumerate all possible 4l l-
mer motifs with lexical order, while a sample-driven approach tries

to test all possible (l, d) motifs generated from real l-mers of input

sequences. For the methods mentioned above, SPELLER,

WEEDER, and MITRA-count are pattern-driven approaches

and Voting, PMPprune, WINNOWER, iTriplet, VINE, Stem-

ming, and RecMotif are sample-driven. By using pattern-driven

approaches (with the exception of MITRA-count), one can

automatically find planted (l, d ) motifs without prior knowledge

of the length l. On the contrary, sample-driven approaches require

that l be specified for each run. In real applications, the exact

length of motifs contained in a set of sequences is usually unknown.

The pattern-driven algorithm WEEDER has been successful in

real eukaryotic applications [24] but has not been improved upon

to the best of our knowledge. In this study, we have developed a

more powerful method to extract (l,d) motifs and their binding

locations contained in DNA sequences without prior knowledge of

motif length and have used this method to identify motifs and their

binding locations in ChIP-enriched regions.

The pattern-driven approach MITRA-count builds a mismatch

tree for all l-mers first, then traverses search space recursively from

the root down in depth-first order. Therefore, the length l of a

predicted motif must be specified in advance. SPELLER

enumerates all possible motifs in a depth-first manner throughout

the search space, then scans and counts all possible instances of the

current motif with length i (i[f1,2, � � � ,lg) from the suffix tree of

input sequences. The algorithm can identify planted (l, d) motifs

efficiently when lƒ13 and dƒ3 (see Table 1). In order to increase

the speed of SPELLER, WEEDER includes an error ratio e
(e^d=l) for the algorithm that narrows the search space such that

for all i[f1,2,:::,lg the number of mismatches between the first i
nucleotides of a candidate l-mer motif and the first i nucleotides of

a valid instance of the motif is at most ei. The algorithm can

accelerate SPELLER to some extent, especially when d=l is small

(e.g., d=lƒ0:25). Unfortunately, not all motif occurrences satisfy

this restriction. WEEDER must lower the occurrence frequency

qƒN to make sure exact motifs will not be missed. However,

WEEDER’s run time increases dramatically with the decrease of

q. For instance, for (15, 4), q should be lowered to half the number

of sequences at the OOPS constraint (one occurrence(s) of the

motif instance(s) per sequence) to make sure that the true motif will

be discovered [14]. However, WEEDER’s run time may be even

longer than SPELLER under the condition that the two

algorithms use the same programming techniques. Thus, a more

efficient method is needed to improve the efficiency of pattern-

driven algorithms without knowledge of the length of predicted

motifs under the ZOMOPS constraint (zero, one or multiple

occurrence(s) of the motif instance(s) per sequence).

Additionally, the programs mentioned above are not compu-

tationally efficient enough to process a large number of ChIP-seq

peaks. In recent years, several programs have been developed to

cope with large-scale ChIP-seq data. Some are ChIP-tailored

versions of previously-developed software (e.g., ChIP-MEME [25],

DREME [26], and GimmeMotifs [27]). These typically restrict

motif discovery to a few hundred peaks and usually ignore the

remaining unselected sequences. Other programs are faster

versions of previous software (e.g., STEME [28], ChIPMunk

[29], and HMS [30]). STEME is a faster version of MEME and

involves indexing sequences with a suffix tree, which accelerates

the expectation-maximization (EM) steps. ChIPMunk combines

EM with a greedy approach similar to CONSENSUS and

decreases the run time of the optimization procedure. HMS is an

improved version of Gibbs Sampler and combines stochastic

sampling with deterministic, greedy search steps. Another group of

programs integrate other information such as TFBS positional

priors [31] or transcription start sites [32] in order to optimize a

PWM of ChIP-enriched regions. As mentioned above, these

programs still have a local optimum problem. Similar to

SPELLER and WEEDER, some of these programs are consen-

sus-based methods (sometimes called word enumeration methods).

These include RSAT [33], Cisfinder [34] and POSMO [35].

RSAT is a word enumeration method and has been developed to

process whole ChIP-seq peak data sets, but is limited to short (l, d )

motifs (lƒ10,dƒ2). Cisfinder is a word clustering method and

combines short k-mer enumeration (k~7, 8, or 9) with a

clustering strategy. POSMO, also a word clustering method, uses

TFBS positional bias information along with k-mer enumeration

and clustering. However, both Cisfinder and POSMO use

clustering methods to group short k-mers and therefore cannot

find exact (l, d) motifs contained in sequences. Thus, finding exact

(l, d ) motifs with larger values of l and d in a large-scale sequence

data set is still very difficult.

According to a previous study by Keich and Pevzner [36], real

signals may be mixed with spurious motifs contained in

background sequences under the OOPS constraint when the

degenerative ratio t~d=lw0:25. A larger t makes it more difficult

to discriminate between a real motif and spurious motifs.

However, some sequences may not contain any occurrence of a

motif. As previously mentioned, we have concentrated on a more

generalized model (the ZOMOPS constraint). Under this

constraint, we have found that, except for the degenerative ratio

t, the ratio of noise sequences a~(N{Q)=N, where N is the

number of sequences and Q is the number of sequences containing

at least one variant of a motif, negatively affects (l, d ) motif

searches. A larger a leads to more spurious motifs in background

sequences. It is suspected that 30% of factor-bound locations in

Table 1. Comparisons between FMotif and other pattern-
driven algorithms on (l, d) samples with N~20, L~600, and
a~0% noise sequences.

(l,d); t~d=l SPELLER WEEDER(q) MITRA FMotif

(10, 2); t~0:2 17.16s-1 7.47s (19)-1 1.83s-2 0.59s-1

(11, 2); t~0:18 17.73s-1 32.53s (15)-1 1.82s-1 0.59s-1

(12, 3); t~0:25 4.42m-1 9.35m (15)-1 21.22s-1 6.77s-1

(13, 3); t~0:23 4.42m-1 2.80m (18)-1 21.25s-3 6.73s-1

(14, 4); t~0:28 1.05h-1 2.41h (15)-1 3.94m-1 1.32m-1

(15, 4); t~0:27 1.05h-1 1.08h (16)-1 3.93m-1 1.31m-1

(15, 5); t~0:33 { { 41.25m-2 15.51m2/

(16, 5); t~0:31 { { 41.19m-1 15.50m-1

(17, 6); t~0:35 { { 6.58h-1 3.17h2/

(18, 6); t~0:35 { { 6.84h-1 3.17h-1

‘WEEDER(q)’ indicates the execution time of WEEDER given the occurrence
frequency threshold q. ‘{’ indicates a run time of over 10 hours. s, m, and h are
the units of a run time and denote seconds, minutes, and hours respectively.
The number after each run time is the ranking number of a true planted motif
among the top 25 predicted motifs. ‘=’ after a run time indicates that the real
motifs were not in the top 25.
doi:10.1371/journal.pone.0086044.t001
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ChIP-seq data may be false positives [4]. Plus, there may be

different versions of DNA-binding motifs for any given TF. A

specified motif may only occur in 30% of binding regions.

