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Abstract: This study aimed to compare the degree of exhaustion and trophic effects between contin-
uous exercise (CE) and intermittent exercise (IE) at lactate threshold (LT) intensity. Seven healthy
men (age: 43–69 years) performed the following three experimental tests in a randomized crossover
order: (1) control; (2) CE, performed as a 20-min of cycling at LT intensity; and (3) IE, performed as
20 sets of a one-min bout of cycling at LT intensity with a 30-s rest between every two sets. Heart rate
(HR), blood lactate concentration (LA), rating of perceived exertion (RPE), catecholamines, cortisol,
growth hormone, insulin-like growth factor (IGF)-1, and brain-derived neurotrophic factor (BDNF)
were measured. The sampling timing in each test was as follows: 10 min before the onset of exercise,
at the 25%, 50%, and 100% time points of exercise, and at 10 min after exercise. IE was found to be
accompanied by a lower degree of exhaustion than CE in measures of HR, LA, RPE, catecholamines,
and cortisol. In terms of trophic effects, both of IGF-1 and BDNF increased in CE, while a marginal
increase of BDNF was observed in IE. The results indicated that IE induces lower stress than CE, but
may not be effective for inducing trophic effects.

Keywords: aerobic exercise; exercise prescription; preventive measures; healthy aging

1. Introduction

The World Health Organization (WHO) reported that the population of older adults
(≥60) was 1 billion in 2019, and is rapidly increasing [1]. Aging is known to increase the risk
of physical, mental, and social disorders. For example, healthy adults lose approximately
8% of their muscle mass every 10 years after the age of 40 years. Accordingly, the prevalence
of sarcopenia at the age of 60 years is approximately twice that at the age of 40 years [2].

To prevent and/or delay the risks, many public health guidelines and studies have
recommended that older people increase the amount of physical activity they undertake.
Several studies have reported that exercise prevents various degenerative diseases, includ-
ing sarcopenia and dementia [3–5]. In addition, guidelines published by the WHO and
United States Department of Health and Human Services recommend that older adults
should perform at least 150–300 min of moderate-to-vigorous intensity aerobic exercise
per week [1,6]. The lactate threshold (LT) has been widely used to prescribe moderate
intensity aerobic exercise for preventive and therapeutic interventions against hypertension,
diabetes, cardiovascular disease, and sarcopenia [7–11].
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The effects of LT intensity exercise on health are often assessed using acute responses
of trophic hormones. For instance, growth hormone (GH) and insulin-like growth factor
(IGF)-1 can be examined as myotrophic anabolic hormones in such assessments. IGF-1 has
myotrophic, anabolic, insulin-sensitizing, and lipid oxidation effects, and is an important
metabolic biomarker for health and exercise benefits [11,12]. In one previous study, serum
GH and IGF-1 concentrations were increased by LT intensity exercise [13]. In addition,
GH has been reported to stimulate IGF-1 production and increases serum IGF-1 concen-
tration [13]. GH has direct or indirect anabolic effects that are mediated by IGF-1 in older
adults [12]. In addition, brain-derived neurotrophic factor (BDNF) is a neurotrophic family
protein that is required for cell growth, survival, and cell differentiation of neurons [14].
Increasing BDNF is reported to induce a physiological mechanism through which exer-
cise provides psychological benefits [15], and has been observed in aerobic and resistance
exercise [16,17].

Given that many older people are considered to suffer from functional restrictions
(with or without their awareness) and have limited tolerance for exercise stimulus, exercise
warrants safety precautions, requiring careful and appropriate prescriptions. Because
body homeostasis is disturbed by exercise and returned to the basal level after stopping
it, inserting rests between exercise, or making exercise intermittent, is considered to be
important to avoid overreaching. Although this may be a matter of course while exercising,
it is often overlooked in aerobic exercise prescriptions. Even in relatively safe LT intensity
exercise, lactate accumulation and heart rate (HR) increases when exercising for a long time
without rest have been reported [18]. Additionally, the amount and timing of rest periods
between exercise have been found to significantly affect metabolic [19], hormonal [20], and
other responses [21] in resistance training, while few studies have addressed the effects of
rest in aerobic exercise.

