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� Functional ABA biosynthesis genes
show specific roles for ABA
accumulation at different stages of
seed development and seedling
establishment.

� De novo ABA biosynthesis during
embryogenesis is required for late
seed development, maturation, and
induction of primary dormancy.

� ABA plays multiple roles with the key
LAFL hub to regulate various
downstream signaling genes in seed
and seedling development.

� Key ABA signaling genes ABI3, ABI4,
and ABI5 play important multiple
functions with various cofactors
during seed development such as de-
greening, desiccation tolerance,
maturation, dormancy, and seed
vigor.

� The crosstalk between ABA and other
phytohormones are complicated and
important for seed development and
seedling establishment.
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Background: Seed is vital for plant survival and dispersion, however, its development and germination are
influenced by various internal and external factors. Abscisic acid (ABA) is one of the most important phyto-
hormones that influence seed development and germination. Until now, impressive progresses in ABAmeta-
bolism and signaling pathways during seed development and germination have been achieved. At the
molecular level, ABA biosynthesis, degradation, and signaling genes were identified to play important roles
in seed development and germination. Additionally, the crosstalk between ABA and other hormones such as
gibberellins (GA), ethylene (ET), Brassinolide (BR), and auxin also play critical roles. Although these studies
explored some actions and mechanisms by which ABA-related factors regulate seed morphogenesis, dor-
mancy, and germination, the complete network of ABA in seed traits is still unclear.
Aim of review: Presently, seed faces challenges in survival and viability. Due to the vital positive roles in dor-
mancy induction and maintenance, as well as a vibrant negative role in the seed germination of ABA, there is
).
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a need to understand the mechanisms of various ABA regulators that are involved in seed dormancy and ger-
mination with the updated knowledge and draw a better network for the underlying mechanisms of the
ABA, which would advance the understanding and artificial modification of the seed vigor and longevity regu-
lation.
Key scientific concept of review: Here, we review functions andmechanisms of ABA in different seed development
stages and seed germination, discuss the current progresses especially on the crosstalk between ABA and other
hormones and signaling molecules, address novel points and key challenges (e.g., exploring more regulators,
more cofactors involved in the crosstalk between ABA and other phytohormones, and visualization of active
ABA in the plant), and outline future perspectives for ABA regulating seed associated traits.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The plant development starts with the seed, followed by the
seedling, the vegetative phase, and end with the reproductive
phase [1–3]. Seed production is important for the reproduction
and diffusion of many plant species that contain a fully developed
embryo and allows the embryo to stay alive during seed matura-
tion and seedling establishment for next-generation initiation [4].
There are two important phases of seed development which
include zygotic embryogenesis, seed maturation. Seed maturation
occurs as a result of complex, overlapping developmental pro-
cesses that start from the end of embryogenesis and end when
seeds become physiologically independent of the parent plant. It
includes a phase of seed storage reserve deposition and the less
characterized phase of maturation drying. Furthermore, during
maturation, seeds acquire a range of physiological traits i.e. dor-
mancy, vigorous and homogenous germination, after these pro-
cesses, a viable seedling is established in the field for the life
cycle [1,5]. Seed dormancy and germination are critical phases in
the higher plant life cycle and important traits for crop yield, how-
ever, both of them are influenced by developmental and environ-
mental signals [6].

Seed dormancy is a key characteristic to prevent viable seed
germinating during the harsh and tough growing season [4,7].
Low seed dormancy level or non-dormant seed increases the risk
of seed death and directs the seed to germinate under unfavorable
growth conditions, while a high seed dormancy level stops or
reduces the seed germination under favorable growth conditions
which ultimately reduces the length of the growing season or crop
yield [6,8,9]. Thus, proper seed dormancy is an important compo-
nent of plant fitness and provides adaptation to a wide variety of
environmental conditions. Further, it is a genetic character influ-
enced by inherence as well as environmental factors. Along with
seed later development and maturation, seed dormancy starts to
build and reaches a higher level in dry mature seeds known as pri-
mary dormancy [10]. In contrast, the induction of dormancy in
non-dormant seed due to unfavorable environmental conditions
for germination such as light and temperature is known as sec-
ondary dormancy [7].

Germination is important that occurs in the lifecycle of all
higher plants and has the potential to influence the evolution of
traits expressed throughout the life of plants [8]. Seed germination
starts when the dormant seed uptakes water and accomplishes
when a part of the embryo such as a radicle comes out from the
seed coat. The emergence of a radicle by rupturing the seed coat
is known as the completion of the germination, however, this pro-
cedure depends on the absorption of water by the embryo and acti-
vation of a series of physiological events [11]. Germination
requires specific environmental conditions, the seed sensitivity to
the environment changes continuously as a function to adapt to
ambient conditions. Therefore, seed germination depends on
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endogenous hormonal as well as environmental signals such as
temperature, water, and light that allow a dormant seed to germi-
nate successfully [12].

Environmental factors (temperature, soil, nutrition, light, water,
humidity, air, pollutants, etc.) influence seeds dormancy and ger-
mination as well as other developmental stages of seed [13]. Seed
catch signals from the environment, then endogenous pathways
involved by phytohormones, such as calcium ion, reactive oxygen
species are activated and seed dormancy/germination and other
developmental stages are designed accordingly [14,15]. Phytohor-
mones play key distinct roles in the plant life cycle, from seed mat-
uration, seed germination to the floral transition and abiotic/biotic
stress responses [13,16]. For example auxin, ABA, ET, and GA have
been found that have important roles during plant development
and in seed dormancy and germination regulation [17–19]. Plants
maintain the availability and level of hormones in different parts of
the plant body at different developmental stages in an intricate and
balanced manner [20]. ABA is derived from epoxycarotenoid cleav-
age and is obtained one of important plant-specific hormone
among other, and performs various physiological functions in the
plant such as in transpiration, improved resistance from tempera-
ture (low and high) during plant development, and in the regula-
tion of dormancy and germination [23–25]. In dormancy and
germination control, ABA is one of the key hormones that play a
prominent role [10,21,22].

Similarly, it is hypothetical that ABA plays a vital role to main-
tain the dormant form of seeds in a severe environment [19,21,26].
Previously, it has been reported that ABA biosynthesis, signaling,
and degradation genes play important functions in induction,
stabilization, and release of dormancy. The mutation or over-
expression of key ABA-related genes results in germination-
associated phenotypes [27–30]. In this review, we focus and
discuss the updated findings related to ABA biosynthesis, signaling
and degradation, and its versatile functions associated with seed
development and seedling establishment, raise some key questions
for the future study of ABA function.
Role of ABA biosynthesis genes in seed development

Maternal ABA plays a significant role in embryo development
and seed maturation in tobacco and Arabidopsis [31]. But, ABA is
also de novo synthesized in embryo and testa during embryo devel-
opment, as well as accumulates during seed maturation, facilitates
late seed maturation processes, synthesis of storage proteins to
prevent seed abortion, induces primary dormancy and allows suc-
cessful germination as well as a successive seedling enterprise
[32]. So, de novo synthesis of active ABA plays a more important
role in seed development and later germination.

