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The zebrafish u-boot (ubo) gene encodes the transcription factor
Prdm1, which is essential for the specification of the primary
slow-twitch muscle fibres that derive from adaxial cells. Here,
we show that Prdm1 functions by acting as a transcriptional
repressor and that slow-twitch-specific muscle gene expression is
activated by Prdm1-mediated repression of the transcriptional
repressor Sox6. Genes encoding fast-specific isoforms of sarco-
meric proteins are ectopically expressed in the adaxial cells of
ubo'®3® mutant embryos. By using chromatin immunoprecipita-
tion, we show that these are direct targets of Prdm1. Thus, Prdm1
promotes slow-twitch fibre differentiation by acting as a global
repressor of fast-fibre-specific genes, as well as by abrogating the
repression of slow-fibre-specific genes.
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INTRODUCTION

During vertebrate development, cells become committed to the
myogenic fate through the activation of myogenic regulatory
factors in the paraxial mesoderm. Subsequently, the committed
cells or myoblasts differentiate into muscle fibres with distinct
contractile speeds, the so-called slow- and fast-twitch fibres.
Terminal differentiation of these different fibre types requires the
expression of specific isoforms of sarcomeric proteins, such as the
myosin light and heavy chains (MyLC and MyHC, respectively)
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and troponins. In the zebrafish embryo, progenitors of the slow-
and fast-twitch fibres can be identified on the basis of their
morphology and positioning within the segmental plate before
somitogenesis (Devoto et al, 1996). Paraxial mesodermal cells that
lie in direct contact with the notochord—designated adaxial
cells—differentiate into slow myoblasts that migrate out through
the developing myotome to form a superficial layer of slow-twitch
fibres. These slow fibres are mononuclear, span the entire length
of each somite and express the homeodomain protein Prox1, as
well as the slow myosin heavy chain 1 (smyhcT) and the slow-
specific Troponin C (stnnC; Devoto et al, 1996; Roy et al, 2001;
Xu et al, 2006). The fast-twitch fibres derive from more laterally
located paraxial mesodermal cells that start to differentiate in the
wake of the migrating slow myoblasts (Blagden et al, 1997). In
contrast to the slow myoblasts, fast-twitch myoblasts undergo
fusion to generate multinucleated fibres (Moore et al, 2007;
Srinivas et al, 2007) and express fast MyLC and MyHC isoforms, as
well as troponin T3a (tnnt3a) and troponin 12 (tnni2) (Xu et al,
2000; Hsiao et al, 2003).

The specification of adaxial cells to follow the slow-twitch fibre
differentiation programme depends crucially on inductive signals
from the notochord and floorplate mediated by members of the
Hedgehog protein family (Currie & Ingham, 1996; Blagden et al,
1997; Du et al, 1997; Lewis et al, 1999; Barresi et al, 2000; Wolff
et al, 2003). Reception of the Hedgehog signals by adaxial cells
results in the activation of transcription of the u-boot (ubo) gene,
the function of which is both necessary and sufficient to drive
slow-twitch differentiation in myoblasts (Roy et al, 2001; Baxen-
dale et al, 2004). In ubo®3° mutants, presumptive slow-twitch
fibres lose sMyHC and Prox1 expression, and seem to differentiate
into fast-twitch fibres (Roy et al, 2001). The ubo gene encodes the
B-lymphocyte-induced maturation protein Blimp1 or Prdm1, a
PR-domain-containing protein, which, in mammals, is involved
in the terminal differentiation process of B lymphocytes, the
response to viral infection and primordial germ cell specification
(Keller & Maniatis, 1991; Turner et al, 1994; Ohinata et al, 2005;
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Fig 1| Fast-muscle-fibre-specific genes are ectopically expressed in the slow domain of ubo'®* mutant embryos. In situ hybridization showing

fast-muscle-specific expression of the fast myosin heavy chain gene (fMyHCx) at the 18-somite stage in (A) lateral and (B) transverse views.