Therefore, the current study aimed to compare responses regarding the degree of
exhaustion and trophic effects between continuous and intermittent aerobic exercise using
cycle ergometry at LT intensity over the same cycling work volume. To examine this issue,
we proposed the following two hypotheses: (1) intermittent exercise causes a lower degree
of exhaustion compared with continuous exercise; and (2) intermittent exercise induces
acute trophic responses, which are lower than those induced by continuous exercise.

2. Materials and Methods
2.1. Subjects

Seven subjects volunteered to participate in the study. The following were set as
inclusion criteria, with all criteria being met: men aged forty years or older and six months
or longer of a regular exercise habit. The following exclusion criteria were also set in
advance: having past and current histories of cardiovascular, metabolic, endocrine, and
psychiatric diseases, and being smokers. All subjects provided informed consent after the
purpose, methods, and significance of the study were explained. The study was approved
by the Ethics Committee of Fukuoka University (No. 16-9-02).

2.2. Baseline Test

Each subject visited our laboratory on four separate days: the first visit for a baseline
test, and the second to fourth visits for the three experimental tests. In the baseline test,
each subject underwent a multistage cycle ergometer test after a 15-min rest in the sitting
position (Ergomedic 874E; Monark Exercise AB, Vansbro, Sweden). The subject ran for four
min in each stage, with a 1-min rest between two stages.

A blood sample was obtained from the earlobe during each stage of finished timing
to measure the blood lactate concentration (LA, Lactate Pro™2 LT-1730; ARKRAY Inc.,
Kyoto, Japan). The workload of the cycle ergometer was set at 0.4 kp in the initial stage
and was increased by 0.2 kp for each subsequent stage until the LA reached 4 mmol/L or
the subject was unable to maintain the workload [22]. After the test, LT was determined by
five researchers using the Log-Log transformation method [23].
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2.3. Experimental Tests

The protocol of the experimental tests is summarized in Figure 1. Briefly, subjects per-
formed the following three experimental tests in a randomized crossover order: (1) control
(CON); (2) continuous exercise (CE); and (3) intermittent exercise (IE). The CON comprised
a 20-min period of sitting on a standard chair. CE was performed as a 20-min bout of
cycling on the cycle ergometer at LT intensity. In contrast, IE was performed as 20 sets of
a one-min bout of cycling on the cycle ergometer at LT intensity with a 30-s rest between
every two sets. During the rest period in the IE, subjects sat on the cycle ergometer. The
regimen for the intermittent exercise was selected based on previous studies in our lab-
oratory [24,25]. During each experiment test, subjects were allowed to drink a moderate
amount of water upon request. The experimental tests were performed at least 48 h apart.
Subjects were restricted from undertaking strenuous exercise and were not allowed to
consume caffeinated drinks and alcohol for 24 h before the tests. Subjects were also directed
to come to the laboratory after they fasted for more than 10 h.
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Figure 1. Experimental design: The control (CON) comprised a 20-min period of sitting on a standard
chair, continuous exercise (CE) was performed as a 20-min bout of cycling on the cycle ergometer at
lactate threshold (LT) intensity, and intermittent exercise (IE) was performed as 20 sets of a one-min
bout of cycle ergometer exercise at LT intensity with a 30-s rest between every two sets. HR: heart rate,
RPE: Borg rating of perceived exertion. HR measurement and blood sampling were performed 10 min
before the onset of cycling (Rest), at the 25%, 50%, and 100% time points of exercise (E25%, E50%,
and E100%), and at 10 min after running (A10min), while RPE was at E25%, E50%, and E100%. The
closed arrow (
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2.4. Measurements

