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A B S T R A C T   

Nitrogen dioxide (NO2) is the most active pollutant gas emitted in the industrial era and is highly 
correlated with human activities. Tracking NO2 emissions and predicting their concentrations 
represent important steps toward controlling pollution and setting rules to protect people’s health 
indoors, such as in factories, and in outdoor environments. The concentration of NO2 was affected 
by the COVID-19 lockdown period and decreased because of restrictions on outdoor activities. In 
this study, the concentration of NO2 was predicted at 14 ground stations in the United Arab 
Emirates (UAE) during December 2020 based on training over a full time period of two years 
(2019–2020). Statistical and machine learning models, such as autoregressive integrated moving 
average (ARIMA), seasonal autoregressive integrated moving average (SARIMA), long short-term 
memory (LSTM), and nonlinear autoregressive neural network (NAR-NN), are used with both 
open- and closed-loop architectures. The mean absolute percentage error (MAPE) was used to 
evaluate the performance of the models, and the results ranged from “very good” (MAPE of 8.64% 
at the Liwa station with the closed loop) to “acceptable” (MAPE of 42.45% at the Khadejah School 
station with the open loop). The results show that the predictions based on the open loop are 
generally better than those based on the closed loop because they yield statistically significantly 
lower MAPE values. For both loop types, we selected stations exhibiting the lowest, medium, and 
highest MAPE values as representative cases. In addition, we demonstrated that the MAPE value 
is highly correlated with the relative standard deviation of NO2 concentration values.   

1. Introduction 

Atmospheric pollution has a number of impacts on human health, particularly in urban environments [1]. The concentration of 
pollutants corresponds to the population distribution among areas due to human activities [2–4]. One of the most important atmo
spheric components that has a direct relationship with pollution is nitrogen dioxide (NO2), which is emitted mainly from diesel and 
petrol engines as reported in [5], with road transport contributing approximately 40% of the land-based NOx emissions in European 
countries. Developed countries are facing numerous environmental and social issues related to air pollution. The establishment of 
ground monitoring stations to check air quality over the time is vital, as indicated by numerous studies all over the world such as those 
in USA [6], China [7], India [8], Brazil [9], Italy, and Sweden [10]. In addition, future air quality must be predicted to help gov
ernments formulate policies related to traffic control when the air is extremely polluted and outdoor activities [11]. 
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Time series modeling and forecasting are widely used in many research fields, such as economics, medicine, civil engineering, and 
climate [12–15]. Many models have been used for time series forecasting based on classical, machine learning, and deep learning 
methods [16,17]. Classical methods include the autoregressive integrated moving average (ARIMA) and seasonal autoregressive in
tegrated moving average (SARIMA) [18]. The ARIMA model has been used in many climate and environmental studies, such as 
forecasting temperature, precipitation, air pollution for two locations in India [19,20], as well as in estimating the wind speed, rainfall, 
air quality, and NO2, NO, CO, and O3 contents in many other geographical locations [21–26]. Many studies have used machine 
learning models, such as artificial neural networks (ANNs), support vector machines (SVMs), and deep learning prediction models, 
such as long short-term memory (LSTM), to predict the concentration of CO2 [18,27–29]. 

A previous study [30] predicted air pollution based on pollutants (CO2, CO, NOx, SO2, SO3, and SPM) in Iran’s atmosphere used 
the ARIMA, SVM, and TSVR models, a hybrid of the ARIMA and SVM models, and a hybrid of the ARIMA and TSVM models. Hybrid 
models with a combination of autoregressive parts are used to determine the minimum forecasting error. Data were collected from the 
statistical center in Iran between 1978 and 2016 for six pollutants (CO2, CO, NOx, SO2, SO3, and SPM), and the minimum error was 
obtained using the hybrid model (ARIMA-TSVM) among the other models. The section criteria included the root mean squared error 
(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). Fossil fuels have been reported to contribute the 
most to air pollution in Iran [30]. 

[31] focused only on the emissions of CO2 in nine Asian countries (Japan, Bangladesh, China, Pakistan, India, Sri Lanka, Iran, 
Singapore, and Nepal) based on different sources of emissions, including heat and electricity, manufacturing industries, residential and 
commercial buildings, transport, and other sources. Every country presents different contributions from various industrial sectors. 
Annual data gathered from the World Bank from 1971 to 2014 and CO2 emissions were predicted using ARIMA and simple exponential 
smoothing (SES) models. The minimum forecasting error was evaluated using the forecast mean absolute error (FMAE) [31]. The 
results showed that CO2 emissions increased in Pakistan, Bangladesh, India, Iran, and Sri Lanka because of the use of heat and 
electricity. In China, the main causes of CO2 emissions are residential buildings, commercial buildings, and transportation. However, 
specific sectors did not have a major effect on emissions in Nepal and Singapore. The best prediction model with the minimum errors 
for Japan, China, India, Iran, and Singapore was ARIMA, whereas the best model for forecasting CO2 emissions in Pakistan and Sri 
Lanka was SES. Both models are equally appropriate for Nepal and Bangladesh [31]. 