Active ABA is synthesized through an indirect pathway from
xanthophylls (e.g., zeaxanthin, violaxanthin, and neoxanthin)
[33,34]. Three types of genes are responsible for the successive
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Fig. 1. Regulation of seed development and dormancy by ABA biosynthesis through the carotenoid pathway started from b-carotene (C40). The complete ABA synthesis
process takess place in plastids and cytoplasm where ZEAXANTHIN EPOXIDASE (VPs, ZEP, ABA1/2) converts zeaxanthin into antheraxanthin and all trans-violaxanthin. ABA4
catalyzes the conversion from all-trans-violoxanthin to the all-trans-neoxanthin. The conversion of xanthoxin from 90-cis-neoxanthin and 90-cis-violaxanthin is exerted by
VP14 and NCEDs (NINE-CIS-EPOXYCAROTENOID DIOXYGENASE), among which the NCEDs display different subcellular localization of plastid or cytoplasm. The oxidation of
abscisic aldehyde by AAO3 (ABSCISIC ALDEHYDE OXIDASE3) is responsible for the conversion from abscisic aldehyde into ABA, which in turn induces and maintains seed
dormancy. But, it is yet unknown of the factors responsible for the conversion from all-trans-violoxanthin /all-trans-neoxanthin to 9-cis-violoxanthin/9-cis-neoxanthin.
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steps of ABA biosynthesis such as ZEAXANTHIN EPOXIDATION (ZEP),
OXIDATIVE CLEAVAGE OF 9-CIS-EPOXYCAROTENOIDS (NCED), and
ABSCISIC ALDEHYDE OXIDATION (AAO) (Fig. 1) [35].

The ZEP/ABA gene was firstly identified in Arabidopsis thaliana
and Nicotiana plumbaginifolia [36]. Their mutants (aba1/aba2) with
deficient ABA were impaired in the oxidation of zeaxanthin into
antheraxanthin and violaxanthin [37], which is thought as an ini-
tial step of ABA biosynthesis (Fig. 1). In rice, a Tos17 viviparous
mutant was identified to have viviparous germination due to a
defect in the oxidation of zeaxanthin during ABA synthesis [38].
Numerous other ABA auxotrophic mutants (vp2, vp5, vp7, and
vp9) identified in maize by genetic screening have defects in zeax-
anthin epoxidase activity and block the early steps of carotenoid
biosynthesis too [39]. All these evidenced that the oxidation of
zeaxanthin is an important and conservative phase in the ABA syn-
thesis of the plant. It is always not very clear for the conversion
from all-trans-violoxanthin and the all-trans-neoxanthin to 9-cis-
violoxanthin and 9-cis-neoxanthin. However, ABA4 was found
responsible for conversion from all-trans-violoxanthin to the all-
trans-neoxanthin [40], providing some clues for the exploration
of these transition.

The next pivotal gene in the subsequent stages of ABA biosyn-
thesis was firstly cloned from maize viviparous mutant vp14 as
NINE-CIS-EPOXYCAROTENOID DIOXYGENASE (NCED9). The vp14
mutant has a fault in the oxidation of 9-cis-epoxycarotenoid during
the last few steps in ABA biosynthesis and exhibits reduced ABA
content in the dry seed [41]. In Arabidopsis, NCED2, NCED3, NCED5,
NCED6, and NCED9 are known as the homologs of VP14 participat-
ing in a rate-limiting step in ABA biosynthesis [24] (Fig. 1). Further-
more, the PvNCED1, LeNCED1, and BdNCED1 identified from the
bean, tomato, and Brachypodium distachyon, respectively also show
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the important roles in ABA biosynthesis and seed development
[42,43]. All the above studies have delivered pieces of evidence
that the oxidative cleavage of xanthophylls is the main step during
ABA biosynthesis regulation for dormancy and development medi-
ation in seeds [44].

Abscisic aldehyde oxidation is the last step of ABA biosynthesis,
where abscisic aldehyde is oxidatively converted into ABA (Fig. 1)
[45]. Firstly, identified mutants defective in the oxidation of absci-
sic aldehyde into ABA were flacca and sitiens in tomato [46]. Later
on, abscisic aldehyde oxidase3 (AAO3) was identified in Arabidopsis
which functions in the last two steps of ABA biosynthesis in seed
and its expression was also observed in embryo vascular tissues
during mid and late maturation phases [47,48]. The ABA synthetic
pathway offers an active ABA pool during the whole plant develop-
ment that is controlled by various homologous genes. The identifi-
cation of cofactors of the enzymatic reactions in the ABA synthesis
pathway would be helpful for the understanding of the complete
network of ABA synthesis.

Role of ABA signaling components in different seed
developmental stages

ABA works via a complex signaling network and initiates the
cell response through activating downstream signaling genes to
induce the response according to physiological effects [49,50]. In
seed development and maturation, the role of ABA has been recog-
nized by analyzing the mutants that were insensitive to ABA. The
ABA insensitive mutants fail to promote ABA response due to
defects in the ABA signaling pathway, which steadily affects seed
maturation and several other important traits of the dormant seed
[19].
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Identification and mechanisms of the core components in ABA
signaling pathway

The identification of PYL/RCAR family proteins verified that ABA
receptor PYLs are essential ABA signaling components and pre-
dominantly function in seed [51]. In Arabidopsis, fourteen members
of the PYR/PYL/RCAR protein family were documented that have
vital roles in seed, such as pyr1/prl1/prl2/prl4 quadruple and pyl
duodecuple mutants show reduced seed dormancy and insensitiv-
ity to ABA [29,52]. Furthermore, an ospyl septuple mutant was
identified in rice which is insensitive to ABA during seed germina-
tion [51].

In the absence of ABA, PYLs proteins release protein phos-
phatase type 2C (PP2C), another important component in ABA
signaling, and activate their functions of phosphatase [29]. PP2Cs
proteins including ABA-INSENSITIVE 1/2 (ABI1/2) and ABA-
HYPERSENSITIVE GERMINATION3 (AHG3) suppress the activities
of downstream ABA signaling proteins SUCROSE NONFERMENTING
1-RELATED PROTEIN KINASE 2s (SnRK2s) by protein phosphoryla-
tion, as a result, blocking the function of the downstream ABA sig-
naling network (Fig. 2) [30]. So, PP2Cs function as negative
regulators in the ABA signaling system and were identified through
ABA insensitive mutants screening, whereas, their knockout
mutants exhibited reduced seed dormancy and hypersensitivity
to ABA [53]. Recently, it is demonstrated that ENHANCER OF ABA
CO-RECEPTOR1 (EAR1) acts together with PP2C proteins (i.e.
ABI1/2, HAB1/2, and AHG1/3), to increase the activities of
PP2C [54]. Like EAR1, PR5 receptor-like kinase 2 (PR5K2) inhibits
ABA-signaling via phosphorylation enhancement of ABI1/2 [55].
On the other hand, DELAY OF GERMINATION1 (DOG1) binds to
heme and interacts with the AHG1 to stop its phosphatase function
and enhance seed dormancy [56]. These studies concluded that
PP2Cs can be regulated either by PYLs receptors or by other pro-
teins, but the complete phenomenon and relationships between
PP2Cs, PYLs, and other regulatory factors (DOG1, PR5K2, and
EAR1) is unidentified in seed development.