(C) An fMyHCx:GFP construct expresses GFP specifically in the fast-muscle fibres in the trunk. Transient expression of fMyHCx:GFP in the fast fibres
in a 30 hpf (hours post fertilization) embryo, as shown by the colocalization with the fast-fibre marker F310 antigen. Nuclei were stained with
4,6-diamidino-2-phenylindole (DAPI) to highlight the polynuclear arrangement (arrowheads) of the fast fibres expressing fMyHCx:GFP. (D) The
construct fMyHCx:GFP is detected in the adaxial cells of ubo'P* mutants in transient assays. The fMyHCx:GFP construct is not expressed at the
12-somite stage in wild-type embryos, but is ectopically expressed in the adaxial cells of a 12-somite-stage ubo'P>*® embryo. Lyn tdTomato (red) was

used to highlight cellular membranes and the outline of the notochord. (E,F) Ectopic expression of fMyHCx messenger RNA (red) and F310 (green)
is detected in the adaxial cells of a 12-somite-stage ubo'P* embryo (100% of embryos assayed; n>30). In wild-type siblings (wt sib), adaxial cells are
only labelled with the slow MyHC S58 (blue) antibody. Genes that normally are expressed exclusively in the fast-muscle domain are ectopically

expressed in the adaxial cells of the ubo'®* mutant: (G) mylz2, (H) tnni2 and (I) tnnt3a. Scale bars, 25 um. GFP, green fluorescent protein; mylz2,
myosin light chain 2; tnni2, troponin I12; tnnt3a, troponin T3a; ubo, u-boot; wt, wild type.

Kallies & Nutt, 2007). In these contexts, Prdm1 has been shown to
mediate transcriptional repression, acting as a scaffold that recruits
co-repressors and chromatin-modifying enzymes to specific target
genes (Yu et al, 2000; Gyory et al, 2004). Here, we investigate
the nature of Prdm1 function and the regulatory networks under-
lying fibre type specification, and identify several direct targets
of Prdmf.

RESULTS AND DISCUSSION

Adaxial cells transform from slow into fast in ubo®3° mutants
In wild-type embryos, adaxial cells are characterized by their
expression of a slow isoform of the MyHC—detected by the S58
antibody—but are devoid of staining with F310—a fast MyLC
isoform-specific antibody. Differentiation of adaxial cells into
slow-twitch muscle starts several hours earlier than that of the
fast-twitch fibres. Previous studies of ubo mutants have shown that
loss of Prdm1 expression causes adaxial cells to transform from
slow- to fast-twitch character (Roy et al, 2001). Consistent with
this, we found that adaxial cells were labelled with F310 in
ubo'*3? homozygotes well before the normal onset of fast-muscle
differentiation. To confirm that this represents the precocious
differentiation of adaxial cells into fast-twitch fibres, we con-
structed a reporter gene, using sequences upstream from the
previously uncharacterized fMyHC gene, which drives green
fluorescent protein (GFP) expression strictly in fast-muscle cells
(Fig TA-C). When injected into ubo'®3° mutant embryos, this
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fMyHCx:GFP transgene was ectopically expressed in adaxial cells
(Fig 1D), indicative of their transformation from slow to fast
character (Fig 1E,F). By using in situ hybridization (ISH), we found
that tnnt3a and tnni2, encoding fast-specific isoforms of troponin,
were also ectopically expressed in the adaxial cells of ubo®3?
mutants, whereas expression of the gene encoding MyLC (mylz2)
was significantly elevated above the levels found in wild-type
adaxial cells (Fig 1G-I). Thus, Prdm1 acts to repress fast-specific
genes, as well as to promote expression of slow-specific genes in
adaxial cells.