World Bank data were also used to predict the annual CO2 emissions (per capita) of the European Union for the period between 
1960 and 2014 [21] using the ARIMA (1,1,1)-autoregressive conditional heteroscedasticity (ARCH) (1) model. The model parameters 
were estimated using the maximum-likelihood approach. The model was examined using dynamic (n-step ahead forecasts) and static 
(one step ahead) processes, although the results showed that the static procedure provided better predictions than the dynamic 
procedure. Despite the development of green energy plans, CO2 emissions have been continuously increasing. The prediction models 
have presented different levels of accuracy in various areas and industrial sectors. 

Similarly, the concentration of CH4 was predicted by [32]. CH4 measurements were performed using a Picarro G2401 cavity 
ring-down spectrometer in the Arctic island of Belyy, Russia, in the surface layer of the atmosphere. Hourly measurements collected 
over approximately a week (170 h) in the summer of 2015 were used to assess the forecasting model for methane concentration. The 
first 150 h were used as the training dataset, and the remaining 20 h were used for testing. Four models based on the artificial neural 
network (ANN), namely, nonlinear autoregressive neural network with an external input (NARX), Elman neural network (ENN), and 
multilayer perceptron (MLP) were used. The selection criteria were based on four minimum error calculations: MAE, RMSE, root mean 
squared relative error (RMSRE), and normalized root mean squared error (NRMSE). The best accuracy was achieved using NARX [32, 
33]. The CH4 concentration, temperature, humidity, and pressure values were determined at the same location (Belyy Island, Russia) 
for approximately two months (July and August 2017) in another study [34]. The data were averaged hourly, and 1175 data points 
were used. The first 1103 points were employed as the training data, whereas the remaining 72 time points were the testing data for 
time series forecasting. The accuracy selection criteria were the same as that in Ref. [32] except that NRMSE was excluded and 
Willmott’s index of agreement and standard deviation was included. 

The LSTM-RNN was used to predict one-day-ahead air quality based on the concentrations of CO, NO2, O3, PM10, and SO2, which 
were sampled at 22 sites in urban ground stations located in Madrid, Spain. The daily mean was computed from hourly data gathered 
over a period of 12 years (2001–2013) [35]. Similarly, NO2 concentrations were predicted using ARIMAX (6,1,6) and CNN-LSTM in 
the study [36]. The results show that CNN-LSTM provides better results than ARIMAX with a mean squared error (MSE) of 0.21. 

Another study [37] focused on developing a spatiotemporal model of the daily concentrations of three pollutants (PM2.5, NO2, and 
CO) across 50 sites in Pittsburgh, Pennsylvania, USA, between August 2016 and December 2017. The land used regression (LUR) and 
land use random forest (LURF) methods were examined and tested using the coefficient of determination (R2). The LURF models 
outperformed the LUR model based on an R2 value of 0.10–0.19. 

The Prophet forecasting model (PFM) was used to predict short- and long-term concentrations of 6 air pollutants PM2.5, PM10, O3, 
NO2, SO2, and CO in Seoul, South Korea [38]. Hourly data were measured at 25 sites available on the Seoul Open Data Plaza for three 
years from 2017 to 2019. Seasonality, holidays, and errors were considered in the Prophet forecasting model (PEM). The performance 
of the model was evaluated using the MSE, MAE, and RMSE. The proposed PFM outperformed previous PEMs in the literature by 
increasing the number of pollutants from three to six and increasing the prediction time from one day to one year. This study en
courages the use of additional data to achieve more accurate results. 

In the study by [39], hourly measurements of NO, NO2, NOx, PM10, SO2 and ground-level O3 were recorded in the town of 
Blagoevgrad, Bulgaria from an ExEA monitoring station. ARIMA and SARIMA time series analyses were performed to study a one-year 
period starting from September 1, 2011 and extending to August 31, 2012. The data were used to predict the measurements three days 
ahead. Factor analyses, such as principal component analysis (PCA), Promax rotation, multicollinearity between the six pollutants, and 
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Table 1 
Summary of related works on air pollutant studies in various geographical areas.  

Authors Publication 
Year 

Air Pollutants 
Studied 

Geographical Region Data Source Period of 
Study 

Time 
Resolution 

Methods Used Evaluation Criteria 

Pakrooh & 
Pishbahar 

2019 CO2, CO, NOx, SO2, 
SO3, and SPM 

Iran Statistical Center of Iran 1978 to 2016 yearly ARIMA, SVM, TSVR, ARIMA- 
SVM, ARIMA-TSVR 

MAE, MAPE, RMSE 

Fatima 2019 CO2 Japan, Bangladesh, China, Pakistan, 
India, Sri Lanka, Iran, Singapore, and 
Nepal 

World Bank data 1971 to 2014 yearly ARIMA, Simple exponential 
smoothing (SES) 