In the presence of ABA, PYR/PYL/RCAR protein binds with both
the ABA and the PP2C proteins to stop the phosphatase activity
of the PP2Cs, which releases and enables the SnRK2s function. It
is showed that all members of PYLs protein family from Arabidopsis
can interact with PP2C family members and function in ABA medi-
ating response [57]. Totally, three SnRK2s (SnRK2.2, SnRK2.3, and
SnRK2.6) were found as positive regulators of the ABA signaling
network and involved in various seed developmental processes
such as the de-greening process, accumulation of seed storage
products, seed maturation, desiccation-tolerant, and germination
in Arabidopsis [19]. A recent report identified an ABA Signaling Ter-
minator (ABT), a WD40 protein, which can efficiently shut down
the ABA signaling and is vital for seed germination and seedling
establishment. In a PYR1/PYL/RCAR-PP2C-dependent manner,
ABT is induced by ABA and interacts with the PYR1/PYL/RCAR
and PP2C proteins, which disturb the interaction between PYR1/4
and ABI1/2, thus cut off ABA signaling [58], which further enriches
and illuminates the ABA signaling network.

In addition, the major targets of SnRK2s are ABSCISIC ACID
RESPONSIVE ELEMENT (ABRE) binding factors (ABF). ABFs family
consists of nine members ABF1, ABF2/ABA–RESPONSIVE ELEMENT
BINDING PROTEIN1 (AREB1), ABF3, ABF4/AREB2, AREB3, ABI5, bZIP15,
bZIP67, and EEL from bZIP subfamily, predominantly participates in
the regulation of ABA-mediated transcription [59]. The transcrip-
tion of ABI5 can be activated by SnRK2s through specifically bind-
ing with ABRE cis-element in ABI5 promoter, in turn, activate the
ABA-mediated transcription activity in late seed maturation phase
and imbibed seeds in Arabidopsis [60]. Moreover, another key
factor-ABI3 interacts with the ABI5 transcription factor and func-
tions collectively with ABI5 to promote transcription of down-
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stream ABA-responsive genes [61], both of them can be regulated
by RELATED TO ABI3/VP1 (RAV1) through binding to their promot-
ers. Interestingly, ABI5 also modulates the ABA response through
binding to PYL11 and PYL12 promoters to regulate the transcription
directly during germination. ABA hypersensitivity resulting from
PYL11 and PYL12 overexpression was totally or partially damaged
when ABI5 was mutated. Above all these explore a feedback regu-
lation in ABA signaling mediated by ABI5 [62].

By genetic screening, two LEAFY COTYLEDON (LEC1/2) genes and
FUSCA3 (FUS3) were identified as key roles in ABA-mediated seed
development. ABI3 along with LEC1, LEC2, and FUS3 transcription
factors play roles in seed development by mediating ABA biosyn-
thesis in seed tissues. For the above four genes (i.e. ABI3, FUS3,
LEC1, and LEC2), a defect in any one leads to abnormal seed devel-
opment such as altered seed dormancy, failure to attain desicca-
tion tolerance, and a low level of ABA contents [26]. All these
supported that there is a positive correlation between these tran-
scription factors and ABA content and signaling transduction
[63]. Moreover, ABI3/FUS3/LEC1/2 combine with LEC1-LIKE (L1L)
to form a complex transcription control network known as LAFL
that control the embryogenesis process, hormone signaling, meta-
bolic pathways, and function upstream of several genes such as
PEI1, BABY BOOM (BBM), APETALA2 (AP2), SEED STORAGE PROTEINS
(SSP), FLOWERING LOCUS C (FLC), including 2S ALBUMIN STORAGE
CRUCIFERIN C (CRC) and PROTEIN 1 (At2S1) that involve seed devel-
opment [64–66]. Many members of LAFL network are regulated by
BBM during somatic embryogenesis [67], indicating the feedback
regulation between BBM and LAFL components. Additionally, they
are also regulated by VIVIPAROUS 8 (VP8), a B3 type transcription
factor in maize, that show the pleiotropic roles during seed devel-
opment [68]. In maize, a defective kernel 33 (dek33) mutant was
identified and the causal locus was cloned as a pyrimidine reduc-
tase in riboflavin biosynthesis. The genetic and molecular research
indicated that DEK33 interacts with RGLG2 and SnRK1, influences
the ABA synthesis positively to regulate seed development [69],
which shed light on the regulation of ABA synthesis other than
before in seed development.

Mechanisms of key genes associated with ABA in de-greening process
of seed

In seed maturation, SnRK2s and ABI3 genes were identified as an
essential component for the de-greening process (Fig. 2) [70]. The
snrk2.2/snrk2.3/snrk2.6 triple mutant exhibits ABA insensitivity
during seed development and produces green seeds [52,59]. Addi-
tionally, the targeted gene of ABI3- stay-green (SGR1/2), plays an
important task in the process of de-greening of seed, whereas,
abi3-6 mutant exhibits pleiotropic effects during seed develop-
ment including immature embryo growth, failure of embryo de-
greening, and insensitivity to ABA as well as non-dormant and des-
iccation intolerant seeds [70], which indicated an important
SnRK2s -ABI3 -SGR1/2 pathway associated with ABA in seed de-
greening and other traits determination.

Mechanisms of ABA in accumulation of seed storage products and
desiccation tolerance achievement

Along with seed maturation, some reserve materials accumu-
late in the seed’s later stages [71]. Six genes belonging to different
transcription factors family (ABI3/VP1, ABI4, ABI5, LEC1, LEC2, and
FUS3) have been identified that induces the expression of ABA-
responsive and seed-specific factors such as LEA and storage pro-
tein genes [72]. ABI5, bZIP67 together with ABI3 and ABI4 control
the expression of many genes that are involved in ABA-mediated
seed storage processes [73,74]. ABI4, identified from the ABA-
insensitive mutants, encoding an ERF/AP2 type transcription fac-