Although false positive rates in ChIP-seq data sets are low enough

that statistical conclusions can be drawn in most cases, the noise

(plus the diversity of DNA-binding modes) still interrupts the

motif-finding process and alters motif-finding results. Thus, this

may not be the best way to identify motifs in full-size ChIP-seq

data sets. After running a peak-calling program on a raw ChIP-seq

data set, peaks along with their ChIP enrichment values, p-values,

or false discovery rates (FDRs) can be obtained. False positive

peaks are those with low peak enrichment values, p-values, or

FDRs. A better method may be to find motifs with a high

confidence value (i.e., those that are plentiful enough to draw

statistical conclusions) in peak-enriched regions and subsequently

scan their binding locations with the degenerative value d in the

remaining peak regions that have low peak enrichment values,

p-values, or FDRs. This would not only exclude more noise and

spurious motifs [37], but it would also take advantage of well-

developed motif-finding tools with an acceptable level of

scalability. A similar idea was used in MICSA and achieved good

performance [38]. However, MICSA used the optimal method

MEME (the accuracy of which is limited [12,19]) to get the PWM

of a motif for only the first three hundred peak-enriched regions.

In this study we have found that for motifs with length l, both

SPELLER and WEEDER have been designed to check each

i-mer (iƒl) in the pattern space with depth-first order and count

the variants of the i-mer in the suffix tree of sequences from the

root to layer i. The suffix tree is scanned one time for each i-mer

pattern. Thus, as i increases, the algorithms scan the suffix tree an

increasing number of times. In fact, the mismatch information in

layer i of a suffix tree can be used to search for (iz1)-mers in the

pattern space. For this reason, we constructed a new suffix tree

structure with mismatch information (called a mismatched suffix

tree) and developed a fast motif enumerative method (FMotif)

under the ZOMOPS constraint. Using the newly constructed

suffix trees, we incorporated the mismatch information in layer i of

the mismatched suffix trees to verify (iz1)-mers in the pattern

space. We then updated mismatch information in layer iz1 of the

mismatched suffix trees. In this way we were able to implement a

depth-first search within the pattern space and the mismatched

suffix trees simultaneously. To process large-scale ChIP-seq data

sets, we integrated the peak detection method MACS [39] with

our motif-finding method and ChIP-enriched sampling strategy,

which allowed us to locate the exact binding locations in ChIP-seq

and ChIP-exo data sets. We chose MACS because it has been

shown to perform well when compared to several other peak-

calling programs [3].

Results

Experimental Results on Artificial Data Sets
We compared FMotif with the existing pattern-driving methods

including SPELLER, WEEDER, and MITRA-count (MITRA for

short) on synthetic samples to show the efficiency of our proposed

method. All synthetic samples were generated following the

method of Pevsner and Sze [19], where Q (QƒN) variants of

an l-length motif were randomly planted into Q sequences selected

randomly from a set of N sequences with length L. In this (l, d )

model, each planted variant of the motif with length l had exactly

d mismatches with the motif itself.

In the first group of experiments, we tested the performance of

these algorithms on (l, d ) sample sets without noise sequences (i.e.,

Q~N ) at standard settings, where the number N and the length L

of sequences are set to 20 and 600, respectively [14,16,19]. These

test results are shown in Table 1. ‘WEEDER(q)’ indicates the

execution time of WEEDER given the occurrence frequency

threshold q. ‘{’ indicates a run time of over 10 hours. s, m, and h
denote seconds, minutes, and hours respectively. The number

after each run time is the ranking number of a true planted motif

among the top 25 predicted motifs. ‘=’ after a run time indicates

that the real motifs were not in the top 25. In the second group of

experiments, we first tested the influence of the ratio of noise

sequences a (a~(N{Q)=N) on (l, d) samples using FMotif with

typical settings (i.e., N~20 and L~600). In order to provide a

more comprehensive comparison of the calculation speed when

noise was added, we compared FMotif to SPELLER and MITRA

on (10, 2), (11, 2), (12, 3), and (13, 3) samples. We avoided

comparisons over motifs more complicated than (13, 3) because

SPELLER lacked computational efficiency on these problems and

WEEDER required tuning of parameter q. These test results are

shown in Table 2, where a is set at 5%,10%,15%, � � �, and 40%, ‘=’

indicates that the real motifs were not in the top 25, and the first

line for (10, 2), (11, 2), (12, 3) and (13, 3) is the FMotif result, the

second line (denoted by ‘M..’) is the MITRA result, and the third

line (denoted ‘S..’) is the SPELLER result. We then tested the

influence of the noise ratio a on samples with N~1000 and

L~100 to simulate ChIP-enriched regions because those regions

are usually relatively short and the number of regions is usually

large. We subsequently compared FMotif to SPELLER and

MITRA on (10, 2), (11, 2), (12, 3), and (13, 3) samples as before.

These test results are shown in Table 3, where a is set at

10%,20%, � � �, and 80%. In the third group of experiments, we

tested FMotif scalability using two groups of samples to see

whether it was suitable for recognizing motifs in large-scale ChIP-

enriched regions. The settings of the first group were L~100,

N~1000,2000, � � � ,8000 and no noise sequences (a~0%). These

test results are shown in Table 4. The settings of the second group

were L~100, N~1000,2000, � � � ,8000 and a~30% noise

sequences in order to mimick ChIP-seq data. These test results

are shown in Table 5. All experiments were performed on a

computer with an Intel 2.99 GHz processor, 2.00GB of main

memory, and the Windows XP operating system.

The results in Tables 1–5 lead to three observations. First,

FMotif is a fast and exact algorithm and capable of finding (l, d )

motifs in synthetic samples without being given the length l of a

predicted motif. It performs faster than SPELLER, MITRA, and

WEEDER without sacrificing accuracy. As mentioned above,

WEEDER’s efficiency suffers significantly (see (14, 4) in Table 1

for an example) when the occurrence frequency threshold q is too

low, and MITRA requires that the length l be specified a priori. It

should be noted that FMotif ranked all motifs with different

lengths together by significance score. For the samples whose true

motifs were not ranked in the top 25, the top motifs were usually

(l{1)- or (l{2)- substrings of the true motifs with length l. In

these cases the true motifs were still in the output list but were

ranked below the top 25. Second, noise sequences have a strong

effect on the results and the speed of the method. With an increase

in a, the run time increases as well. Like the degenerative ratio

t~d=l, the ratio of noise sequences a also weakens motifs,

especially when background sequences are long (see Table 2).