FMAE 

Dritsaki & 
Dritsaki 

2020 CO2 European Union World Bank data 1960 to 2014 yearly ARIMA (1,1,1)-ARCH(1) dynamic (n-steps ahead), 
static (one step ahead) 

Sergeev 2018 CH4 Arctic island Belyy, Russia means of a cavity ring-down 
spectrometer Picarro G2401 

~1 week 
(170 h) in 
2015 

hourly ANN, NARX, ENN, MLP RMSRE, NRMSRE 

Navares & 
Aznarte 

2020 CO, NO2, O3, PM10, 
and SO2 

Madrid, Spain – – – CNN-LSTM, ARIMAX – 

Jain 2021 PM2.5, NO2, and CO Pittsburgh, Pennsylvania, USA 50 ground stations Aug 2016 to 
Dec 2017 

daily Land used regression (LUR), 
Land use random forest 
(LURF) 

R2 

Shen 2020 PM2.5, PM10, O3, 
NO2, SO2, and CO 

Seoul, South Korea 25 sites Seoul Open Data Plaza 2017 to 2019 hourly Prophet forecasting model 
(PFM) 

MSE, MAE, RMSE 

Gocheva- 
Ilieva 

2014 NO, NO2, NOx, 
PM10, SO2, and O3 

Bulgaria monitoring station of ExEA Sep 2011 to 
Aug 2012 

hourly ARIMA, SARIMA –  
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the Box-Jenkins method, were also applied. 
The related works on the forecasting of air pollutants are summarized in Table 1. 
With respect to the United Arab Emirates (UAE), previous studies that have applied various analysis methods for air pollutants, 

including NO2, have used both ground station data and satellite data [40]. Among forecasting studies of air pollutants in the UAE, [41] 
conducted a high-level study on CO2 forecasting in six Gulf countries, including the UAE, using the World Bank Database (WBD) with 
the ARIMA method. 

To the best of our knowledge, previous studies have not performed predictive analyses (i.e., forecasting) of future atmospheric NO2 
concentrations in the UAE using data from a network of several ground stations. We believe that this study is the first to address this 
issue. We applied both the statistical and machine learning models to forecast the NO2 concentration levels of the 14 ground stations in 
the Emirate of Abu Dhabi of the UAE with 1–31 day-ahead forecasts using both the open-loop and closed-loop setups. We achieved 
acceptable accuracies ranging from “very good” to “acceptable” among the 14 stations, which were measured in terms of the mean 
absolute percentage error (MAPE). 

2. Data used 

The United Arab Emirates (UAE) is located between 22.5◦ and 26.5◦ N latitude and 51.6◦–56.5◦ E longitude. NO2 measurement 
data for 14 sites in Abu Dhabi were provided by the Environment Agency of Abu Dhabi for two years (2019–2020). The 14 ground 
stations are distributed in the Abu Dhabi region, Al Dhafra region, and Al Ain region, as shown in Table 2 and the map of the UAE in 
Fig. 1. The ground station locations were classified into different categories: urban, suburban, and rural. The NO2 concentrations 
measured at the ground stations were recorded hourly (i.e., 24 readings per day) in units of μg/m3. 

Some data values were missing, and they were replaced by linearly interpolated/extrapolated values. Outlier values were identified 
as those greater than or less than three standard deviations from the mean (i.e., covering 99.7% of the data) [42]. These outlier values 
were clipped (rounded down/up) to three standard deviations from the mean. 

We illustrate the daily minimum, average, and maximum NO2 concentration values of the three selected stations, one from each 
region, namely (i) Khadejah School station (urban, Abu Dhabi Capital Region), (ii) Ruwais station (suburban, Al Dhafra Region), and 
(iii) Al Quaa station (rural, Al Ain Region) for the period 2019–2020 in Fig. 2. We can observe from the graphs that the daily maximum 
NO2 concentration values fluctuate significantly when compared to the daily average and minimum values at all three stations. 

In this study, we focused on daily average NO2 concentrations. The Pearson correlation coefficients [43] of the daily average NO2 
concentration values of the 14 stations during the period 2019–2020 are depicted as a heatmap in Fig. 3. Generally good correlations 
are observed among the stations in the Abu Dhabi Capital Region (except for the Baniyas School). The stations in Abu Dhabi were 
geographically close to each other. Three stations in the Al Ain region (excluding Al Quaa) also exhibited good correlations. The 
correlation values were relatively low for the stations in the Al Dhafra region (except for the Gayathi School and Ruwais). 

3. Forecasting methods 

3.1. Classical statistical methods 

Time-series data are a sequence of numerical values in which each value is associated with a specific timestamp. Time-series data 
were classified as stationary or non-stationary. Patterns were not observed in the stationary data, while patterns, trends, and sea
sonality were observed in the non-stationary data due to the variations in the mean and variance over the time sequence. To apply 
statistical prediction models, such as the ARIMA and seasonal ARIMA (SARIMA), non-stationary data must be converted to stationary 
data. The differencing technique is used to convert nonstationary data into stationary data by calculating the difference between two 
consecutive observations. This differencing reduces the existence of trends and seasonality in the data. Such differencing is ordered, 
such as first- and second-order, as shown in Eqs. (1) and (2). If first-order differencing has no effect on creating stationary data, then 

Table 2 
Locations of the ground stations in UAE.   