Prdm1 acts as a repressor to promote slow twitch fibre type
To investigate whether Prdm1 acts as an activator or repressor of
transcription during slow-twitch muscle development in zebrafish,
constructs in which the Prdm1 DNA-binding domain is fused to
either the Engrailed (Eng) repressor or the VP16 activator domain
(Kessler, 1997) were tested for their ability to substitute for the
wild-type protein. Sequences encoding the fusion constructs were
cloned downstream from a heat-shock-inducible promoter that
simultaneously drives expression of the fluorescent protein
tdTomato. Transient expression of the Eng—Prdm1 protein induced
by heat shock was sufficient to rescue the expression of Prox1 in
ubo'P39 mutant embryos (Fig 2C). By contrast, transient expression
of the Vp16-Prdm1 fusion protein was unable to rescue Prox1
expression or suppress myoblast fusion (Fig 2D,E), but was
sufficient to activate fast-myosin expression. Taken together, these
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Fig 2| Slow-fibre differentiation requires the repressive function of
Prdml. (A) Proxl expression in slow-muscle fibres of wild-type (wt)
embryos at 24 h. (B) ubo'®* mutant embryos lack Prox1-expressing slow
fibres at 24 h. (C) Eng-Prdm1 expression, marked by tdTomato (tdTOM),
rescues mononucleate fibre differentiation and Prox1 expression in
ubo'P*® homozygotes (49 out of 94 Eng-Prdm1-expressing fibres were
Prox1 positive; n=38). (D) VP16-Prdm1 expression, marked by tdTOM,
was found exclusively in multinucleate fibres lacking Prox1 staining in
ubo'P*® homozygotes (none of the 134 Vpl6-Prdml-expressing fibres was
Prox1 positive; n=11). (E) Precocious labelling with the fast-specific
F310 antibody in VP16-PrdmIl-expressing muscle precursors at the
12-somite stage (12s; 12 out of 30 F310-positive cells; n=4). Scale bars,
25 pm. Eng, Engrailed; Prox1, prospero-related homeobox gene 1;

sib, sibling; ubo, u-boot.

data indicate that Prdm1 acts as a repressor rather than an
activator to promote slow-muscle differentiation, and show that
activation of prox7 and smyhcT expression is an indirect effect of
Prdm1 activity. As the PR domain is absent from the Eng—Prdm1
protein fusion, it also follows that this domain is not essential for
Prdm1 function, at least in this context. Consistent with this,
previous studies have shown the PR domain to be dispensable
for Prdm1 function in the context of B-interferon repression
(Gyory et al, 2004).

Prdm1 regulates Sox6—a repressor of slow fibre identity

In mice, the transcription factor Sox6 acts as a repressor of fetal
slow-twitch fibre differentiation (Hagiwara et al, 2005, 2007). We
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analysed expression of the zebrafish sox6 gene and found that it
was expressed in the fast-muscle progenitor domain of the somites
but excluded from adaxial cells (Fig 3A). In ubo®*® mutant
embryos, by contrast, sox6 is ectopically expressed in adaxial
cells, indicating that Prdm1 represses sox6 expression in slow-
muscle progenitors. Forcing ectopic expression of sox6 in the
adaxial cells of wild-type embryos caused an inhibition of Prox1
expression (Fig 3B). Conversely, morpholino-mediated knock-
down of sox6 in ubo®3° embryos partly rescued Prox1 expression
and restored expression of smyhcl to normal levels in adaxial
cells (Fig 3C). Although neither Prox1 nor smyhcl was expressed
ectopically in fast fibres in response to sox6 knockdown, robust
expression of stnnC was induced in the fast muscle of both wild-
type and smoothened (smo) mutant (that lack all Hedgehog
signalling activity) embryos injected with the sox6 morpholino
(Fig 3E,F). This disparity might reflect a differential sensitivity of
these slow-twitch-specific genes to sox6 activity, revealed by
incomplete knockdown by the morpholino. Taken together, these
data indicate that Sox6 acts as a repressor of slow-twitch-specific
gene expression and suggest that Prdm1 activates such expression
by repressing transcription of sox6.

Fast-twitch-specific genes are direct targets of Prdm1
The coordinated repression of multiple genes encoding fast-twitch
isoforms of sarcomeric proteins could be accomplished by
Prdm1-mediated repression of a fast-specific global transcriptional
activator; alternatively, Prdm1 might itself act directly to repress
transcription of these genes. To distinguish between these two
scenarios, we used chromatin immunoprecipitation (ChIP) to test
for binding of the protein to upstream regulatory regions of the
putative targets. A polyclonal antibody was raised against 186
amino acids from the Prdm1 PR domain; as expected, this labelled
adaxial cell nuclei during early- and mid-myogenesis (Fig 4A), and
bound to Prdm1 specifically in immunoprecipitation assays
(Fig 4B). DNA from chromatin immunoprecipitated with this
antibody was amplified by using primer pairs specific for
sequences proximal to the transcription initiation sites of the
mylz2, fMyHCx, tnnt3a and tnni2 genes. These sequences were
all found to be enriched in the Prdm1-precipitated chromatin; by
contrast, none of the slow-muscle-specific genes smyhc1, stanC or
Prox1 was enriched (Fig 4C). These data indicate that Prdm1
selectively binds to putative regulatory regions of fast-fibre-
specific genes in vivo, suggesting that Prdm1 acts as a direct
repressor of their transcription.