Spurious motifs in background sequences bury the authentic

signals when either t or a is large. For example, real motifs were

difficult to filter by their significance score for the (15, 5) motif in

Table 2, even when the noise sequence ratio was set to 5%. In this

case, many spurious motifs of length 14–15 with a large

significance score were ranked among the top 25. When the

length of background sequences was shorter and the number of

A Fast (l, d) Motif Finding Algorithm
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sequences was larger, the signals were stronger and could be easily

identified even if a large portion of noise sequences was added (see

Table 3). This is consistent with the previous result that false-

positives could be reduced by decreasing the sequence length or by

adding more sequences to the data set [37]. Third, as shown in

Tables 4 and 5, FMotif is capable of operating on a large scale

even when there are 30% noise sequences in samples. This allowed

us to use FMotif to process peak regions within ChIP-seq and

ChIP-exo data sets.

Additionally, we compared FMotif with CisFinder, which uses

k-mer enumeration with k-mer clustering to find motifs in large-

scale ChIP-seq peak regions. Using both algorithms, we verified

the accuracy of FMotif and CisFinder by searching for long (l, d )

motifs in synthetic sample sets with 3000 sequences, each of which

contained a planted variant of a parent motif. The experimental

results are shown in Table 6, where ‘Planted Motif’ indicates a

planted motif consensus in a set of sequences, ‘FMotif (Top-1)’

indicates the top ranked motif consensus found by FMotif in a

sample set, ‘CisFinder’ indicates the closest matching motif

consensus (described by IUPAC nucleotide codes) found by

CisFinder in a sample set, ‘#’ indicates the number of variants

of a reported motif found by FMotif or CisFinder in a sample set,

and ‘Rank’ after ‘#{’ is the ranking number of the reported motif

found by Cisfinder in Table 6.

We used the site-level sensitivity (sSn) and positive predictive value

(sPPV ) metrics described by Tompa [24] to statistically quantify

the accuracy of the two methods, where sSn~sTP=(sTPzsFN)
and sPPV~sTP=(sTPzsFP), sTP is the number of known sites

overlapping predicted sites, sFN is the number of known sites not

overlapping predicted sites, and sFP is the number of predicted

sites not overlapping known sites. A predicted site overlaps a

known site if they share at least a half of the length of known sites.

In order to give a more comprehensive comparison of the

accuracy of the two methods on simulated ChIP-seq data sets, we

added 30% noise sequences to samples with N~3000 and L~100
and performed the experiments again. These test results are shown

in Table 7.

As evident from Tables 6 and 7, FMotif is an exact algorithm. It

reported all true motif consensuses and their planted variants plus

false positive variants in background sequences. CisFinder

performed quickly but suffered from low accuracy (due to low

sensitivity), especially when t~d=l was large. FMotif and CisFinder

both were robust after 30 noise sequences were added to the

samples. It should be pointed out that, although there are various

resources on CisFinder’s website (http://lgsun.grc.nia.nih.gov/cis-

finder/download.html), we used only the motif-finding program.

There are other programs focused on motif clustering, motif

improvement, motif comparison, and other tasks. If all programs

were used together, a better motif and more of its binding sites

may be identified. However, the CisFinder algorithm [34] was

implemented in that motif-finding program and there was no

direct way to use all these programs together based on our

knowledge.

Experimental Results Using ChIP-seq Data Sets
We tested FMotif using 12 mouse ChIP-seq data sets for 12

DNA-binding TFs (CTCF, cMyc, Esrrb, Klf4, Nanog, nMyc,

Oct4, Smad1, Sox2, STAT3, Tcfcp2I1, and Zfx) involved in

mouse embryonic stem cell pluripotency and self-renewal [40].

These ChIP-seq data sets have been deposited in the GEO

database with ID number GSE11431. We also tested FMotif using

four widely used human ChIP-seq data sets for four DNA-binding

TFs including CTCF (CCCTC-binding factor [41], named

CTCF(h) in the paper), FoxA1 (hepatocyte nuclear factor 3a
[42]), NRSF (neuron-restrictive silencer factor [2]), and STAT1

(signal transducer and activator of transcription protein [1]). The

Table 2. Results for noise-influenced models on (l, d) samples with N~20, L~600, and a~5%, 10%, � � �, 40% noise sequences.

(l,d) 5% 10% 15% 20% 25% 30% 35% 40%

(10, 2) 0.78s-1 0.95s-1 1.06s-1 1.19s-1 1.30s-1 1.44s-3 1.63s-5 /

M.. 2.78s-1 3.05s-1 3.23s-1 3.44s-1 3.78s-1 4.83s-3 5.23s-15 /

S.. 38.99s-1 1.09m-1 1.53m-1 1.96m-1 2.51m-1 3.34m-3 4.69m-21 /

(11, 2) 0.77s-1 0.94s-1 1.06s-1 1.17s-1 1.30s-1 1.44s-1 1.61s-1 1.83s-1

M.. 2.77s-1 3.05s-1 3.23s-1 3.23s-1 3.44s-1 3.77s-1 4.38s-1 5.19s-1

S.. 38.13s-1 1.08m 1.52m-1 1.95m-1 2.48m-1 3.31m-1 4.66m-1 6.53m-1

(12, 3) 9.16s-1 11.69s-1 13.92s-1 15.88s-1 17.61s-6 / / /

M.. 33.13s-1 33.23s-1 39.28s-1 43.45s-1 46.64s-4 50.36s-20 / /

S.. 9.78m-1 17.69m-1 26.94m-1 36.16m-1 45.64m-2 58.11m-8 / /

(13, 3) 9.17s-1 11.64s-1 13.95s-1 15.88s-1 17.63s-1 19.50s-5 21.83s-2 24.80s-1

M.. 27.23s-1 34.38s-1 40.22s-1 43.44s-1 46.66s-1 50.58s-1 57.14s-1 1.12m-1

S.. 9.80m-1 17.71m-1 27.07m-1 36.12m-1 45.80m-1 58.33m-1 1.30h-1 1.79h-1

(14, 4) 1.85m-1 2.33m-1 2.89m-9 3.47m-5 / 4.52m-20 / /

(15, 4) 1.82m-1 2.32m-1 2.89m-1 3.48s-1 4.03m-1 4.52m-3 5.02m-3 5.66m-1

(15, 5) / / / / / / / /

(16, 5) 22.90m 29.52m-1 36.05m-1 / / / / /

(17, 6) / / / / / / / /

(18, 6) 5.18h 7.07h-1 / / / / / /

The ratio of noise sequences a is set at 5%,10%,15%, � � �, and 40%, ‘=’ indicates that the real motifs were not in the top 25. The number after each run time is the ranking
number of a true planted motif among the top 25 predicted motifs. The first line for (10, 2), (11, 2), (12, 3) and (13, 3) is the FMotif result, the second line (denoted by
‘M..’) is the MITRA result, and the third line (denoted ‘S..’) is the SPELLER result. s, m, and h denote seconds, minutes, and hours respectively.
doi:10.1371/journal.pone.0086044.t002
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raw sequence of the FoxA1 ChIP-seq data set was downloaded