Name Location Category Region 

1 Hamdan Street Urban Traffic Abu Dhabi Capital Region 
2 Khadejah School Urban Background Abu Dhabi Capital Region 
3 Khalifa School Suburban Background Abu Dhabi Capital Region 
4 Baniyas School Suburban Background Abu Dhabi Capital Region 
5 Bain Al Jessrain Suburban Background Abu Dhabi Capital Region 
6 Al Mafraq Suburban Industrial Abu Dhabi Capital Region 
7 Bida Zayed Suburban Background Al Dhafra Region 
8 Gayathi School Suburban Background Al Dhafra Region 
9 Ruwais Suburban Industrial Al Dhafra Region 
10 Liwa Rural Background Al Dhafra Region 
11 Al Quaa Rural Background Al Ain Region 
12 Sweihan Suburban Background Al Ain Region 
13 Al Tawia Suburban Background Al Ain Region 
14 Zakher Urban Background Al Ain Region  
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second-order differencing should be applied. The difference between the observation and seasonal data was computed within the same 
season. The first-order seasonal differencing is presented in Eq. (3). After removing the seasonality by differencing, the data were used 
for predicting the variable with respect to time, considering four assumptions about the data. First, anomalies or outliers were not 
observed in the data. Second, the data were univariate, and the regression was built based on its previous value. Third, the data were 
stationary with a constant mean and variance. Fourth, the parameters and error terms of the statistical prediction model are constant 
over time [44]. 

yt
′

= yt − yt− 1 (1)  

yt
′′ = yt − 2yt− 1 + yt− 2 (2)  

ys
′

= yt − yt− m (3)  

where. 

yt
′ : time series after first-order differencing; 

yt: nonstationary time series; 
yt− 1: observation at time step t − 1; 
yt

′′: time series after second-order differencing; 
yt− 2: observation at time step t − 2; 
ys

′ : seasonal time series after first-order differencing; 
yt− m: observation at time step t − m, where m is the number of time steps corresponding to a seasonal period. 

3.1.1. Autoregressive integrated moving average (ARIMA (p,d,q)) 
ARIMA combines two regression models: autoregressive (AR) and moving average (MA). It has three parameters for the time steps: 

(p) for autoregression, (d) for differencing order, and (q) for moving average. The autoregression model predicts time series depen
dence based on its past value, whereas the moving average forecasts the time series dependence based on its previous predicted error to 
predict the variable for later time steps. The AR, MA, and ARIMA (which combines AR and MA in addition to differencing (d)) models 
are presented in Eqs. (4)–(6), respectively. The general representation of the ARIMA model is given in Eq. (7) [44,45]. If the data are 
stationary, then ARMA is applicable, which is a combination of AR and MA [46]. 

yt = c + ∅1yt− 1 + ∅2yt− 2 + ∅3yt− 3 + … + ∅pyt− p + εt (4)  

Fig. 1. Locations of 14 ground stations on the map of the UAE. (Note: Stations 1–3 are located relatively close to each other in Abu Dhabi City.) The 
X-axis represents in the longitude degrees (East) and the Y-axis represents the latitude degrees (North). 
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yt = c + εt + θ1εt− 1 + θ2εt− 2 + θ3εt− 3 + … + θqεt− q (5)  

yt = c + ∅1yt− 1 + ∅2yt− 2 + … + ∅pyt− p + θ1εt− 1 + θ2εt− 2… + θqεt− q + εt (6)  

yt = c +
∑p

i=1
∅iyt− i +

∑q

j=1
θjεt− j (7)  

3.1.2. Seasonal autoregressive integrated moving average (SARIMA (p,d,q) (P,D,Q)m) 
SARIMA has an additional seasonal term compared with the non-seasonal ARIMA model, and this term is (P,D,Q)m, which cor

responds to seasonality in m time steps in a specific seasonal period. The SARIMA model is expressed by Eq. (8). B is the backshift 
operator expressed by Eq. (9). The expressions for non-seasonal and seasonal autoregression (AR), moving average (MA), seasonal AR 

Fig. 2. Daily NO2 concentration values in the three selected stations: Khadejah School station (urban, Abu Dhabi Capital Region), Ruwais station 
(suburban, Al Dhafra Region), and Al Quaa station (rural, Al Ain Region) in 2019–2020. (Note: the straight lines are the missing values replaced by 
linearly interpolated/extrapolated values.) 
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model, and seasonal MA are presented in Eqs. (10)–(13), respectively [44]. 