The mylz2 promoter has functional Prdm1 binding sites
Expression of a GFP reporter gene containing 2.3 kb of the mylz2
promoter sequence is specifically repressed in adaxial cells by Prdm1
activity (Fig 4D). Although the consensus binding site for Prdm1 has
not been determined in zebrafish, we identified five putative Prdm1-
binding sites in this fragment, containing the GAAAG core of the
sequence (A/C)AG(T/C)GAAAG(T/C)(T/G) that has been defined as
mediating Prdm1-dependent gene regulation in mammals (Kuo &
Calame, 2004). The introduction of point mutations in each of these
five potential Prdm1-binding sites in this construct led to ectopic
adaxial GFP expression in wild-type embryos, similar to that seen
with the wild-type construct in ubo morphants (Fig 4D). This finding
is consistent with Prdm1 acting directly to repress the mylz2 gene in
adaxial cells at the 12-somite stage.
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Fig 3| Slow-specific gene expression is upregulated in sox6 morphant embryos. (A) sox6 is expressed in the fast-muscle precursors (red arrowheads) in
wild-type (wt) embryos and ectopically expressed in the adaxial cells (green arrowheads) in ubo'?* embryos at the 12-somite (12s) and 15-somite (15s)
stage. (B) Heat-shock-induced expression of Sox6 (marked with tdTomato (tdTOM)) inhibits Prox1 expression at 24 hpf (hours post fertilization) in
adaxially derived cells marked by prdmI:GFP (arrowhead; 100% of the adaxially derived cells lacked Prox1 when ectopically expressing Sox6 (from the
analysis of 14 fibres in 4 embryos)). (C) Lateral views of the tail at 24 hpf showing partial rescue of Prox1 expression in ubo®*° embryos injected with
50x6MO (ubo'®*: 0 rescued fibres in 20 embryos; ubo™3% sox6MO: mean of 58 rescued fibres per embryo, n=>5, s.d. =29). (D) At 12s, ubo'** mutants
have reduced expression of smyhcl and ectopic expression of fast-MyLC (recognized by the F310 antibody) in the adaxial cells marked with prdm]i.
50x6MO causes rescue of the smyhcl expression in ubo'P*® mutants but does not prevent ectopic fast-MyLC expression. (E) Transverse views of 24 hpf
wt and smoothened (smo) embryos carrying the prdm1:GFP reporter gene (upper panel) and siblings of the same genotypes that have been injected
with the sox6 morpholino (sox6MO; lower panels), showing that loss of sox6 causes Hedgehog-independent ectopic expression of stnnC (red) in fast
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muscle (identified by F310 antigen (blue)). (F) Lateral views of stnnC expression (red) in wt, smo and smo;s0x6MO embryos at 24 hpf (9 out of 9
smo;s0x6MO embryos, and 15 out of 15 wt embryos showed strong ectopic stnnC expression). Scale bars, 0.25 um. GFP, green fluorescent protein;
Proxl1, prospero-related homeobox gene 1; smyhcl, slow myosin heavy chain 1; sox6 MO, sox6 morpholino; stnnC, slow-specific Troponin C; ubo, u-boot.

Identification of Prdm1 target genes by ChIP on chip

To confirm and extend the findings of our candidate gene analysis,
we used a recently constructed zebrafish promoter array,
consisting of 60-mer probes for more than 11,000 genes within
the zebrafish genome (Wardle et al, 2006), to probe the DNA
isolated by ChIP of myoblast extracts (supplementary information
online, accession code GSE10883 at GEO). By setting the gene
array threshold for enrichment to the level of myl/z2, which was at
the level of significant P-value 0.0078 and P[Xbar] 0.0075, we
identified 381 putative target genes (supplementary information
online). Gene ontology analysis showed various genes enriched in
the ChlIP-on-chip sample: 11% were documented transcription
factors, 24% were new genes or genes without known function,
15% were genes encoding proteins with enzyme activity, such as
kinases and phosphatases, whereas others had gene ontology
terms linking them to the immune and haematopoietic systems,
cell-cycle regulation or apoptosis. Significantly, we found several
genes encoding fast-fibre-specific isoforms of sarcomeric proteins,
including those encoding fast MyHC and troponins described
above, whereas no genes encoding slow-specific sarcomeric
proteins or Prox1 were identified (supplementary information
online). Surprisingly, sox6 was not among the transcription
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factor-encoding genes identified in this analysis. However, we
note that representation of regulatory regions on the gene array is
restricted to sequences 9kb upstream from the 5’ end of the
complementary DNAs used in its design (Wardle et al, 2006). We
have identified additional sox6 sequences 30kb upstream from
the transcription start site used in the array (J.v.H., S.E. & P.W.I,,
unpublished data); whether sox6 is a direct target of Prdm1
remains to be determined.