from http://liulab.dfci.harvard.edu/MACS/Sample.html. The

bed format of the CTCF, NRSF and STAT1 ChIP-seq data sets

was downloaded from http://dir.nhlbi.nih.gov/papers/lmi/

epigenomes/sissrs/. These downloaded short reads were mapped

onto the newest version of mouse genome assembly mm10 and

human genome assembly hg19, respectively. The peak regions

were extracted from these reads using the peak finding program

MACS [39] with a false discovery rate (FDR) threshold of 0.2. The

reads were ranked by their FDR if a negative control was

available, or by p-value otherwise. To prepare the data sets for use

with motif discovery algorithms, we mapped the summits of the

ChIP-seq peaks and extracted the 100 bps of genomic sequence

centered around each peak.

In order to facilitate a fast motif search, avoid the potential

influence of false positive peaks, and reduce false positive motifs in

background sequences [37], we ran FMotif on the first 3000 ChIP-

enriched genomic sequences and then scanned for potential

binding locations in the remaining genomic sequences with the

degenerative value d. Since binding sites could exist on either

DNA strand and CisFinder searched both, we counted the

instances of a predicted motif and those of its reverse complement

motif. We then compared FMotif with CisFinder and published

motifs [2,40,42–44] in literature. The experimental results are

shown in Figures 1 and 2, where ‘Nb’ indicates the number of

peak-enriched regions predicted by the peak-calling program

MACS with an FDR threshold of 0.2 or a p-value threshold of

10{5, ‘FMotif’ and ‘CisFinder’ indicate the closest matching motif

logos found by these programs (all motif logos were generated

using the web-based tool Weblogo [45]), ‘Literature’ indicates the

corresponding motif logos published in literature, ‘#’ indicates the

number of binding sites found by either FMotif or CisFinder, and

‘Rank’ after ‘#{’ is the ranking number of a reported motif found

by either FMotif or CisFinder.

We compared predicted and published motifs using a motif-

level accuracy measure called the performance coefficient

EU\VE=EU|VE, where U is a predicted motif consensus and

V is the motif consensus published in literature [19]. As shown in

Figures 1 and 2, the motif logos found by FMotif were more

accurate compared with published logos from literature than those

found by CisFinder. Furthermore, FMotif identified more TFBS

locations than CisFinder. As for the 12 mouse TFs DNA-binding

logos in [40], Chen et al. used the motif discovery algorithm

WEEDER and subsequently extended the motifs using an

expectation-maximization method. This second step was necessary

because the supplied version of the WEEDER algorithm limited

the motif search to a maximum of 12 bps. As discussed in the

previous sections, WEEDER operated with low efficiency for long

motifs and was difficult to tune for the parameter q.

To estimate the robustness of our sampling strategy, we ran

FMotif on the first 500, 1000, 1500, …, and 5000 sequences and

the full-size ChIP-enriched genomic sequences of TFs n-Myc,

Oct4, and NRSF. For all subsets and the full-size data sets, each of

the corresponding motifs in Figures 1 and 2 was ranked within the

top 25 motifs predicted by FMotif. The ranking number of

reported motifs increased with subset size and tended to be stable

when the size was greater than 1000. All potential binding sites of

reported motifs were obtained from subsets and discovered during

the scanning step. Thus, it was not necessary to run a motif-finding

algorithm on the whole ChIP-seq data sets, especially when data

sets were very large. Additionally, we tested FMotif on N
randomly selected sequences (N = 500, 1000, 1500, …, and

3000). These experiments were repeated 10 times. We then

compared these results to those of the first N sequences and those

of the last N sequences for TFs n-Myc, Oct4, and NRSF. In

general, motif consensuses predicted from the first N sequences

were the most similar to published motifs and ranked highest in

the final output. Those predicted from randomly selected N
sequences tended to be ranked second, while those predicted from

the last N sequences were usually ranked the lowest. Furthermore,

for the same reported motif of a TF, the number of binding sites

found in the first N sequences was significantly greater than that

Table 3. Results for noise-influenced models on (l, d) samples with N~1000, L~100, and a ~10%, 20%, � � �, 80% noise
sequences.

(l,d) a~10% a~20% a~30% a~40% a~50% a~60% a~70% a~80%

(10,2) 6.39s-1 7.63s-1 10.36s-1 12.95s-1 13.63s-1 14.64s-1 23.13s-1 24.84s-6

M.. 12.44s-1 12.49s-1 19.38s-1 31.61s-1 31.97s-1 32.29s-1 1.47m-1 1.64m-1

S.. 1.23m-1 2.29m-1 6.84m-1 10.68m-1 12.72m-1 15.03m-1 1.05h-1 1.23h-1

(11,2) 6.41s-1 7.70s-1 10.28s-1 12.59s-1 13.60s-1 14.66s-1 23.01s-1 24.86s-2

M.. 12.41s-1 12.66s-1 18.58s-1 31.44s-1 31.86s-1 32.16s-1 1.41m-1 1.64m-1

S.. 1.03m-1 2.09m-1 5.86m-1 10.64m-1 12.74m-1 15.08m-1 1.05h-1 1.23h-1

(12,3) 1.19m-1 1.44m-1 1.66m-1 2.40m-1 2.94m-1 3.25m-1 3.56m-1 /

M.. 2.44m-1 2.84m-1 2.87m-1 4.55m-1 7.92m-1 7.98m-1 8.63m-1 25.91m-1

S.. 15.45m-1 32.14m-1 45.25m-1 2.22h-1 3.80h-1 4.42h-1 6.00h-1 22.34h-1

(13,3) 1.18m-1 1.43m-1 1.66m-1 2.33m-1 2.91m-1 3.50m-1 3.56m-1 5.72m-10

M.. 2.33m-1 2.84m-1 2.87m-1 4.31m-1 7.90m-1 7.96m-1 8.41m-1 25.90m-1

S.. 15.39m-1 32.30m-1 46.20m-1 2.20h-1 3.82h-1 4.40h-1 5.92h-1 22.25h-1

(14,4) 10.03m-1 16.35m-1 19.17m-1 21.63m-1 30.65m-1 42.05m-1 45.05m-1 /

(15,4) 10.07m-1 16.36m-1 19.19m-1 21.78m-1 30.67m-1 42.02m-1 45.04m-1 /

(15,5) 1.69h-1 2.23h-1 3.84h-1 4.66h-1 5.18h-1 7.38h-1 10.60h-13 /

(16,5) 1.70h-1 2.24h-1 3.89h-1 4.67h-1 5.20h-1 7.38h-1 10.61h-3 /

The ratio of noise sequences a is set at 10%,20%, � � �, and 80%. Row definitions are the same as those in Table 2.
doi:10.1371/journal.pone.0086044.t003