During each experimental test, sampling timings for measurements were set as follows:
10 min before the onset of exercise (denoted as Rest), at 25%, 50%, and 100% of the cycling
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interval (denoted as E25%, E50%, and E100%), and at 10 min after cycling (denoted as
A10 min) (Figure 1). HR was observed by a HR monitor (HR, RS800CX; PO-LAR., Kempele,
Finland) at 20 s, 15 s, 10 s, and 5 s before and just at each sampling timing, and the mean
three intermediate measures (after excluding the minimum and maximum measures) was
calculated. Borg rating of perceived exertion (RPE) was reported by the subject only during
cycling (i.e., at E25%, E50%, and E100%) using the Borg scale (range: 6–20) [26]. For
each experimental test, peripheral cannulation was administered at least 15 min before
the first blood collection at Rest, in order to exclude the effects of pain on catecholamine
concentrations [27]. A blood sample was collected using a syringe at each sampling timing.
Immediately after each collection, the blood sample was divided into serum (Plain tube;
Terumo Corporation, Tokyo, Japan) and plasma (EDTA-2K tube; Terumo Corporation,
Tokyo, Japan) blood-collection tubes. Additionally, the LA was rapidly measured using
the remaining blood sample in the syringe. After finishing the experimental test, the
serum and plasma tubes were immediately centrifuged at 3000 rpm for 15 min at 4 ◦C.
The supernatants were then transferred to polypropylene tubes and stored at −80 ◦C
until analysis.

2.5. Blood Analyses

Blood concentrations of lactate, catecholamines (including adrenaline, noradrenaline,
and dopamine), cortisol, GH, IGF-1, and BDNF in the collected blood samples were ana-
lyzed. Biochemical analyses for all the indices except lactate were blindly conducted by SRL
Inc. (Tokyo, Japan). Specifically, concentrations of catecholamines were measured using
high-performance liquid chromatography (CA Test TOSOH; Tosoh Corporation, Tokyo,
Japan), those of cortisol, GH, and IGF-1 were measured using electrochemiluminescence
immunoassay (cortisol: Elecsys® Cortisol; Roche Diagnostic Systems, Basel, Switzerland,
GH: Elecsys® hGH; Roche Diagnostic Systems, Basel, Switzerland, IGF-1: IGF-I IRMA
DAIICHI; Fujirebio Inc., Tokyo, Japan), and the concentration of BDNF was measured
using an enzyme-linked immunosorbent assay (QuantikineTM ELISA Human Free BDNF
Immunoassay; R&D Systems Inc., Minneapolis, MN, USA). As mentioned above, LA was
measured at each blood collection using an enzyme electrode method (Lactate Pro™2
LT-1730; ARKRAY Inc., Kyoto, Japan).

2.6. Statistical Analyses

Measured values are shown as means ± standard deviation (SD) for all of the indices.
Furthermore, to examine intra-subject changes by controlling for inter-subject variability in
blood levels [28], catecholamines, cortisol, GH, IGF-1, and BDNF concentrations at E25%,
E50%, E100%, and A10 min were normalized relative to those when at Rest. Values of HR,
RPE, and blood samples were compared using two-way repeated-measures analysis of
variance (ANOVA) for [type] × [time] interactions. The assumption of sphericity was tested
via Mauchly’s test of sphericity, and as appropriate, the Greenhouse-Geisser correction was
applied. When the ANOVA showed a significant interaction, post-hoc Tukey’s multiple
comparison tests [type] and Dunnett’s tests [time] were performed, as appropriate. All
statistical analyses were performed using the Graph Pad Prism version 9.3.0 software
package (Graph Pad Software., San Diego, CA, USA). The significance level was set at
α = 0.05.

3. Results
3.1. Physiological Characteristics

Seven healthy middle-to-older aged men successfully completed the baseline and
experimental tests. The physical and physiological characteristics of the subjects are shown
in Table 1.
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Table 1. Characteristics of the study subjects (n = 7).

Means ± SD

Age (years) 59.3 ± 10.4
Height (cm) 168.5 ± 4.2
Weight (kg) 68.9 ± 5.1

Body mass index (kg/m2) 24.3 ± 2.3
Cycling load at LT intensity (kp) 1.8 ± 0.4

Cycling METs at LT intensity 6.3 ± 1.0
LT: Lactate threshold, METs: Metabolic equivalents.