∅P(Bm)∅p(B)(1 − Bm)
D
(1 − B)dyt = θQ(Bm) θq(B)ωt (8)  

Bkyt = yt− k (9)  

∅(B) = 1 − ∅1(B) − ∅2B2 − ……..∅pBp (10)  

θ(B) = 1 + θ1(B) + θ2B2 + ……..+ θqBq (11)  

∅P((Bm)= 1 − ∅1(Bm) − ∅2B2m − ……..∅PBPm (12)  

θQ(B)= 1+ θ1(Bm)+ θ2B2m + ……..θQBQm (13)  

where. 

yt: nonstationary time series; 
ωt : Gaussian white noise; 
∅P(Bm)∅p: seasonal autoregression polynomial; 
∅p(B): non-seasonal autoregression polynomial; 
θQ(Bm): seasonal moving average polynomial; 
θq(B): Non-seasonal moving average polynomial; 
D: seasonal difference term; 
B: Backshift operator. 

3.2. Machine learning methods 

3.2.1. Long short-term memory (LSTM) 
Long short-term memory (LSTM) networks are recurrent neural networks (RNNs) used for time-series forecasting. They process 

input data over time and update the network state that holds the required information from the previous time steps to be used as an 
input for the prediction of the next step. 

The architecture of a vanilla LSTM contains a set of recurrently associated sub-networks called memory blocks that maintain their 
state over time and regulate information flow through non-linear gating units. The LSTM unit consists of a cell, input gate, output gate, 

Fig. 3. Heatmap of the correlations of daily average NO2 concentration values among the fourteen stations over the period 2019–2020. The station 
numbers are as mentioned in Table 2. 
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forget gate, input signal x(t), output y(t), activation functions (sigmoid and tanh), and peephole connections. The cell remembers values 
over time intervals, and the three gates control the flow of information linked to the cell. The output of the block is recurrently 
connected to the next block input that passes through the cell and gates. The forward pass in the recurrent neural system is described by 
the process between the block input and output in the input gate, forget gate, updated cell value, output gate, and block output. The 
block input is responsible for updating the input component that combines the current input x(t) and output of the LSTM unit y(t− 1) in 
the last step, as presented in Eq. (14). 

z(t) = g
(
Wzx(t) +Rzy(t− 1) + bz

)
(14)  

where Wz and Rz are the weights associated with x(t) and y(t− 1), respectively, bz represents for the bias weight vector, and g is the 
hyperbolic tangent (tan h) activation function. The input gate is updated by combining the current input x(t), the output of the LSTM 
unit y(t− 1), and the cell value c(t− 1) in the last iteration, as illustrated in Eq. (15). 

i(t) = σ
(
Wix(t) +Riy(t− 1) +Piʘ c(t− 1) + bi

)
(15)  

where Wi, Ri, and Pi are the weights associated with x(t), y(t− 1), and c(t− 1), respectively, while bi represents the bias vector associated 
with this component, ʘ denotes the point-wise multiplication of two vectors, and σ represents a logistic sigmoid activation function 
σ(x) = 1

1+e− x. The forget gate determines which information should be eliminated from the previous cell states c(t− 1). Therefore, the 
activation values f (t) of the forget gates at time step t are computed based on the current input x(t), output y(t− 1), and state c(t− 1) of the 
memory cells at the previous time step (t − 1) and the bias term bf of the forget gate as follows: 

f (t) = σ
(
Wf x(t) +Rf y(t− 1) +Pf ʘ c(t− 1) + bf

)
(16)  

where Wf , Rf , and Pf are the weights associated with x(t), y(t− 1), and c(t− 1), respectively, while bf represents the bias weight vector. The 
current cell state value c(t) is updated after selecting the candidate values z(t) and input gate i(t) of the input gates and removing in
formation from the previous cell states c(t− 1) using the forget gate. 

c(t) = z(t)ʘi(t) + c(t− 1)ʘf (t) (17) 

The output gate is computed by combining the current input x(t), output of the LSTM unit y(t− 1) and cell value c(t− 1) in the last 
iteration. 

o(t) = σ
(
Wox(t) +Roy(t− 1) +Poʘc(t− 1) + bo

)
(18)  

where Wo, Ro, and Po are the weights of x(t), y(t− 1), and c(t− 1), respectively, and bo represents the bias weight vector. The final step is the 
block output, which combines the current cell value c(t) with the current output gate value, as follows: 

y(t) = gc(t) ʘ o(t) (19) 

The weights in the network were learned through backpropagation over time. The cell state c(t) receives gradients from y(t), and the 
gradients are gathered before being backpropagated to the current layer. The changes in the gradients in the last iteration represent the 
loss function [47–49]. 

3.2.2. Nonlinear autoregressive neural network (NAR-NN) 
The NAR neural network is a dynamic neural network that predicts a time series. It has a feedback connection linking several layers 

of the network: the input layer, hidden layer, and output layer. NAR is expressed by the following equation, where y(t) is the output 
value at time (t) and (d) is the delay order. 

y(t)= f (y(t − 1), y(t − 2), y(t − 3),…., y(t − d)) (20) 

The training function of the NAR neural network is the (LM) algorithm. NAR uses a hyperbolic tangent sigmoid transfer function for 
the hidden layer and a linear transfer function for the output layer. The NAR-NN test can be carried out using open and closed loops 
[47,50–53]. 