Fig. 2. The ABA signaling pathway is involved in seed development. Left, in the absence of ABA: Receptors PYLs release and activate protein phosphatase 2C (PP2C) such as
ABI1/2 and AGH1/3. Downstream SNF1-RELATED PROTEIN KINASE subfamily (SnRK2s) genes are inactivated by active PP2C which leads to premature germination and the non-
dormant seed through repression of lots of transcription factors such as ABI1/2/3/4/5 and bZIP67. Right, in the presence of ABA: Receptors PYR/PYL/RCAR bind ABA and PP2C
together to inhibit the activity of PP2C, which release the activity of SnRK2s and downstream transcription factors such as ABI3 by protein phosphorylation, then regulate
downstream genes SGR1/2 function to mediate seed de-greening process. Additionally, the active LAFL (ABI3, FUS3, LEC1, and LEC2) network by ABA along withWRI1 regulates
the At2S3 gene; an active bZIP22 function downstream of SnRK2s to promote gene transcription of 27-kD c-zein for protein reserve accumulation in the seed. Along with seed
de-greening and storage product accumulation, SnRK2s function upstream of ABI3/5 and ABFs to regulate LEAs and HSPs that are pivotal for desiccation tolerance. In other
branches, DOG1 also plays a role upstream of ABI3/5/ABFs as well as functions as a repressor of PP2Cs (AHG1/3) to involve seed desiccation tolerance acquirement. In
combination, all key ABA signaling components (SnRK2s, ABI3, ABI4, ABI5, ZmbZIP22, bZIP67, and ABFs) are involved in storage product accumulation, de-greening, and
desiccation tolerance with different function pathways to provide a mature and dormant seed. Letters ‘‘P” and ‘‘T” in the color circles indicate the two manners of protein
phosphorylation and gene transcription regulation, respectively. Activated and repressive effects are shown by arrows and bars, respectively.
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tor, expresses transcriptionally in all seed developmental stages
[75]. Many studies reported that various transcription factors reg-
ulated ABI4 transcription. Interestingly, ABI4 can also activate ABI4
itself expression during the early stages of seedling growth [76].
The bZIP67 transcription factor together with L1L and NUCLEAR
FACTOR-YC2 (NF-YC2) transcription factors form a complex to pro-
mote FATTY ACID DESATURASE 3 (FAD3) in the seed which functions
in the storage of omega-3 fatty acid during maturation [73]. More-
over, induced expression of maize bZIP22 changes endosperm
starch content and composition in maize and rice during seed stor-
age and is required for the transcription of a 27-kD c-zein [77,78].
Many studies have reported that ABA insensitive mutants
snrk2.2/3/6 triple mutant and pyl duodecuple mutants exhibited
less level of seed storage products due to defect in ABA signaling
[52]. Moreover, the RNA-seq data analysis exhibited that the
expression of 12S globulin storage protein was down-regulated
in the snrk2.2/3/6 triple mutant [79]. In addition, the induced
expression of SnRK2.6 showed increased seed production, on the
contrary, snrk2.6 mutant showed 7–25% reduced oil content of
seed [80].
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Besides above, the lec1 and fus3 mutant embryos exhibit
reduced accumulation of storage proteins and lipids compared to
wild-type during maturation [81]. Moreover, the LEC2 protein
shows synergistic activity for the abundance of storage proteins
with ABI3, FUS3, and LEC1 during maturation [82]. FUS3 and LEC1
control the accumulation of ABI3 protein in seeds and function
with each other in many physiological processes including lipids
formation, anthocyanins synthesis, accumulation of chlorophyll,
and storage proteins [81]. Comprehensive studies indicated that
the expressions of several storage protein genes such as Arabidopsis
2S storage protein 3 (At2S3) and 12S storage protein gene rely on
FUS3, ABI3, and WRINKLED1 (WRI1) transcription factors through
an ABA-mediated manner [81,83,84] (Fig. 2). Moreover, LEC1, LEC2,
and GmDREBL regulate WRI1 to play roles in sugars and oil content
storage in seed, as wri1 mutant is revealed 80% less oil content and
a higher level of soluble sugar in seed [85,86]. So, LAFL network
regulates the expression of ABA signaling components including
PYR/PYL/RCARs, SnRK2s, and ABFs that are involved to induce the
expression of LEAs and HSPs genes at the time of seed maturation
(Fig. 2) [52,59,87,88].
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During the last phases of seed development, desiccation toler-
ance is acquired associated with the accumulation of antioxidants,
sugar, and late embryogenesis abundant (LEA) proteins [89]. The
genetic analysis of loss and gain of function mutants of LEC1 indi-
cated that LEC1 is a major regulator during seed maturation and
accumulation of storage products, desiccation tolerance as well
as induction of dormancy [90]. LEC1 functions together with NF-
YB, AREB3, bZIP67, and ABI3 to regulate genes required for seed
maturation [91]. The FUS3 gene is required for seed maturation
and desiccation tolerance during seed development, thus, the
fus3 mutant showed premature embryo growth and seeds were
desiccation intolerant [63,92]. The double mutant aba/abi3 shows
ABA insensitivity and produces seeds that are desiccation intoler-
ant. ELONGATED HYPOCOTYL 5 (HY5) is an important light signal-
ing component which binds with the promoter of ABI5 to regulate
the LEAs gene expression [93]. Further, DOG1 increases the LEA
and HSP genes expression through ABI5/ABI3 and speeds up the
storage of N-rich compounds in the seed which promotes the dor-
mancy and viability of the seed [94]. In some studies, it is shown
that DOG1 expression is controlled by bZIP67 and ETHYLENE
RESPONSE FACTOR12 (ERF12) during seed maturation negatively
or positively [95,96]. Moreover, ABA regulates the expression of
the DOG1-LIKE 4 (DOGL4) gene and increases the expression of
some seed storage proteins including CRUCIFERINs, ALBUMINs,
and OLEOSINs during the seed maturation process [97]. From
above, some specific factors (e.g., bZIP67, DOG1, NF-YC, AREB3)
were identified to function associated with LAFL genes to mediate
the seed storage protein accumulation and acquirement of desic-
cation tolerance related to maturation, which facilitates the eluci-
dation of the regulation network of LAFL genes in the seed
different developmental stages.

Mechanisms of ABA in primary seed dormancy induction

Dormancy is an imperative characteristic of wild plant species,
prevents the seeds from adverse environmental conditions, and
confirms the initiation of a next-generation [98,99]. Seed dor-
mancy is achieved at the end of the seed maturation when molec-
ular dependence from the mother plant disappears, storage
products are synthesized, dehydration occurs, and de novo ABA is
stored [24,100]. After dehydration, the seed enters into a state of
dormancy physically and physiologically. The physical structures
of the seed such as the testa and endosperm are responsible for
the physical dormancy [101,102], from their ability to enhance
seed impermeability or limit water uptake [103]. ABA is the major
internal physiological factor inducing seed dormancy through
affecting a lot of physiological pathways such as storage proteins
and lipids in seed [79,82].

It is notable that de novo ABA biosynthesis occurs in the embryo
and later is utilized during seed maturation and induction of pri-
mary dormancy indicating that the dormancy is a characteristic
of an embryo and its related tissues [31,104]. Numerous ABA defi-
cient (aba and nceds) and insensitive (pyls, snrks, and abi3/4/5)
mutants show reduced seed dormancy and early germination indi-
cating that ABA exerts a vital role in the induction of dormancy
[59]. The AtNCED3 mainly expressed in the seed is perceived as
the critical enzyme for ABA synthesis during early seed develop-
ment, over-expression of which improved ABA contents in seeds
and prolonged seed dormancy [44]. Similarly, nced6 and nced9
mutants show decreased ABA level and dormancy in mature dry
seed [105]. Furthermore, a recent study speculated that ODR1 (sup-
pressor of RDO5) acted together with bHLH57 and functioned
upstream of NCED6 and NCED9 to control the ABA synthesis and
seed dormancy in Arabidopsis [106]. Interestingly, the ectopic
and over-expression of bean PvNCED1 gene in imbibed seeds of
tobacco elevated ABA levels and exhibited delayed seed germina-
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tion. In tomato, the over-expression of LeNCED1 also enhanced dor-
mancy by enhancing the ABA level in seeds. In addition, MYB96
binds directly with ABA synthesis genes (NCED2, NCED5, NCED6,
and NCED9) promoters and inactivates GA biosynthesis genes
(GA3ox1 and GA20ox1) to induced primary seed dormancy in Ara-
bidopsis [107]. ABI4 deepens seed dormancy in Arabidopsis through
direct interaction with promoter regions of NCED6 to increase ABA
biosynthesis and with promoter regions of GA2ox7, a GA-inhibitor
gene [108] to inhibit GA biosynthesis [109]. A study reported that
peroxiredoxin PER1 improves the primary seed dormancy by
inhibiting the ROS which in turn inactivates the ABA catabolism
and GA biosynthesis genes in Arabidopsis [110]. In Sorghum bicolor,
ABI4 and ABI5 (SbABI4 and SbABI5) enhance the transcription of
SbGA2ox3 through directly binding to its promoter and conse-
quently extend seed dormancy [111].