3.2. Comparison of a Degree of Exhaustion (with Conventional Indices)

Figure 2 shows changes in conventional indices regarding a degree of exhaustion
during the experimental tests. For HR (Figure 2a), there was a significant interaction
(F2.72, 16.32 = 71.95, p < 0.01) and significant main effects for [type] (F1.46, 8.79 = 83.26, p < 0.01)
and [time] (F1.91, 11.46 = 95.83, p < 0.01). The values of HR in both the CE and IE were
significantly higher than those in the CON at all sampling timings except Rest (p < 0.05 for
all). In addition, the HR values in the IE were significantly lower than those in the CE at all
sampling timings during cycling (i.e., E25%, E50%, and E100%) (p < 0.05 for all). Compared
with Rest, the HR values were significantly higher at the remaining sampling timings in
both the CE and IE (p < 0.05 for all).
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Figure 2. Responses of variables related to a degree of exhaustion (conventional biomarkers): Values
of (a) heart rate (HR), (b) blood lactate concentration (LA), and (c) Borg rating of perceived exertion
(RPE) are displayed. The circle, triangle, and cube indicate control (CON), continuous exercise (CE),
and intermittent exercise (IE) values, respectively. *: p < 0.05 indicates [type]. #: p < 0.05 indicates
[time] with Rest.

Regarding LA (Figure 2b), there was a significant interaction (F3.31, 19.88 = 26.07,
p < 0.01) and significant main effects for [type] (F1.94, 11.67 = 64.77, p < 0.01) and [time]
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(F2.18, 13.11 = 41.66, p < 0.01). The values of LA in the CE were significantly higher than
those in the CON at all sampling timings except Rest (p < 0.05 for all). In addition, the
LA values in the IE were significantly higher than those in the CON at E25% and E50%,
and significantly lower than those in the CE at E50%, E100%, and A10min (p < 0.05 for all).
Compared with Rest, the values of LA were significantly higher at the remaining sampling
times in both the CE and IE (p < 0.05 for all).

Regarding RPE (Figure 2c), the data revealed no significant interaction (F2, 12 = 0.42,
p = 0.66) but did reveal significant main effects for [type] (F1, 6 = 60.04, p < 0.01) and [time]
(F2, 12 = 25.14, p < 0.01).

3.3. Comparison of the Degree of Exhaustion (with Additional Indices Derived from
Blood Analyses)

Figure 3 shows changes of additional indices derived from blood analyses, which are
related to the degree of exhaustion during the experimental tests. For adrenaline (Figure 3a),
there was a significant interaction (F2.90, 17.45 = 6.62, p < 0.05) and significant main effects
for [type] (F1.87, 10.96 = 10.01, p < 0.05) and [time] (F2.75, 16.50 = 15.54, p < 0.05). The values of
adrenaline at E50% and E100% in the CE were significantly higher than those in the CON
(p < 0.05 for both), and the value at E100% in the IE was significantly higher than that in
the CON (p < 0.01). Compared with Rest, the values of adrenaline were significantly higher
at E50% and E100% in the CE and at E100% in the IE (p < 0.05 for all).
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Figure 3. Responses of variables related to additional degree of exhaustion (additional biomarkers):
Relative changes of (a) adrenaline, (b) noradrenaline, (c) dopamine, and (d) cortisol are shown. The
circle, triangle, and cube indicate the control (CON), continuous exercise (CE), and intermittent
exercise (IE) values relative to those at Rest, respectively. *: p < 0.05 indicates [type]. #: p < 0.05
indicates [time] with Rest.

Regarding noradrenaline (Figure 3b), there was a significant interaction (F1.79, 10.87 = 10.38,
p < 0.01) and significant main effects for [type] (F1.05, 6.34 = 14.46, p < 0.01) and [time]
(F1.70, 10.24 = 13.18, p < 0.01). The values of noradrenaline in both the CE and IE were sig-
nificantly higher than those in the CON at all sampling times during cycling (p < 0.05 for all),
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and the values at E50% and E100% in the IE were significantly lower than those in the CE
(p < 0.01 for both). Compared with Rest, the values of noradrenaline were significantly higher
at the remaining sampling times during cycling in both the CE and IE (p < 0.05 for all).