3.3. Evaluation criteria 

All forecasted NO2 concentrations for the 14 ground stations that were obtained by applying the statistical and machine learning 
methods were evaluated based on the mean absolute percentage error (MAPE) evaluation criteria, which is one of the most commonly 
used metrics in forecasting [54]. The MAPE is determined by the following equation: 

MAPE=
1
n
∑n

t=1

|At − Ft
⃒
⃒

At
× 100 (21)  

where n is the number of observations or predictions, At is the actual value, and Ft is the forecast value. 
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For interpretation, a MAPE value lower than 10% is considered very good, <20% is good, <50% is acceptable, and >50% is not 
good [55]. 

4. Results and discussion 

4.1. Experimental setup 

The first 23 months of 2019–2020 (700 days) were used for training each of the four methods (LSTM, NAR-NN, ARIMA, and 
SARIMA). The trained models were then used to predict the NO2 concentration values during the testing period of December 2020 (31 
days). The forecasted values of NO2 concentration during the 31 testing days were evaluated against the actual values using the MAPE 
(Eq. (21)), with n = 31. 

The architecture and hyperparameters used in each method are listed in Table 3. These were empirically tuned to yield reasonably 
good results. 

Notes.  

(i) For the LSTM, we also attempted a window size of 14 but did not obtain significantly different results.  
(ii) For SARIMA, we applied 14 seasonal variables but did not obtain significantly different results.  

(iii) More than 14 seasonal variables could not be applied because of limitations in computing resources.  
(iv) For LSTM, to avoid the problem of data leakage, the training data were only obtained for 693 days (instead of 700) because a 7- 

day sequence window is used. 

4.2. Open loop vs closed loop forecasting 

There are two basic modes of forecasting: open-loop and closed-loop. The open loop uses the actual input value from the previous 
steps to predict the value of the next step [56]. In other words, it represents forecasting with a one-unit time lag. When the time unit is a 
day, it is known as “one day-ahead” forecasting [57]. In the machine learning literature, this process is known as either “interleaved 
test-then-train” or “prequential” evaluation [58]. If testing data are obtained for T number of days, then we must repeat this inter
leaved test-then-train process T times, as shown in Fig. 4(a). 

In our case, using the open-loop architecture, 700 days (Jan 1, 2019, to Nov 30, 2020) were used for training and one day (Dec 1, 
2020) was used for testing. Then, 701 days (Jan 1, 2019, to Dec 1, 2020) were used for training and one day (Dec 2, 2020) was used for 
testing. 

In contrast, closed-loop forecasting uses previous predictions as an input to forecast the next step [56]. Actual input values for the 
testing data were not available throughout the process. Testing data for T number of days is equivalent to carrying out multiple 
forecasts from “one day-ahead,” “two days-ahead,” etc., up to “T days-ahead” one after another, as demonstrated in Fig. 4(b). 

In our case, closed-loop forecasting was performed for 1 d to 31 d-ahead forecasts on the testing data. Usually, the closed-loop 
architecture is much faster than the open-loop architecture but less accurate. This phenomenon was confirmed in our experimental 
results, as shown in the section below. 

4.3. Forecasting results and interpretations 

4.3.1. MAPE results 
The forecasting results in terms of the MAPE values of the four methods (LSTM, NAR-NN, ARIMA, and SARIMA) for both the open 

and closed loops are listed in Table 4, and the average MAPE values for the four methods, together with the interpretations according to 
Allwright [55] are listed in Table 5 [55]. 

Table 6 shows the p-values for the pairwise differences in MAPE values across the 14 stations using the two-tailed Wilcoxon signed- 
rank test [59]. For the open loop, only the differences between LSTM and ARIMA and LSTM and SARIMA were significant, while the 
rest were not. Therefore, a clearly optimal model was not determined for the open-loop setup. For the closed loop, four out of the six 

Table 3 
Architecture and hyperparameters used for the four methods.  

Method Architectures and Hyperparameters 

LSTM Sequence window size = 7 
Unidirectional 
1 LSTM layer with 64 neurons 
1 hidden layer with 32 neurons 
Number of epochs = 50 

NAR-NN 1 hidden layer with 4 neurons 
Number of epochs = 350 

ARIMA (p, d, q) = (1, 1, 1) 
SARIMA (p, d, q) = (1, 1, 1) 

(P, D, Q)m = (1, 1, 1)7  
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pairs (except for LSTM vs. NAR-NN and ARIMA vs. SARIMA) were significantly different, and this finding implies that the machine 
learning methods (LSTM/NAR-NN) were better than the statistical methods (ARIMA/SARIMA) in the closed-loop setup. 