Conclusion

Our data underline the pivotal role of Prdm1 in switching between
alternative muscle fibre type programmes in the zebrafish embryo.
We have shown that it accomplishes its function in two ways: first,
by repressing the transcription of a repressor of slow-specific gene
transcription, sox6, in a manner analogous to its repression of
Pax5 in B cells (Lin et al, 2002) and, second, by acting directly as a
global repressor of fast-specific differentiation genes. Although
Prdm1 is expressed in the myotome of the mouse (Chang et al,
2002; Vincent et al, 2005), at present it is unclear whether it has
an analogous role in fibre type specification in amniotes. Our
finding that Sox6 suppresses slow-twitch fibre specification in
zebrafish, however, establishes that at least some aspects of the
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Fig 4| Prdm1 acts as a direct repressor of fast-fibre-specific gene expression in adaxial cells. (A) prdmI1:GFP expression is specific to adaxial cells in
the somite area at the eight- to ten-somite stage. A Prdm1-specific polyclonal antibody detects Prdm1 protein in adaxial cells, consistent with the
prdmI:GFP expression pattern. Scale bar, 0.25 um. (B) Prdml is specifically immunoprecipitated using the Prdm1 antibody. (C) Amplification of the
fast-fibre-specific genes fMyHCx, tnnt3a, tnni2 and mylz2 using Taqman real-time PCR showed significant enrichment compared with the pre-immune
controls. Three slow-muscle-specific genes, prox1, sMyHCI and stnnC, were tested as negative controls and were not enriched in the chromatin
immunoprecipitated (ChIP) chromatin. (D) The mylz2:GFP promoter fusion is not expressed in wild-type embryos at the 12-somite stage, but is
expressed in the adaxial cells in prdmI morphants at the 12-somite stage. Mutation of the Prdm1-binding sites (5M) resulted in ectopic adaxial GFP
expression in both control and prdmI1 morphant embryos. Scale bar, 0.25 um. fMyHC, fast myosin heavy chain; GFP, green fluorescent protein; MO,
morpholino; mylz2, myosin light chain 2; prox1, prospero-related homeobox gene 1; sMyHCI, slow myosin heavy chain 1; stnnC, slow-specific Troponin

C; tnni2, troponin 12; tnnt3a, troponin T3a.

regulatory network underlying fibre type specification (Hagiwara
et al, 2005, 2007) have been conserved in evolution.

METHODS

Fish strains, cloning of gene promoters and injection of
embryos. Zebrafish mutants ubo'®*® and smoP®*', and the
transgenic line Tg(actal:GFP)?'3 have been described previously
(van Eeden et al, 1996; Higashijima et al, 1997; Barresi et al,
2000; Chen et al, 2001; Roy et al, 2001; Baxendale et al, 2004).
The Tg(prdm1:gfp)''" and Tg(prdm1:gfp)'°® are described by
Elworthy et al (2008). The mylz2:GFP promoter construct
was generated by using 2,239bp of the mylz2 upstream region
(Ju et al, 2003; Moore et al, 2007) to generate a stable line
Tg(mylz2:GFP)'13>. The mylz2:GFP plasmid was also used as a
template for in vitro mutagenesis of the five sites containing the
Prdm1 GAAAG core sequence using the QuikChange® Multi
Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA)
following the manufacturer’s instructions to generate the
Tg((5M)mylz2:GFP)13° transgenic line. A 6.8 kb fragment upstream
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from the fMyHCx ATG was isolated by PCR from bacterial artificial
chromosome zCR392328 by using a left primer containing an Ascl
restriction site (TGGCGCGCCTGCATGGTGTTTGACA) and a right
primer containing Ncol (ACCCATGGTGGCGGCTTACCGT). The
promoter DNA was in all cases subcloned into a GFP vector with
flanking I-scel sites. One-cell-stage embryos were microinjected with
4-8nl of plasmid at a concentration of 40 ng/nl. Embryos were kept
at 28.,5°C and analysed for GFP at the 12-somite stage. Ubo
morpholino-mediated knockdown of Prdm1 activity was carried out
as described previously (Baxendale et al, 2004). The sox6 translation
targeted morpholino (GTGGCTTGCTTGGAAGACATGATTC) was
injected into one-cell-stage embryos at 0.9 mM. All fish were raised,
staged and maintained as described previously (Kimmel et al, 1995;
Westerfield, 2000).