The loss of function mutant lec1 shows premature germination
during seed development indicating that LEC1 is required for
induction of primary seed dormancy [90]. During germination,
the functions of LAFL network can be controlled or repressed by
VIVIPAROUS1/ABI3-LIKE1/2/3 (VAL1/2/3) [66]. Consistently, Mem-
bers of LAFL genes are regulated by VP8 in maize [68]. The muta-
tions in VP8 homolog gene PLASTOCHRON3/GOLIATH (PLA3/GO) in
rice and ALTEREDMERISTEM PROGRAM1 (sAMP1) in Arabidopsis
show reduced dormancy phenotype [112]. Interestingly, VP8 and
its homologs (PLA3/GO and AMP1) contained glutamate car-
boxypeptidase [68], indicating that this peptide might be impor-
tant for seed maturation and dormancy, but its detailed
biochemical mechanism is almost blank. Two individual studies
demonstrated that the RAF-like MAPKKKs, RAF10/11 can phospho-
rylate SnRK2s and ABFs to influence the dormancy of seed
[113,114]. The key factor DOG1 imposes primary seed dormancy
by inhibiting AHG1 action to enhance ABA sensitivity [56]. More-
over, HISTONE DEACETYLASE 19 (HDA19) interacts with SIN3-
Like 1 (SNL1) to modulate the ABA signaling pathway to promote
seed dormancy [115], which contributes to further understanding
between epigenetic modifications and ABA signal in seed develop-
ment. In wheat, TaABI5 transcripts accumulate in seed embryos.
Over-expression of TaABI5 in Arabidopsis displayed high sensitivity
to ABA and increased dormancy, indicating that TaABI5 playing a
positive role in dormancy maintenance as a functional ortholog
to Arabidopsis ABI5 [116].
Mechanisms of ABA in seed germination and seedling
establishment

Germination is a critical and initial process in the plant life cycle
which starts with the uptake of water by mature seed at imbibition
and shifts from maturation stage to germination stage via emerg-
ing the radicle [117]. During germination, the high levels of ABA
in imbibed seeds of strongly dormant A. thaliana ecotype Cvi
reduce clearly indicating that seed dormancy in A. thaliana Cvi
accession seeds depends on the endogenous ABA level [118–120].

In many studies, it is proved that ABA catabolism is a crucial
step to alter the dormancy state of seed to germination in Hordeum
vulagre, Pseudotsuga menziesii, Cupressus nootkatensis, and yellow-
cedar [121]. The ABA is degraded through consecutive hydroxyla-
tion and conjugation steps. The CYTOCHROME P450, FAMILY 707,
SUBFAMILY A (CYP707As) provided with cytochrome P450
monooxygenase and ABA 8 prime-hydroxylase activity catalyzes
the ABA to phaseic acid (PA). PA reductase (PAR) ABH2 and glyco-
syltransferase (GT) then catalyze PA to dihydrophaseic acid (DPA)
and DPA-4-O-b-D-glucoside (DPAG), resulting in the ABA degrada-
tion (Fig. 3) [122]. The decreased level of ABA at the time of imbi-
bition leads to a higher amount of PA and DPA accumulation in
lettuce, Arabidopsis, and H. vulgare seed [27,123] suggesting the



Fig. 3. The function of ABA in seed germination and seedling establishment. Left, Seed completes germination successfully through degradation of active ABA into PA
(phaseic acid) and DPA (dihydrophaseic acid)/DPAG with CYP707As regulated by REF6 and phaseic acid reductase (ABH2 and GT) respectively. During germination and
seedling establishment, the core ABA signaling component SnRK2s and downstream ABI3/4/5 are activated or repressed by many factors directly or indirectly to promote seed
germination and seedling establishment. For example, RAV1 and BASS2 bind to the ABI4 promoter to inhibit ABI4 expression, while MYB96 promotes ABI4 expression through
binding to its promoter. A Casein Kinase 2 promotes ABI4 expression indirectly. Furthermore, ANAC060 transcription is activated directly by ABI4 through binding to its
promoter to enhance post-germination. Several BTB-A2 proteins can impair SnRK2.3 stability to act as negative regulators of ABA signaling. NRT1.2 is identified as an ABA
transporter to regulate downstream factors ABI1-ABI5, RAB18, etc. positively to mediate germination and seedling development. Further, some negative factors such as
SUN24, UGT74E2, FOF2, and VQs regulate seed germination and seedling development through repressing ABI3-, ABI5-mediated ABA pathway. Activated and repressive
effects are shown by arrows and bars, respectively.
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positive role of ABA 8-hydroxylation in germination [124]. More-
over, it was demonstrated that in non-dormant H. vulgare seeds,
ABA catabolic enzyme HvABA80OH-1 expression was preferentially
detected in coleorhiza which is an important tissue from where
germination starts [125].

All four members of CYP707As (CYP707A1-CYP707A4) in Ara-
bidopsis play regulatory functions to control the ABA level. The
expression of CYP707A1 is absent during zygotic embryogenesis
[123] while is present in the embryo predominantly in the middle
of seed maturation to inactivates ABA biosynthesis and decreases
at maturity [125]. Whereas, CYP707A2 catabolism the ABA during
late maturation, and cyp707a2 mutant accumulates less ABA com-
pared to cyp707a1 mutant after imbibition [110]. The over-
expression of CYP707A2 decreased the ABA content in seed at
maturity and reduced the storage time required to release the dor-
mancy of the seeds whereas, cyp707asmutants required more stor-
age time to reduce the dormancy compared to that of control
[123,126]. In a recent study, it is demonstrated that Arabidopsis
RELATIVE OF EARLY FLOWERING6 (AtREF6) directly binds and reg-
ulates the key ABA catabolism genes (CYP707A1 and CYP707A3) to
promote the catabolism of ABA and seed development [127].

Besides, the key components of ABA signaling also show indis-
pensable roles in seed germination with various mechanisms.
Recently, two members of the VQ family, VQ18 and VQ26, were
proved to act as direct and negative interactors of the ABI5 to
mediate the ABA signaling level and regulate seed germination
and early seedling establishment [128]. Likewise, many studies
proved that ABA signaling through the ABI4-mediated cascades
such as miRNA 165/166, E3 ubiquitin ligase CER9 (ECERIFERUM
9), transcription factors OsAP2-39 and nuclear C2H2 zinc-finger
protein ZFP3, and AtGLR3.5 (glutamate receptor homolog 3.5)
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[129–135] play important roles during seed germination and
post-germination seedling growth, illustrating that ABI4 is a key
factor with regard to ABA-mediated regulation of seed germination
and early seedling establishment. Another gene CK2 (Casein Kinase
2), positively enhances ABA signaling during seed germination and
seedling establishment by enhancing ABI4 expression partially and
indirectly [136]. MYB96 increases ABI4 expression during seed ger-
mination, while RAV1 and BILE ACID: SODIUM SYMPORTER
FAMILY PROTEIN 2 (BASS2) repress ABI4 expression during seed-
ling development by binding to its promoter [76]. As the key termi-
nator of ABA signaling, over-expression of ABT promotes seed
germination and seedling greening in the presence of ABA, and
knockout of ABT exhibits the contrary effect [58]. Three BTB-A2
(broad-complex, tramtrack, and bric-a-brac-A2) domain family
genes BTB-A2.1, BTB-A2.2, and BTB-A2.3 act as negative regulators
of ABA signaling by impacting SnRK2.3 stability and subsequently
weakening the expression of ABA-responsive genes, for example,
btb-a2.1/2/3 triple mutant showed a decrease in ABA-induced inhi-
bition of seed germination by increasing ABA signaling [137]. In
tomato, it is reported that MAPK11 also phosphorylates SnRK2s
which affects ABA signaling by suppressing the transcription of
ABI5 and ultimately influences seed germination [138]; further,
IQ67-Domain (IQD) protein SUN24 regulates seed germination by
altering the expression of two key ABA signaling genes Solanum
lycopersicum ABA-insensitive 3/5 (SlABI3 and SlABI5) in tomato ger-
minating seeds [139]. UDP-glycosyltransferases (UGTs) transfer-
ring glucose to indole-3-butyric acid plays key roles in plant
development. Overexpression of OsUGT74E2 down-regulated the
expression of OsABI3 and OsABI5, and promoted seed germinating
with a lower ABA level, indicating a regulation of seed germination
involved by UGT74E2 function upstream of ABA signaling in rice
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but not Arabidopsis [140]. In Medicago truncatula, a ATP-binding
cassette (ABC) transporter, MtABCG20, functions as an ABA expor-
ter in germinating seeds. In seeds of mtabcg20, due to the ABA
translocation impairment, it showed more sensitivity to ABA in
germination [141]. All these novel progresses in species other than
Arabidopsis provide more rich knowledge for the mechanism of
ABA in seed germination.