For the overall comparison, we found that the average MAPE values of the open loop were significantly lower than those of the 
closed loop. This was observed at 12 out of the 14 stations (with the exception of the two stations in the Al Ain Region). To confirm this 
phenomenon, we conducted two statistical tests across 14 stations. The one-tailed paired t-test [60] resulted in a p-value of 0.00266 
while the one-tailed Wilcoxon signed-rank test [59] resulted in a p-value of 0.00453, both of which are significantly smaller than 0.05. 

In addition to the analysis of the results with the MAPE evaluation criteria, we have also carried out an additional analysis using the 
Root-Mean-Square Error (RMSE) criteria [61]. The results are presented in Section S.1 of the supplementary materials. 

4.3.2. Lowest, medium, and highest cases 
For each loop type, among the 14 ground stations, three were selected to represent the lowest, medium, and highest MAPE values. 
The lowest MAPE values for both the open and closed loops were obtained at the Liwa station, which is located in the rural area of 

the Al Dhafra Region and had MAPE values of 8.64 and 10.73 respectively. This means that the concentration of NO2 in Liwa was well 
predicted and Liwa was unaffected by the fluctuation of NO2 during the COVID-19 lockdown. The emissions of NO2 in Liwa were 
approximately the same before and after the COVID-19 lockdown. 

The second station was selected to present the medium MAPE values among all the other ground stations in both open and closed 
loops architectures, which were ranked as the seventh best MAPE values in each loop type. The Al Quaa station (rural area in Al Ain 
Region) was selected for the open loop, and the Zakher station (urban area in Al Ain Region) was selected for the closed loop, and their 

Fig. 4. Comparison of the two forecasting architectures with N days for training and T days for testing: (a) open loop and (b) closed loop.  

Table 4 
MAPE values for each model using the open and closed loop architectures to predict NO2 concentrations in December 2020.  

Ground Station Open loop Closed loop 

LSTM NAR-NN ARIMA SARIMA LSTM NAR-NN ARIMA SARIMA 

1 Hamdan Street 13.36 12.68 12.51 11.52 14.7 15.88 15.42 15.06 
2 Khadejah School 37.53 31.69 37.37 33.88 39.12 40.00 46.54 44.13 
3 Khalifa School 34.68 33.82 32.11 33.04 34.16 37.75 46.15 45.67 
4 Baniyas School 15.87 18.20 15.13 13.82 15.21 17.88 17.86 16.60 
5 Bain Al Jessrain 25.38 24.26 25.41 24.74 25.50 31.76 33.09 33.31 
6 Al Mafraq 12.06 11.99 11.03 8.99 11.96 15.39 17.35 16.12 
7 Bida Zayed 33.42 32.50 33.88 34.08 33.43 33.08 39.80 40.00 
8 Gayathi School 22.70 22.79 22.28 23.15 22.54 19.57 25.35 25.70 
9 Ruwais 28.15 27.91 28.31 29.50 26.65 28.29 31.74 32.34 
10 Liwa 9.05 8.00 8.71 8.81 8.90 9.99 11.95 12.08 
11 Al Quaa 23.64 26.57 23.28 22.97 24.50 32.30 36.90 35.63 
12 Sweihan 21.81 23.86 21.49 19.27 24.05 23.81 23.80 23.85 
13 Al Tawia 30.54 29.44 29.39 29.63 30.72 24.71 24.62 24.39 
14 Zakher 26.19 27.29 24.18 23.77 25.68 23.82 24.61 24.77  

Average 23.88 23.64 23.22 22.66 24.08 25.30 28.23 27.83  
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MAPE values were 24.12 and 24.72, respectively. 
For both loop types, the highest MAPE values were measured at the Khadejah School station, which is located in an urban area in 

the Abu Dhabi Region, and it had a MAPE of 35.12 with the open-loop architecture and 42.44 with the closed-loop architecture. 
In general, the MAPE values using the open-loop architecture are better than those of the closed loop architecture, as presented in 

Table 5, Figs. 5 and 6, which is also confirmed by the two statistical tests discussed in the last paragraph of the above section. We can 
observe that for the closed loop, NAR-NN and SARIMA produced forecasts for all 31 days with only small variations while ARIMA 
generated forecasts with virtually no variations after a few days. These phenomena can be observed at all three representative stations 
in Fig. 6. 

4.3.3. Correlation analysis 
We also investigate why the forecasting accuracies (in terms of the MAPE) varied among the 14 stations. First, we arranged the 

average NO2 concentration values for December 2020 in ascending order and then tabulated and plotted the average MAPE values of 
the open- and closed-loop forecasts, Table S2(a), in the supplementary materials, and its corresponding Fig. 7(a). We noticed that the 
mean NO2 concentration values and MAPE were poorly correlated when measured using the Pearson correlation coefficient [43]. The 
correlation coefficients are − 0.36413 and − 0.25975, respectively for the open- and the closed-loop setups. 