A Fast (l, d) Motif Finding Algorithm

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e86044



found in randomly selected N sequences. The number of

predicted binding sites found in the last N sequences was the

lowest. In some cases there was no corresponding motif in

randomly selected N sequences or in the last N sequences when

employing the same parameter settings. This situation occurred

more often when using the last N sequences. Therefore, we

decided that the first N sequences with the lowest p-value or FDR

(i.e., the most ChIP-enriched sequences) were the best choice for

drawing statistical conclusions about a corresponding motif. This is

because, as discussed in the Introduction section, the first N
sequences were the least affected by noise. We selected the first

3000 peak regions to be sure that the selected subsets were large

enough to account for the specificity of TF-DNA binding and to

exclude false positive motifs. The same results may be obtained by

running the algorithm on the first 1000–2000 sequences and then

scanning potential locations in the remaining sequences.

FMotif Sensitivity
To test the sensitivity of FMotif, we ran it on an NRSF-positive

TFBS set (NRSF/qPCR), which was composed of 83 binding sites

verified by qPCR [2]. We then ran FMotif on four yeast DNA-

binding TFs (Reb1, Gal4, Phd1, and Rap1) and one human TF

(CTCF) ChIP-exo data sets. Raw sequence of the five ChIP-exo

data sets are available from the NCBI Sequence Read Archive

with accession number SRA0044886 [4]. Since it is thought

that w98% of ChIP-exo peak regions contain one recognizable

DNA-binding motif within tens of bps away from peak summits,

these can be viewed as positive TFBS sets. We used the five ChIP-

exo peaks reported in Data S1 from Rhee and Pugh [4]. Similarly,

we mapped the summits of ChIP-exo peaks and extracted 50 bps

of genomic sequence centered around each peak in yeast genome

sacCer3 and human genome hg19, respectively. This allowed us to

avoid peak regions overlapping with each other due to some of the

summits of ChIP-exo peaks being very close together. Results from

CisFinder and published motifs [2,4,43,46–48] in literature are

shown for comparison (see Figure 3).

As shown in Figure 3, FMotif was capable of finding more

matching motifs and true TF-binding locations when compared to

CisFinder. For example, 76 true binding sites of NRSF/qPCR

were predicted exactly by FMotif. On the same data set (NRSF/

qPCR), MICSA [38] using MEME reported only 55 sites. This

highlights the fact that FMotif is capable of identifying TF-binding

locations with high sensitivity. It is well-established that specificity

is an important consideration for this type of method. However,

the ChIP-exo technique is a high-throughput approach, and the

resolution of binding regions identified by ChIP-exo may still be

tens of base pairs from where the true binding sites of between 8

and 25 base pairs are located. In addition, some of those binding

regions are false positives, and it is difficult to say which ones are

truly false positives without carefully designed wet-lab experi-

ments. However, we show the specificity (i.e., sPPV ) of FMotif for

artificial samples in Tables 6 and 7. From this information we

Table 4. A demonstration of FMotif scalability on (l, d) samples for N~1000,2000, � � � ,8000 sequences, L~100, and no (a~0%)
noise sequences.

(l,d) 1000 2000 3000 4000 5000 6000 7000 8000

(10, 2) 3.34s-1 8.05s-1 11.90s-1 15.80s-1 19.58s-1 23.34s-1 26.83s-1 42.81s-1

(11, 2) 3.36s-1 8.08s-1 11.86s-1 15.61s-1 19.45s-1 23.16s-1 26.84s-1 39.25s-1

(12, 3) 33.41s-1 1.31m-1 1.84m-1 2.38m-1 2.78m-1 3.32m-1 4.03m-1 4.46m-1

(13, 3) 34.62s-1 1.30m-1 1.85m-1 2.40m-1 2.84m-1 3.32m-1 3.82m-1 4.33m-1

(14, 4) 4.51m-1 10.22m-1 15.14m-1 19.93m-1 24.85m-1 29.54m-1 34.25m-1 39.03m-1

(15, 4) 4.52m-1 10.30m-1 15.23m-1 20.05m-1 24.87m-1 29.16m-1 34.38m-1 39.26m-1

(15, 5) 35.06m-1 1.46h-1 2.15h-1 2.68h-1 3.21h-1 3.75h-1 4.27h-1 4.77h-1

(16, 5) 35.02m-1 1.47h-1 2.13h-1 2.70h-1 3.24h-1 3.84h-1 4.27h-1 4.75h-1

The number after each run time is the ranking number of a true planted motif among the top 25 predicted motifs. s, m, and h denote seconds, minutes, and hours
respectively.
doi:10.1371/journal.pone.0086044.t004

Table 5. A demonstration of FMotif scalability on (l, d) samples for N~1000,2000, � � � ,8000 sequences, L~100, and a~30% noise
sequences.

(l,d) 1000 2000 3000 4000 5000 6000 7000 8000

(10, 2) 10.33s-1 26.19s-1 45.16s-1 1.10m-1 1.63m-1 2.09m-1 2.70m-1 2.97m-1

(11, 2) 10.33s-1 25.89s-1 45.30s-1 1.09m-1 1.49m-1 1.90m-1 2.43m-1 2.88m-1

(12, 3) 1.66m-1 4.13m-1 7.26m-1 10.70m-1 14.07m-1 17.52m-1 21.40m-1 25.76m-1

(13, 3) 1.66m-1 4.15m-1 7.27m-1 10.72m-1 14.06m-1 17.56m-1 21.51m-1 25.94m-1

(14, 4) 19.14m-1 45.85m-1 1.28h-1 1.90h-1 2.59h-1 3.24h-1 3.88h-1 4.52h-1

(15, 4) 19.16m-1 45.81m-1 1.29h-1 1.91h-1 2.59h-1 3.25h-1 3.89h-1 4.54h-1

(15, 5) 3.86h-1 8.83h-1 14.70h-1 21.28h-1 28.40h-1 35.48h-1 43.08h-1 50.36h-1

(16, 5) 3.87h-1 8.61h-1 14.64h-1 20.81h-1 28.52h-1 35.15h-1 43.35h-1 51.22h-1

Row and column definitions are the same as those in Table 4.
doi:10.1371/journal.pone.0086044.t005
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Table 6. Comparisons between FMotif and CisFinder on large (l, d) samples with L~100, N~3000, and no (a~0%) noise
sequences.