Prox1 rescue assay. Eng-Prdm1 and VP16-Prdm1 fusion con-
structs (gifts from Dr Johaness Bischof; for details, see the
supplementary information online) were used in attempts to
rescue Prox1 expression. Both constructs and the complete sox6
cds (EU532205) were subcloned into a pSGH2 vector containing

EMBO reports VOL 9| NO 7 |2008 687
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a bidirectional heat-shock promoter (Bajoghli et al, 2004) that
drives expression of both the fusion protein and the fluorescent
protein tdTomato. One-cell-stage embryos were microinjected
with plasmid at a concentration of 40ng/ul. At the three- to
four-somite stage, the injected embryos were heat shocked by
incubation at 39°C for 2 h. Injected embryos were fixed in 4%
paraformaldehyde at 24 hpf (hours post fertilization) and analysed
by using confocal microscopy.

Antibodies, immunohistochemistry and ChIP. A Prdm1 polyclonal
antibody was raised against a fragment of the protein correspond-
ing to amino acids 161-346 expressed as a His-tag fusion protein
using the pET19b vector (Novagen, Darmstadt, Germany).
Immunoprecipitation using the Prdm1 antibody was carried out
according to Link et al (2006) using crude protein extracts from
zebrafish embryos at the ten-somite stage. The precipitated
proteins were analysed on SDS-polyacrylamide gel electrophor-
esis gel after Coomassie staining.

A Prox1 antibody was raised against recombinant zebrafish
Prox1 purified from Escherichia coli (A.M. Taylor & P.W.L.,
unpublished data). Whole-mount immunohistochemical analysis
using F310 fast MyLC (1:50, DSHB), S58 slow MyHC (1:10,
DSHB), Prox1 (1:5,000) and Prdm1 (1:15,000) antibodies was
performed on embryos fixed in 4% paraformaldehyde (for
protocols, see the supplementary information online). For ChIP
analysis, a-actin:GFP embryos were injected with dominant
negative Protein Kinase A (dnPKA) at the one- to two-cell stage
and were kept in embryonic medium until the 12- to 14-somite
stage. The chorions were removed using pronase and cells were
fixed for 15min in 1.85% formaldehyde. For the ChIP-on-chip
assay (supplementary information online), the embryos were
dissociated using collagenase and GFP-positive cells were
isolated. In addition to the ChIP on chip, three replicates of 300
embryos were used in the ChIP assay, which was performed as
described previously (Wardle et al, 2006) using the Prdm1
antibody or rabbit preserum. Precipitated chromatin was analysed
using Custom TagManR Assays (Applied Biosystems, Foster City,
CA, USA), specific to regions within the first 1kb of upstream
sequences from the first codon of mylz2 (NM_131188), fMyHCx
(EUT15994), tnnt3a (NM_131565), tnni2 (NM_205742), stnnC
(AF281003), prox1 (NM_131405) and sMyHC1 (NM_001020507;
for oligonucleotides and probes, see the supplementary informa-
tion online). For whole-mount ISH, antisense digoxigenin (DIG)
probes for mylz2, tnnt3a, tnni2, fMyHCx, sox6 and stnnC
(subcloned from IMAGE_6899234, zgc:86932; Thisse et al,
2001; Xu et al, 2006) were generated and the ISH was performed
as described previously (Thisse & Thisse, 1998). Fluorescent ISH
used anti-dig POD (Roche, Basel, Switzerland) at 1:10,000 with
tyramide signal amplification (TSA) Cyanine 3 (Perkin Elmer,
Waltham, MA, USA).

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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