The relative standard deviation (RSD), which is also known as the coefficient of variation [62], is the standard deviation (SD) 
expressed as a percentage of the mean. It is calculated as follows (Eq. (22)): 

RSD=

(
SD

mean

)

× 100 (22) 

We now arrange the RSD values of the NO2 concentration for December 2020 in ascending order. The average MAPE values of the 
open- and closed-loop forecasts were tabulated and plotted, as shown in Table S2(b), in the supplementary materials, and its corre
sponding Fig. 7(b). The RSD values were highly correlated with the MAPE values for both the open- and closed-loop setups (0.92782 
and 0.94443, respectively). This reflects a very general phenomenon in forecasting: more accurate forecasts are made when the data 
exhibit fewer variations while less accurate forecasts are made when the data exhibit higher variations. 

5. Conclusions 

This study compared the performance of the statistical and machine learning models ARIMA, SARIMA, NAR, and LSTM using the 
MAPE evaluation criteria. In addition, the models were compared in both open- and closed-loop architectures. The results show that 

Table 5 
Average MAPE values (LSTM, NAR-NN, SRIMA, and SARIMA) for each ground station using the open and closed loop architectures of predicting NO2 
concentrations in December 2020. The interpretations are based on Allwright [55].  

Ground Station Open Loop Closed Loop Difference in avg. MAPE (Closed loop – Open loop) 

Average MAPE Interpretation Average MAPE Interpretation 

1 Hamdan Street 12.52 Good 15.27 Good 2.75 
2 Khadejah School 35.12 Acceptable 42.45 Acceptable 7.33 
3 Khalifa School 33.41 Acceptable 40.93 Acceptable 7.52 
4 Baniyas School 15.76 Good 16.89 Good 1.13 
5 Bain Al Jessrain 24.95 Acceptable 30.92 Acceptable 5.97 
6 Al Mafraq 11.02 Good 15.21 Good 4.19 
7 Bida Zayed 33.47 Acceptable 36.58 Acceptable 3.11 
8 Gayathi School 22.73 Acceptable 23.29 Acceptable 0.56 
9 Ruwais 28.47 Acceptable 29.76 Acceptable 1.29 
10 Liwa 8.64 Very good 10.73 Good 2.09 
11 Al Quaa 24.12 Acceptable 32.33 Acceptable 8.21 
12 Sweihan 21.61 Acceptable 23.88 Acceptable 2.27 
13 Al Tawia 29.75 Acceptable 26.11 Acceptable − 3.64 
14 Zakher 25.36 Acceptable 24.72 Acceptable − 0.64  

Average 23.35 Acceptable 26.36 Acceptable 3.01  

Table 6 
P-values for the pair-wise differences in MAPE values across the 14 stations using the two-tailed Wilcoxon signed-rank test: (a) open loop architecture 
and (b) closed loop architecture. Statistically significant p-values (<0.05) are highlighted in bold.   

(a) Open Loop Architecture  (b) Closed Loop Architecture 

NAR-NN ARIMA SARIMA  NAR-NN ARIMA SARIMA 

LSTM 0.70394 0.01016 0.01314 LSTM 0.17702 0.01314 0.01552 
NAR-NN  0.33204 0.27134 NAR-NN  0.00758 0.01108 
ARIMA   0.17702 ARIMA   0.19706  
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the open loop, which takes the actual value as an input to the next forecasting step, yields statistically better MAPE values than the 
closed loop, which feeds the previous output of the prediction value as an input to the next step. However, the MAPE values at two 
stations (Al Tawia and Zakher) in urban and suburban areas of Al Ain Region were lower (better) when using a closed loop compared to 
the open loop. This might be because of the nature of the desert region or effects of different activities. An example of fluctuations in 
the activities was found in Al Quaa and Zakher. The MAPE value in Al Quaa using the open loop was better than that of the closed loop, 
while this finding was reversed in Zakher. The prediction of NO2 in Liwa was the best when using either the open or closed loop. This 
could be because Liwa is a rural area unaffected by human activities and thus unaffected by the COVID-19 lockdown. The prediction 

Fig. 5. Prediction of NO2 concentrations during Dec 2020 using the open loop architecture for the ARIMA, SARIMA, NAR, and LSTM models. 
Predicted NO2 concentrations in (a) Liwa, (b) Al Quaa, and (c) Khadejah School. 
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for Khadejah School (in the urban area of Abu Dhabi with many NO2 fluctuations) was the worst using both open and closed loops. A 
comparison of the four methods (LSTM, NAR-NN, ARIMA, and SARIMA) did not identify a clearly optimal method for the open-loop 
setup. However, the machine learning methods (LSTM/NAR-NN) were generally better than the statistical methods (ARIMA/SARIMA) 
for the closed-loop setup. Finally, we showed that the MAPE is highly correlated with the RSD for both loop types. 

Fig. 6. Prediction of NO2 concentrations during Dec 2020 using the closed loop architecture for the ARIMA, SARIMA, NAR, and LSTM models. 
Predicted NO2 concentration in (a) Liwa, (b) Zakher, and (c) Khadejah School. 
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