(l,d) Planted Motif FMotif (Top-1) CisFinder (#-Rank)

(#)–(sSn)–(sPPV) (#-Rank)–(sSn)–(sPPV)

(10, 2) CACGAGAACC CACGAGAACC CACGANAACC

(3108)–(1.0)–(0.97) (66-1)–(0.02)–(0.98)

(11, 2) TTGACAAGGAT TTGACAAGGAT TTVACAASGA

(3026)–(1.0)–(0.99) (186-1)–(0.06)–(0.96)

(12, 3) TCCATTAGGTGG TCCATTAGGTGG CCWMCTAABKGAMC

(3089)–(1.0)–(0.97) (80-1)–(0.02)–(0.93)

(13, 3) CGATAGGTCTATG CGATAGGTCTATG ATAGKYCTA

(3026)–(1.0)–(0.99) (148-1)–(0.05)–(0.96)

(14, 4) AGCTATCTATTTAA AGCTATCTATTTAA TAAANWGATA

(3161)–(1.0)–(0.95) (75-1)–(0.02)–(0.85)

(15, 4) GATCACACGGAAACC GATCACACGGAAACC CACACGGAAAC

(3022)–(1.0)–(0.99) (109-3)–(0.04)–(0.98)

(15, 5) GGTGGGGCGGGCGAT GGTGGGGCGGGCGAT CMGGYYGGGKCG

(3371)–(1.0)–(0.89) (40-1)–(0.01)–(0.77)

(16, 5) GAGGCTTGTAAACGTT GAGGCTTGTAAACGTT GGMGKGTAAAMGTTKC

(3062)–(1.0)–(0.98) (59-1)–(0.02)–(0.85)

‘Planted Motif’ indicates a planted motif consensus in a set of sequences, ‘FMotif (Top-1)’ indicates the top ranked motif consensus found by FMotif in a sample set,
‘CisFinder’ indicates the closest matching motif consensus (described by IUPAC nucleotide codes) found by CisFinder in a sample set, ‘#’ indicates the number of
variants of a reported motif found by FMotif or CisFinder in a sample set, and ‘Rank’ after ‘#{’ is the ranking number of the reported motif found by Cisfinder. The site-
level sensitivity (sSn) and positive predictive value (sPPV ) metrics described by Tompa [24] were used to statistically quantify the accuracy of the two methods, where
sSn~sTP=(sTPzsFN) and sPPV~sTP=(sTPzsFP), sTP is the number of known sites overlapping predicted sites, sFN is the number of known sites not
overlapping predicted sites, and sFP is the number of predicted sites not overlapping known sites. A predicted site overlaps a known site if they share at least a half of
the length of known sites.
doi:10.1371/journal.pone.0086044.t006

Table 7. Comparisons between FMotif and CisFinder on large (l, d) samples with L~100, N~3000, and a~30% noise sequences.

(l,d) Planted Motif FMotif (Top-1) CisFinder

(#)–(sSn)–(sPPV) (#-Rank)–(sSn)–(sPPV)

(10, 2) TGACCCCACG TGACCCCACG YHGAYCHMACGSM

(2192)–(1.0)–(0.96) (65-2)–(0.03)–(0.89)

(11, 2) GCGGTGTACCA GCGGTGTACCA GCGGTNTACC

(2130)–(1.0)–(0.99) (120-2)–(0.06)–(0.99)

(12, 3) CACGGGCCTTAG CACGGGCCTTAG CAKSGGCCBBAG

(2182)–(1.0)–(0.96) (61-2)–(0.03)–(0.85)

(13, 3) TTCAGTAAGCACG TTCAGTAAGCACG TTCRGTAARCAYG

(2124)–(1.0)–(0.99) (99-1)–(0.05)–(0.96)

(14, 4) GCAAGTCACCGTGT GCAAGTCACCGTGT RVAAGTVVBNGTGT

(2167)–(1.0)–(0.97) (42-2)–(0.02)–(0.90)

(15, 4) AAGGTGTTGGTATGG AAGGTGTTGGTATGG AARGTGTTGGTATGGG

(2137)–(1.0)–(0.98) (70-2)–(0.03)–(0.90)

(15, 5) AATACTGTGCATGGA AATACTGTGCATGGA AATWCTGTSCA

(2272)–(1.0)–(0.92) (27-1)–(0.01)–(0.70)

(16, 5) AGCTTGCCAGCGACGT AGCTTGCCAGCGACGT VGCTSKCCAGCWACGT

(2145)–(1.0)–(0.98) (51-1)–(0.02)–(0.90)

Column definitions are the same as those in Table 6.
doi:10.1371/journal.pone.0086044.t007
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Figure 1. Motifs in 12 mouse ES Cell ChIP-seq data sets. FMotif was tested using mouse ChIP-seq data sets for 12 DNA-binding TFs (CTCF,
cMyc, Esrrb, Klf4, Nanog, nMyc, Oct4, Smad1, Sox2, STAT3, Tcfcp2I1, and Zfx) involved in mouse embryonic stem cell pluripotency and self-renewal
[40]. Results from CisFinder and published motifs in literature are shown for comparison. ‘Nb’ indicates the number of peak-enriched regions
predicted by the peak-calling program MACS with an FDR threshold of 0.2 or a p-value threshold of 10{5 , ‘FMotif’ and ‘CisFinder’ indicate the closest
matching motif logos found by these programs (all motif logos were generated using the web-based tool Weblogo [45]), ‘Literature’ indicates the
corresponding motif logos published in literature, ‘#’ indicates the number of binding sites found by either FMotif or CisFinder, and ‘Rank’ after ‘#{’
is the ranking number of a reported motif found by either FMotif or CisFinder.
doi:10.1371/journal.pone.0086044.g001

Figure 2. Motifs in 4 human TF ChIP-seq data sets. FMotif was tested with four widely used human ChIP-seq data sets for four DNA-binding TFs
including CTCF (CCCTC-binding factor [41], named CTCF(h)), FoxA1 (hepatocyte nuclear factor 3a [42]), NRSF (neuron-restrictive silencer factor [2]),
and STAT1 (signal transducer and activator of transcription protein [1]). Results from CisFinder and published motifs in literature are shown for
comparison. Column definitions are the same as those in Figure 1.
doi:10.1371/journal.pone.0086044.g002
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conclude that FMotif has both a higher sensitivity and a higher

specificity than CisFinder.

Discussion

In this study, we have proposed a new and fast heuristic

enumeration method, FMotif, for extracting motifs from sequenc-

es. We have used this method to identify motifs and their binding

locations in widely-used large-scale ChIP-seq and ChIP-exo data

sets by combining FMotif with a peak-enriched sampling strategy.