For dopamine (Figure 3c), there was a significant interaction (F3.78, 22.68 = 5.91, p < 0.01)
and significant main effects for [type] (F1.58, 9.47 = 7.31, p < 0.05) and [time] (F2.66, 16.01 = 9.79,
p < 0.01). The value of dopamine at E100% in the CE was significantly higher than that
in both the CON and IE (p < 0.05 for both). Compared with Rest, the values of dopamine
were significantly higher at E50%, E100%, and A10min in the CE (p < 0.05 for all).

For cortisol (Figure 3d), there was a significant interaction (F3.01, 18.06 = 5.58, p < 0.01) and
significant main effects for [type] (F1.57, 9.43 = 11.27, p < 0.01) and [time] (F1.95, 11.74 = 11.27,
p < 0.05). The values of cortisol in the CE were significantly higher than those in the CON
at all sampling timings except Rest (p < 0.05 for all), and the value at E25% in the IE was
significantly higher than that in the CON (p < 0.01). Compared with Rest, the values of
cortisol were significantly higher at E25% in the CE, and significantly lower at A10min in IE
and at E50%, E100%, and A10min in the CON (p < 0.05 for all).

3.4. Comparison of Myotrophic and Neurotrophic Hormones

Figure 4 shows the changes of variables related to myotrophic and neurotrophic
hormone responses during the three experimental tests. For GH (Figure 4a), there was no
significant interaction (F1.27, 7.67 = 1.07, p = 0.35) and no significant main effects for [type]
(F1.31, 7.89 = 1.32, p = 0.29) or [time] (F1.15, 6.92 = 4.27, p = 0.07).
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Figure 4. Responses of variables related to myotrophic and neurotrophic hormones: Relative changes
of (a) growth hormone (GH), (b) insulin–like growth factor (IGF) –1, and (c) brain–derived neu-
rotrophic factor (BDNF) are shown. The circle, triangle, and cube indicate control (CON), continuous
exercise (CE), and intermittent exercise (IE) values relative to those at Rest, respectively. *: p < 0.05
indicates [type]. #: p < 0.05 indicates [time] with Rest.
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For IGF-1 (Figure 4b), there was a significant interaction (F3.64, 21.86 = 4.01, p < 0.05) and
significant main effects for [type] (F1.67, 10.04 = 5.07, p < 0.05) and [time] (F2.13, 12.79 = 11.67,
p < 0.01). The value of IGF-1 at E50% in the CE was significantly higher than that in the
CON (p < 0.05). Compared with Rest, the values of IGF-1 were significantly higher at E50%
and E100% in the CE (p < 0.05).

For BDNF (Figure 4c), there was a significant interaction (F3.73, 22.42 = 3.08, p < 0.01)
and a significant main effect for [time] (F2.33, 13.98 = 8.94, p < 0.01) but no significant main
effect for [type] (F1.81, 10.92 = 2.38, p = 0.14). The value of BDNF at E100% in the CE was
significantly higher than that in the CON (p < 0.05). Compared with Rest, the values
of BDNF were significantly higher at E50% and E100% in the CE and at E50% in the IE
(p < 0.05 for all).

4. Discussion

The current study aimed to compare responses regarding the degree of exhaustion and
trophic effects between continuous and intermittent cycle ergometry at LT intensity. Two
main findings were revealed: (1) intermittent cycling at LT intensity caused a lower degree
of exhaustion compared with its continuous counterpart; and (2) intermittent cycling at LT
intensity did not induce clear acute trophic responses.

HR and LA have been used to evaluate exercise intensity and physiological effort
in many studies [8,29]. Likewise, RPE has been used to evaluate psychological effort
during exercise. In practical settings, physical and psychological efforts are thought to be
potent factors affecting the continuation and cessation of regular exercise regimens [30].
In the present study, the values of RPE in the IE were lower than those in the CE at all
measurement times. Exercise intensity of CE was shown to be 47.6 ± 8.1% HR reserve
(HRR) and 2.5 ± 0.6 mmol/L of LA at E25% (five min after the start of cycling), which was
consistent with the LT. After that time, these values continued to increase, likely because
the LT did not reach a complete physiological steady state [31], and resulted in 65.9 ± 14.0%
HRR and 4.1 ± 0.7 mmol/L of LA at E100% (i.e., only after 20 min of cycling). In contrast,
exercise intensity of IE was also found to moderately increase during cycling, but the
HRR ranged from 22.3 ± 5.6% at E25% to 31.2 ± 5.1% at E100%, and LA ranged from
2.2 ± 0.4 mmol/L at E25% to 2.3 ± 0.7 mmol/L at E100%. As mentioned above (Figure 1),
IE was accompanied by a number of brief (i.e., 30-s) rest periods during the protocol, which
may have led to the observation of a lower level of cycling effort for IE compared with CE
in this study.