Besides the seed development, ABA synthesis and signaling
genes play direct and crucial roles in the establishment of post-
germination development but not in the phase conversion from
germination to the seedling establishment [142]. In post-
germination, ABA plays the role with multiple other participants
such as JUMONJI-C domain-containing protein 30 (JMJ30), a his-
tone demethylase activated by ABI3, which inhibits the enrich-
ment of H3K27me3 at the promoter of SnRK2.8, activates the
SnRK2.80s kinase activity and ABI3 function to encourage post-
germination growth (Fig. 3) [143]. This study revealed a forward
regulatory loop associated with ABI3 in post-germination. F-BOX
OF FLOWERING 2 (FOF2), a key factor in flowering, plays an
important negative role in ABA-mediated seed germination and
early seedling development, partially by repressing the expres-
sion of ABI3 and ABI5 [144]. During post-germination, ABI4
enhancec ANAC060 transcription to start post-germination
growth by directly interacting with its promoter to reduce ABA
sensitivity and glucose-mediated ABA accumulation [145]. Inter-
estingly, another NAC family factor, NAC103 was up-regulated
and enhanced in transcription and protein stabilization by ABA
treatment respectively. Moreover, NAC103 over-expression plants
showed more sensitivity to ABA during seed germination and
young seedling growth, which was acquired by regulating some
downstream genes such as MYB78, PLP3, and RGL2 in Arabidopsis
[146].

Pyrenophoric acid (P-Acid) is one kind of phytotoxic sesquiter-
penoids produced by the Pyrenophora semeniperda, an effective
mycoherbicide in crop cultivation. An intensive study found that
it inhibites seedling establishment through activating the ABA sig-
naling pathway; further, P-Acid B exerts the ABA biosynthesis
pathway but not interacts with PYR/PYL receptors to involve the
ABA pathway, which also explores the underlying mechanism
associated with ABA of parasites in seed [147]. NITRATE TRANS-
PORTER 1.2 (NRT1.2) is identified as a nitrate transporter and an
ABA transporter in Arabidopsis. Some ABA-responsive genes,
ABI1-ABI5, RAB18, RD29A, and PHOSPHOLIPASE Da1 (PLDa1) were
up-regulated by over-expression of NRT1.2 as well as exogenous
ABA. Consequently, NRT1.2 interacts with PLDa1 at the plasma
membrane and positively involves the ABA pathway to mediate
germination and seedling development [148]. From above, ABA
interacts with different molecules or metabolites to involve seed
germination and seedling development antagonistically/
synergistically.

Crosstalk between ABA and other phytohormones and signaling
molecules in seed germination

As endogenous organic substances, phytohormones play dis-
tinct roles in the plant life cycle from seed maturation, seed germi-
nation to the floral transition, and abiotic/biotic stress responses
[13,149]. Numerous elegant studies have demonstrated that differ-
ent phytohormones interact antagonistically and/or synergistically
with one another and form complicated networks in seed germina-
tion regulation [108,150–152]. ABA and gibberellins (GA) are one
pair of classic phytohormones, which antagonistically mediate sev-
eral plant developmental processes and regulate the decision
between dormancy and germination [6,19,153]. Therefore, the bal-
ance between catabolism and synthesis of ABA/GA by regulating
signaling pathways stabilizes the balance between germination
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and dormancy (Fig. 3). Genetic and mutational analyses of the
ABA and GA metabolism and signaling genes suggested that some
genes are evidenced the importance in the regulation of seed ger-
mination and seedling growth [154,155]. For example, FUS3 plays
an important role to maintain ABA:GA balance by inhibiting GA
biosynthesis and activating ABA biosynthesis during Arabidopsis
seed development [63,92], and a reduced amount of ABA and
increase in GA content in fus3 mutant was detected during seed
maturation indicating that FUS3 protein functions as a hub in GA
and ABA synthesis in the seed [92,156]. ABI4 is another central fac-
tor mediating the antagonism between ABA and GA by regulating
the biosynthesis of both phytohormones, resulting in the precise
control of the degree of seed dormancy and post-germination seed-
ling growth [16,157]. Alteration in Arabidopsis ABI4 accumulates
the GA content and reduces ABA content, which retrieves the dor-
mant phenotype of ga1-1 mutant, indicating that ABI4 is also
important to maintain the balance between ABA:GA ratio during
seed development similar to FUS3 (Fig. 4) [108,109]. However,
the underlying molecular mechanisms between FUS3 and ABI4 in
regulating the ABA/GA simultaneously are still a mystery.

Some generic nuclear factors are also involved in the crosstalk
between ABA and GA. A study illustrated that GERMINATION
DEFECTIVE 1 (GD1) encoding a B3 domain TF suppresses LEC2 and
FUS3 like gene (OsLFL1) and modulates GA biosynthesis genes
(OsGA3ox, OsGA20ox, and OsGA2ox) expression to regulate germina-
tion in rice [158]. Another transcription factor containing AP2
domain CHOTTO1 (CHO1) enhances seed germination by regulat-
ing ABA-related genes to suppress GA biosynthesis genes in Ara-
bidopsis [159]. Interestingly, three NUCLEAR FACTOR-Y C (NF-YC)
homologs genes in Arabidopsis NF-YC3/4/9 are involved in the reg-
ulation of GA-ABA crosstalk during seed which are regulated by GA
to suppress ABA signaling [160]. Further research explored that NF-
YC9 promotes ABA responses in early seedling growth by binding
to ABI5 to increase ABA sensitivity [161] elucidating that the NF-
YCs-ABI5 module integrates the antagonistic GA and ABA signaling
in seed germination and post-germination stages (Fig. 4). These
provide novel information to explore the underlying mechanisms
associated with ABI5 of ABA and GA antagonism.