Our empirical studies have shown that this algorithm is fast and

exact when searching for motifs in (l, d) samples and has achieved

good performance when identifying motifs in ChIP-enriched

regions. In addition, the ChIP-enriched sampling strategy worked

well on large-scale ChIP-seq and ChIP-exo data sets. It not only

allowed us to exclude both noise occurring in lower ChIP-enriched

peak regions and false positive motifs contained in background

sequences, but also let us take advantage of well-developed motif-

finding tools with low-level scalability. However, it should be

pointed out that, in general, no method can outperform others

under all conditions. FMotif performed faster than SPELLER,

WEEDER, and MITRA but used more memory to store mis-

matched information in suffix trees, and FMotif was much more

accurate but much slower than CisFinder. FMotif does, however,

provide a good trade-off between time, space, and accuracy.

Motif discovery has been a popular area of study for more than

two decades. Many successful motif-finding programs have been

developed. The programs are ideal for finding motifs in tens or

hundreds of promoters of co-regulated or homologous genes and

for extracting motifs in genome-wide ChIP-enriched regions

contained in large-scale ChIP-chip, ChIP-seq, and ChIP-exo data

sets. Still, the problem is far from solved due to diversity in gene

expression/regulation and the low specificity of binding sites. With

the advance of high-throughput and high-resolution sequencing

techniques like ChIP-exo, researchers have an increasing number

of tools for studying gene regulation on a genomic scale. This will

make the motif-finding problem easier to solve. Using advanced

techniques such as ChIP-exo, it is possible to acquire new

knowledge of regulatory binding sites. This will not only be

beneficial for understanding the mechanisms of gene regulation,

but also for creating a proper computational model that will

replace (l, d ) models and PWM matrix profiles for motif

representation.

Materials and Methods

The (l, d) Motif Search and Suffix Tree
A transcription factor binds to specific DNA sequences and is

involved in controlling the transcription of genetic information

from DNA to mRNA. The actual DNA regions bound by a TF

usually range in size from 8–10 to 16–20 bps and display a short

motif, but differ by a few nucleotides from one another. The

computational problem is to determine such a motif by analyzing a

set of sequences that contain instances of the motif.

In current literature, there are two main approaches to motif

representation. The first involves using a motif profile character-

Figure 3. FMotif sensitivity. FMotif sensitivity was measured using an NRSF-positive TFBS set (NRSF/qPCR), which was composed of 83 binding
sites verified by qPCR [2], four yeast DNA-binding TFs (Reb1, Gal4, Phd1, and Rap1), and one human TF (CTCF) ChIP-exo data sets. Results from
CisFinder and published motifs in literature are shown for comparison. Column definitions are the same as those in Figure 1.
doi:10.1371/journal.pone.0086044.g003

A Fast (l, d) Motif Finding Algorithm

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e86044



ized by a PWM ½pj,k�l|4. The PWM records the probability of an

observed nucleotide k (k[fA,C,G,Tg) at position j
(j~f1,2, � � � ,lg) for all aligned sites, where l is the length of the

motif. Numerous programs have been developed to maximize the

score of a PWM by measuring, for example, the information

content of a PWM:

IC~{
X

i,j

pi,j
:log pi,j

�
pb

� �

where pb is the background frequency for the nucleotide, which

measures motif conservation [7]. Using the second approach, one

can characterize a motif as an l-length consensus string and

describe it using the most frequent nucleotide in each position of

all aligned sites under the assumption that each sequence contains

zero or one motif instance with up to d or exactly d mutations

within the motif. Finding (l, d) motifs with exactly d mutations is

more challenging than finding (l, d ) motifs with up to d mutations,

and algorithms designed for the former can usually be directly

used to find the latter. In addition, profile-based optimization

methods, e.g., CONSENSUS and MEME, have failed to find (l, d )

motifs such as (15, 4), where a 15-bp motif is planted into 20

sequences, each 600 bps in length with exactly 4 mismatches [19].

Thus, in this study we focus on designing a fast and exact

algorithm to find (l, d) motifs with exactly d mutations on (l, d )

samples.

When searching for the exact motifs contained in an (l, d )

sample, it is customary to perform an exhaustive search for all

potential l-mers and verify their occurrence in the entire sample

set. When using SPELLER and WEEDER to perform fast l-mer

substring searching in a sequence set, a suffix tree structure is used

to index sequences. A suffix tree presents the suffixes of a given

string or a given set of strings in a way that allows for a very fast

implementation of string operations. An example of a classic suffix

tree for the string GAGAC is shown in Figure 4a. When the suffix

tree of a string with length L is constructed, searching for a

substring of length l (lƒL) in the string only requires time

proportional to O(l) instead of O(L).

Nevertheless, it is still time consuming to perform an exhaustive

motif search in a suffix tree of sequences because the search space

(shown as a four-branch tree in Figure 4b) can be up to 4l in size.

With the increase in degenerative value d , the valid instances of a

motif in the suffix tree will increase dramatically. Therefore,

SPELLER can handle only short (l, d) motifs with lƒ13 and

dƒ3. In order to increase the speed of SPELLER, WEEDER

introduces an error ratio e (e^d=l) to narrow the search space

such that for all i[f1,2,:::,lg, the number of mismatches between

the first i nucleotides of a candidate l-mer motif and the first i

nucleotides of a valid instance of the motif is at most ei. The

strategy can quickly discard l-mers in the search space that do not

satisfy this restriction. However, not all motif occurrences satisfy

this restriction, and therefore the real motif may be missed by the

algorithm. WEEDER lowers the occurrence frequency qƒQƒN
to make sure that the true motif will not be missed. Still,

WEEDER is an almost exact algorithm. What’s more, with the

decrease of q, WEEDER’s run time will increase dramatically

[14]. Therefore, a fast and exact (l, d) motif search method is

needed.

Mismatched Suffix Trees and FMotif
SPELLER and WEEDER use a depth-first search to scan the

entire pattern space. If an i-mer along the pattern tree has enough

instances in the suffix tree of sequences, the i-mer can grow up to 4

(iz1)-mers in the next layer of the pattern tree (see Figure 4b).

Otherwise, the end node of an i-mer in the pattern tree will not be

allowed to grow and the sibling nodes of the i-mer will be checked.

If any of the sibling nodes can grow to the (iz1)-th layer in the

pattern tree, the search process will go down to the (iz1)-th layer

of the pattern tree in a depth-first manner. Otherwise, it will

backtrack to the uncle nodes (the siblings of parent nodes) of the i-
mer in the (i{1)-th layer of the pattern tree and so forth. The

algorithms will end at the longest l-mer or l-mers in the pattern

tree. The difference between SPELLER and WEEDER is that

WEEDER reduces the number of possible instances of a motif by

restricting its mutation locations such that the valid paths on the

pattern tree are sharply reduced.

We discovered that for finding motifs with length l, both

SPELLER and WEEDER must check each i-mer (iƒl) in the

pattern space with depth-first order and count the variants of the i-
mer in the suffix tree of sequences from the root to layer i. The

suffix tree is scanned one time for each i-mer pattern. Thus, the

algorithms scan the suffix tree an increasing number of times with

the increase of i. Actually, the mismatch information in layer i of a

suffix tree can be used to search (iz1)-mers in the pattern space.