In comparisons of exhaustion with additional indices derived from blood analyses,
IE showed comparable or lower values compared with CE. Specifically, while adrenaline
concentration exhibited a similar increase in both exercise conditions, this was not the
case for the increase in noradrenaline concentration (i.e., the increment was lower in the
IE than in the CE). Furthermore, dopamine concentration increased in the CE, but not in
the IE. Regarding cortisol concentration, in contrast to consistently higher values in the
CE compared with the CON, concentration increased only immediately after the onset of
exercise (E25%) and decreased thereafter in the IE. Concentrations of catecholamines and
cortisol are reported to increase with exercise stimulus at and above LT intensity [32–34] to
assist the adjustment of disturbed homeostasis [34,35]. Previous studies had shown that
increased plasma noradrenaline concentrations during exercise were closely associated
with heart rate, which is consistent with the results of this study [34]. These observations
in the additional indices regarding exhaustion may also reflect different levels of exercise
effort between CE and IE.

Contrary to our original hypothesis, intermittent cycling at LT intensity did not induce
clear acute trophic responses. In the present study, we focused on concentrations of GH,
IGF-1, and BDNF to examine differences in myotrophic and neurotrophic effects between
CE and IE. The changes in GH concentration were not significant in both exercise tests,
possibly because of the relatively large inter-subject variability of the changes, especially in
CE (Figure 4a). IGF-1 concentration only increased in CE at E50% and E100%, which was
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consistent with the results of previous reports [13]. Whereas IGF-1 responses have been
reported to be rapid and to peak at <10 min of exercise time [36], partly due to an increase
in mechanical stimulation [37], the 1-min exercise time, or one min of exercise accumulation,
was probably insufficient to increase IGF-1 concentration in the IE in the current study.
Similar trends were found for BDNF concentration, despite the slight increase found in IE
at E50%. On the basis of these observations, it might be reasonable to conclude that some
trophic responses are induced by CE but not by IE. Nonetheless, IE is still considered to be
a useful measure to maintain and improve energy expenditure with moderate physical and
psychological efforts.

One strength of the present study was the use of multiple measures to objectively
demonstrate the degrees of exhaustion and trophic effects during the experimental tests,
including blood biomarkers based on peripheral cannulation. Several limitations should be
noted for appropriate interpretation of the results. First, the subjects in the current study
were men, and all were relatively healthy and active, without any of the adverse conditions
listed in the exclusion criteria. Thus, our sample may not be representative of the general
population within the same age range. Second, the small sample size of this study may
have influenced the ability to demonstrate significant trends, and therefore, it should be
taken with caution. Third, our observations were limited to the use of the cycle ergometry,
and may have differed if other exercise modes were used, such as jogging and running.
Forth, the present study addressed trophic effects mediated by GH, IGF-1, and BDNF, and
was not able to address other trophic effects.

Taken together, the current results suggest that intermittent exercise at LT intensity
might be a feasible mode of exercise to help people start and maintain regular exercise habits
and, consequently, is likely to be a useful tool to prevent and/or moderate metabolic and
cardiovascular health problems, especially in older people and/or sedentary populations.
Future studies will be required to further explore the physiological benefits of intermittent
exercise at LT intensity.

5. Conclusions

In summary, the present study demonstrated that intermittent exercise consisting
of repeated bouts at LT intensity separated by brief rest induces a lower degree of acute
stress or exhaustion than its continuous counterpart. The current findings also revealed
potential trophic responses in continuous exercise, but not in intermittent exercise. The
present findings could be informative for improving preventive and therapeutic exercise
interventions in practical settings.
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