Further, the well-known negative GA signaling components
such as DELLA proteins (i.e. GA INSENSITIVE (GAI), REPRESSOR
OF GA1-3 (RGA), RGA-LIKE1 (RGL1), RGL2, and RGL3 influence seed
dormancy and germination [162,163] through stimulating the ABA
biosynthesis and ABI5 activity, in which NF-YC and RGL2 together
promote the expression of ABI5 and enhance the ABA-mediated
repression of seed germination [160]. As a result, the rgl2 mutant
exhibited a reduced ABA concentration during imbibition, termi-
nated dormancy, and accelerated germination [164]. In addition,
in Arabidopsis RGL2 forms a complex with DOF6 transcription fac-
tor which positively activates GATA12 transcription to control seed
germination [165]. The RGL2 can also be degraded by the COP9 Sig-
nalosome 1 (CSN1) which may inhibit ABI5 activity and promote
seed germination [166]. However, the mutation in GA signaling
gene SLEEPY1 (SLY1), exhibites higher germination and mRNA level
of RGL2, indicating that SLY1 functions independently of RGL2 in
seed germination [167]. Interestingly, ABA can enhance RGL2
expression, this feedback loop modifies ABA and GA paths in the
seed germination process [164]. Epigenetically, it is stated that
E3 SUMO ligase SIZ1 sustained ABA: GA level by SUMOylating
ABI5 to negatively regulate ABA signaling and SLY1, as well as to
positively regulate GA signaling during germination in Arabidopsis
[168–170]. Furthermore, some other genes involved in GA signal-
ing were also identified including SPINDLY (SPY) and SNEEZY
(SNE) belonging to F-box proteins involved in seed germination
regulation (Fig. 4) [171,172]. All above these indicate that some
factors in the GA pathway participate in the interplay of ABA and
GA in seed germination through diverse function patterns.



Fig. 4. The interplay of ABA and other phytohormones (GA, ET, SA, BR, and Auxin) signaling in the regulation of seed germination and post-germination growth. ABA
crosstalks with other phytohormones either by affecting their biosynthesis or by interfering with their signaling pathways during germination and post-germination growth.
Among these, the interaction between ABA and GA is most studied and important. FUS3 and ABI4 play more vital roles to mediate the antagonism between ABA and GA. SA
was found to regulate the content of ABA negatively and GA positively, respectively in seed germination. Both two factors LFL and CHO1 were showed inhibition to GA
synthesis to involve seed germination regulation. After that, some downstream factors of GA such as SPY, SNY, SLY, SIZ, RGL2, etc. display different functions in the crosstalk
between GA and ABA. Both SIZ and RGL2 can repress and promote ABI5, respectively. Besides, RGL2 can be degraded by CSN1 and regulate ABI5 together with an NF-CY factor.
ABA-mediating ABI3, ABI5, and RGL2 regulateMFT by establishing a negative feedback loop to modulate the ABA and GA antagonism, in which, MFT also inhibits ABI5. A study
indicated that auxin stimulates ABI3 expression through ARF10 and ARF16 indirectly, which connects the ABA and auxin in seed germination regulation. In some ways, ABA
inhibits ACO and ACS to influence ethylene synthesis negatively. Meantime, ETR1/2 and histone deacetylation cofactors SNL1/2 mediate the antagonism between the ABA and
ethylene to involve seed germination, in which some ERF factors are involved. BR promotes seed germination as well as inhibits BIN2, which interacts with ABI5 and
positively regulates ABA responses during seed germination and post-germination. Activated and repressive effects are shown by arrows and bars, respectively.
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MOTHER OF FT AND TFL1 (MFT) genes, encoding
phosphatidylethanolamine-binding proteins regulate germination
in many species by the ABA-mediated pathway. ABI3, ABI5, and
RGL2 regulate MFT by establishing a negative feedback loop in
the ABA signaling pathway to modulate the ABA and GA signaling
and to stimulate embryo growth during germination in Arabidop-
sis (Fig. 4) [173]. ABI4 reduces MFT gene expression through its
effect on ABA, which promotesMFT itself expression, all these indi-
cate the feedback between MFT and ABA signaling [173]. However,
later studies revealed that AtMFT inhibits the germination in
freshly mature seeds, while reduces the dormancy in after-
ripened seeds [174]. In wheat, TaMFT acts as a repressor for seed
germination, and a high level of TaMFT expression is correlated
with a low germination index. In rice, the OsMFT2 gene plays a
function in the regulation of seed germination through interacting
with OsbZIP23/66/72 and the ABA-mediated pathway [175]. The
above results indicate that MFT may regulate different seed devel-
opmental stages with diverse mechanisms and through participat-
ing in the antagonism between ABA and GA.

The phytochrome A (PHYA) and PHYB mediated photo-signal
are important for seed dormancy and germination regulation, in
which PHYTOCHROM-INTERACTING FACTOR1 (PIF1) plays a
downstream and vital role. Previous work has shown that ABI3
expression is induced under PHYB and, in turn, ABI3 controls
expression of ABA-response related genes including ABI5 [176].
Whereas under light conditions it activated by PHYA, the pattern
of expression of ABI4 is opposite to that of ABI3 and ABI5 in both
Arabidopsis seed dormancy [177,178] and Aethionema arabicum
light-dependent seed germination [179]. Further study indicated
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that ABI4 promotes PHYA-dependent germination and inhibits
ABA accumulation and MFT gene expression in Arabidopsis [180].
Interestingly, PIF1 is shown to regulate GIBBERELLIN 3-OXIDASE2
(GA3OX2) and GA content. Reciprocally, PIF1 inhibits the transcrip-
tional activity and DNA-binding ability of REVEILLE1 (RVE1), while,
RVE1 stimulates the PIF1 DNA binding capability to modify ABI3
expression. As a result, PIF1 and RVE1 coordinately work as a feed-
back loop to regulate seed germination [181], which is also
achieved dependent on the antagonism between ABA and GA.
The PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5), a basic
helix loop helix, exhibits a significant function in germination
through phytochrome [182]. In pil5 mutant, the expression of
ABA and GA metabolism genes was disturbed meanwhile a defect
in GA signaling was also detected. Moreover, the PIL5 acts as an
RNA binding protein, activated through phytochrome, to influence
the ABA and GA metabolism by directly activating the SOMNUS
(SOM) gene transcription [183,184]. Both bHLH transcription fac-
tors, SPATULA (SPT) and PIL5 inhibit GA synthesis genes such as
GA3OX1/2 and directly activate the GA catabolism gene (GA2ox2),
thereby preventing germination [174,185,186]. Furthermore, SPT
controls the germination by repressing the expression of ABI4
and RGA and promoting the expression of ABI5 and RGL3 [174].
However, PIL5 deactivates the ABA catabolism gene (CYP707A2)
and positively regulates ABA biosynthesis genes (ABA1, NCED6/9)
[19] to inhibit the germination, which suggests that PIL5 and SPT
functions as a crosslink and fundamental hub during the antago-
nism of ABA and GA in the context of light condition.

Additionally, DOG1 functions downstream of PIL5 and
increased expression of it inhibit the GA biosynthesis and activate
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ABI3 and ABI5 to control seed dormancy and germination [187]. A
study demonstrated that a Dof-type transcription factor DOF
AFFECTING GERMINATION 1 (DAG1) functions downstream of
PIL5 to inhibit the synthesis of GA by binding with the promoter
of GA3OX1, meanwhile, the dag1 mutant exhibited the up-
regulated expression of ABA catabolism gene and down-
regulated expression of ABA biosynthesis genes [186]. The above
results indicate that the antagonistic role of ABA and GA during
seed germination is also regulated by some factors activated by
light signals such as PIF1 and PIL5 exemplifying that seed germina-
tion is also regulated partially by light-mediated pathway.