In this work we constructed a new suffix tree structure with

mismatch information, called a mismatched suffix tree, for each

sequence. Using these trees, we took advantage of the mismatch

information in the i-th layer of the trees to verify (iz1)-mers in the

pattern space and then updated the mismatch information in the

(iz1)-th layer. In this way we were able to implement a depth-first

search on the pattern space and mismatched suffix trees

simultaneously, which avoided a large number of repeated scans

on the suffix trees of sequences.

For instance, when searching occurrences of (4, 1) motifs in the

sequence GAGAC, we started from the root of the pattern tree

represented as P0~7 in Figure 5a and initialized the mismatched

suffix tree for the sequence GAGAC. We then checked the

occurrences of pattern P1~A with up to 1 mismatch in the

mismatched suffix tree and found that all nodes in the first layer

have 0 or 1 mismatch(es) with P1. Next, we updated the mismatch

value along the valid nodes and linked all of these nodes by points

(see Figure 5b). We subsequently performed a depth-first search

again and arrived at the pattern P2~AA. We updated mismatch

information for all child nodes of the nodes in the link set in the

first layer by using the mismatch information of those nodes in the

link set and found all nodes in the second layer had 1 mismatch

with the pattern P2~AA. We updated the mismatch value along

the valid nodes in the second layer and linked all of these nodes by

points to form a new link set (see Figure 5c). Then, we moved to

the pattern P3~AAA in a depth-first manner and updated

mismatch information of all child nodes of the nodes in the newly

generated link set by using the mismatch information of those

nodes in the new link set. We found that only the child node A,

representing the 3-mer AGA from the root to node A in the third

layer of the suffix tree, had 1 mismatch with the pattern P3~AAA
(see Figure 5d). Other nodes with 2 mismatches did not need to be

updated and checked for the longer pattern AAAA. We found that

the child node of the node A in the third layer did not satisfy the 1-

mismatch restriction with the pattern AAAA, so we looked at the

pattern P4~AAAC and found a (4, 1) occurrence of P4 (see

Figure 5e). We then went to the patterns AAAG and AAAT and

found no occurrence of these patterns in the sequence GAGAC.

We backtracked to the pattern P03~AAC and updated the

mismatch information in the third layer by using the mismatch

information of their parent nodes in link set of the second layer.

There we found that only node C in the third layer satisfies the

restriction (see Figure 5f), but that node C has no child. We then
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backtracked to pattern AAG and continued the process as before

until we found all occurrences for each (4, 1) motif. The details of

the pattern search and mismatched suffix tree construction are

shown in the subroutine PatternOnTree(Pk,d,T ,List(Pk{1,T)),
where T is the mismatched suffix tree for a sequence, Pk is the

node currently being processed (representing a k-mer pattern) in

the k-th layer of the pattern tree, List(Pk{1,T) is the link set

representing all valid occurrences of the (k{1)-mer pattern

represented by the node Pk{1 in the (k{1)-th layer of the pattern

tree, and MMC(njk) is mismatch value of the pattern represented

by Pk compared with the substring represented by the node njk in

the tree T .

PatternOnTree(Pk,d,T ,List(Pk{1,T))

Initialize List(Pk,T)~1;

for ni,k{1~head node to tail node of List(Pk{1,T) do

for each njk[NS do (NS is the child node set of the node

ni,k{1)

if njk~Pk, then

MMC(njk)~MMC(ni,k{1)
else

MMC(njk)~MMC(ni,k{1)z1;

if MMC(njk)ƒd then

add njk to List(Pk,T);
return List(P

,TS,List(Pk,TS),q,d,lmax)

Initialize str~ACGT ;

if kwlmax or List(Pk,TS)~1 then

return;

for j = 1 � � � 4 do

Pkz1~Pkzstr½j�;
FailureCount~0;
for each tree Ti in the tree set TS do

List(Pkz1,Ti)~PatternOnTree(Pkz1,d,Ti,List(Pk,Ti));
if List(Pkz1,Ti)~1 then

FailureCountzz;
if FailureCountwjTSj{q then

break;

if FailureCountƒjTSj{q then

Output(Pkz1);
MotifFinding(Pkz1,TS,List(Pkz1,TS),q,d,lmax)

For each set of sequences, we counted the number of

occurrences of a potential pattern in all sequences instead of

just one sequence shown in subroutine PatternOnTree(Pk,
d,T ,List(Pk{1,T)). If the number of occurrences was larger than

the threshold of occurrence frequency q, it was reported as a

potential pattern. The subroutine for counting occurrences of a

(kz1)-mer pattern, represented by the node Pkz1 in the (kz1)-
th layer of the pattern tree, is shown in MotifFinding(Pk,
TS,List(Pk,TS), q,d,lmax), where lmax is the maximum length

allowed for a motif, TS is the set of mismatched suffix trees for all

sequences, List(Pk,TS) =|N
i~0List(Pk,Ti), and N is the number

of total sequences.

The entire process of finding motifs with at least q occurrences

in a set of sequences is shown below. Additionally, since there may

be many motifs that satisfy the quorum restriction q, we sorted all

potential motifs according to their statistical significance using the

method in [14,15]. We reported the top n significant motifs and

their occurrences as output, where (i, j) indicates an instance of a

motif starting at the j-th position of the i-th sequence si.

The FMotif Algorithm

1) Initialize a mismatched suffix tree Ti like the one shown in

Figure 5a, i~1,2, � � � ,N ;

2) Initialize List(7,Ti)~&tempnode, where &tempnode is the

pointer of a temporary node, i~1,2, � � � ,N;

3) Input q,d,lmax,n;

4) MotifFinding(7,TS,List(7,TS),q,d,lmax);

5) Rank the found motifs according to their significance scores;

6) Output the top n motifs, their instances, and the positions (i, j)

of these instances.

According to our empirical study, FMotif is capable of

increasing the speed of the algorithms SPELLER and WEEDER

without loss of accuracy. In addition, we used the WEEDER

strategy to further decrease the search space by allowing

mismatches occurring at most ei times with an increase in i. This

strategy decreased FMotif’s run time but caused problems during

the tuning of the parameter q and resulted in a loss of accuracy.

Figure 4. An example of a suffix tree and a tree representation of pattern space. (a) The suffix tree of the sequence GAGAC. (b) A tree
representation of pattern space in the search for an (l, d) motif.
doi:10.1371/journal.pone.0086044.g004
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Figure 5. An example of a (4,1) motif search using FMotif. Figures (a)–(f) illustrate the search process of (4, 1) motifs on the mismatched suffix
tree of the sequence GAGAC.
doi:10.1371/journal.pone.0086044.g005
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