Besides GA, ABA also interacts with ET by the regulation of
important ET biosynthesis and signaling genes such as 1-
AMINOCYCLOPROPANE-1-CARBOXYLIC OXIDASE (ACO) and 1-
AMINOCYCLOPROPANE-1-CARBOXYLIC ACIDSYNTHASE (ACS), and
ETHYLENE RESPONSE FACTOR 11 (ERF11) to regulate the ABA-ET
mediated seed ripening [132,188–191]. Mutation in ERA3 (en-
hanced response to ABA3) belonging to ETHYLENE INSENSITIVE2
locus showed increased sensitivity to ABA, which illustrated that
ET is a negative regulator of ABA [192,193]. In tomato, the ethylene
response factor (ERF) Pti4 is involved in the regulation of seed ger-
mination by mediating ABA synthesis and signaling positively
[194]. In addition, ETR1/2 and SNL1/2 regulate the ABA-ET crosstalk
between dormancy and germination [115,131]. Thus, the crosstalk
between ABA and ET is also important in maintaining the hor-
monal level of each other for finalizing decisions on dormancy
and germination (Fig. 4) [195,196].

Glucose-6-phosphate dehydrogenase (G6PDH) plays a key role
in reactive oxygen species (ROS) scavenging as the supply of
NADPH. A study found that a null mutant g6pd5 is more sensitive
to ABA during seed germination, whereas over-expression of
G6PD5 showed hyposensitive to ABA compared to WT. Further-
more, it is found that G6PD5 restrain the expression of ABI5 to
repress the ABA signaling in seed germination [197]. GLU-
TATHIONE S-TRANSFERASE (GST) plays pivotal roles in redox asso-
ciated processes, metabolism, and detoxification in plants.
AtGSTU7, a member of GST, whose null mutant (atgstu7) showed
hyposensitivity to ABA in germinating seeds dependent on ABI3
[140]. These indicate a potential correlation between ROS and
ABA in seed germination regulation. Moreover, a study reported
that phytohormone salicylic acid (SA) together with hydrogen per-
oxide (H2O2) up-regulated transcription of both the GA biosynthe-
sis gene ZmGA20ox1 and the ABA catabolism gene ZmCYP707A2,
while down-regulated the expression of the GA catabolism gene
ZmGA2ox1 [198], indicating the interplay among SA, ROS, ABA
and GA.

Furthermore, ABA works antagonistically with auxin to regulate
developmental processes and to contribute to the survival of seeds
[199,200]. For instance, the core ABA signaling gene ABI3 is an
auxin-regulated, ABRE-based transcription factor that plays impor-
tant role in seed dormancy [152]. An intensive study showed that
through recruiting auxin responsive factors 10 (ARF10) and ARF16
with ABI3, auxin regulates the seed dormancy in synergy with ABA
[201]. Brassinosteroids (BRs) play a critical antagonistic function in
the seed germination inhibition of ABA [202,203]. The advanced
study showed that Glycogen Synthase Kinase 3-like kinase BRASSI-
NOSTEROID INSENSITIVE2 (BIN2), a critical repressor of BR signal-
ing, interacts with ABI5, and functions upstream of ABI5 to
positively regulate ABA responses during seed germination and
post - germinative growth. Accordingly, BRs repress the BIN2-
ABI5 cascade to antagonize ABA-inhibited seed germination and
seedling establishment (Fig. 4) [204]. All these progresses uncover
some mask of the interaction of ABA and other hormones (e.g., SA,
auxin, BR) in the seed development.
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Concluding remarks and future prospects

ABA is the most important hormone and shows versatile roles
in seed development as well as the seed germination. Plants syn-
thesize their ABA through indirect pathways in embryo and endo-
sperm during seed development which accumulates continuously
in seed late maturation. For many years, the functions of ABA have
been studied comprehensively, in which metabolism and signaling
pathways were focused to understand the regulation of different
traits in seed development. Some important proteins involved in
the different stages of ABA metabolism were identified (e.g., ZEP,
ABAs, NCEDs, AAOs, and CYP707As), most of which usually display
specific roles in special developmental stages, but how they are
regulated differentially and specifically is unknown. Moreover, lots
of downstream signaling-related genes were identified, in which
some PYR/PYLs, PP2Cs, SnRK2s, and components in LAFL hub show
vital roles in multiple developmental stages of seed. Firstly, PYR/
PYLs are responsible to accept the ABA signal redundantly. After
that, the PP2C activity is inhibited by dephosphorylation to acti-
vate downstream SnRK2s proteins and several other transcription
factors including ABIs and bZIPs that play crucial roles in many
processes during seed development such as accumulation of seed
storage products, seed maturation, seed de-greening, desiccation-
tolerant acquirement, maintenance and induction of primary dor-
mancy and germination (Table 1). The finding of the new ABA sig-
naling terminator – ABT further enriched the understanding of the
ABA signaling pathway. So, both ABA synthesis and signaling all
show very complicated networks in plant development. Here, we
systematically summarize the updated progresses in ABA synthesis
and ABA signaling regulation, as well as their interaction in seed,
which still needs much work to explore the detailed regulators
and intrinsic mechanisms.

Although ABA shows versatile roles in plant development, we
focus on the biological roles and underlying mechanisms of ABA
in seed-related straits. In seed development, dormancy is a decisive
factor influencing seed vigor and plant propagation. Alteration in
the state of dormancy (dormant to non-dormant) is an active pro-
cess that involves variations in the expression of genes in after-
ripening dry seeds, in this period, ABA-associated ways play crucial
roles. The level of dormancy is severely poor in ABA biosynthesis
and signaling mutants, indicating the direct and important func-
tion of ABA in seed dormancy maintenance and induction. Both
ABA catabolism and stability between ABA⁄GA crosstalk both put
an impact on the level of seed dormancy. So, the exploration of
the detailed interaction between ABA and GA could also facilitate
the illumination of mechanisms of ABA in seed development
including dormancy. From numerous studies, it is proved that
ABA activates some key proteins (e.g., ABI3, LEC1, LEC2, and
FUS3) comprising a LAFL hub that plays roles in ABA metabolism,
showing the reciprocal effect between ABA signaling and synthe-
ses, but, the complete work model of these proteins is not clear
yet. More comprehensive biochemical and genetic analysis for
the key genes would be helpful for the elucidation of the detailed
interplay of ABA synthesis and signaling in seed development.

The crosstalks between ABA and other phytohormones such as
GA, ET, and auxin are also important for finalizing decisions of the
seed dormancy, germination, or seedling establishment [133].
Studies about light signal-related factors (e.g., HY5 and PIF1) have
provided some clues for interpretation of the interaction between
ABA and exogenous signal in seed development. Here, we provide
a comprehensive and updated network for crosstalks between ABA
and other phytohormones in seed development, which indicates
the bona fide case that it is common of pleiotropism and the recip-
rocal regulation between different factors or signals. But, how the



Table 1
Associated ABA metabolism (synthesis and catabolism) and response genes in this paper.

Gene Name Protein/Enzyme Mutant Mutant phenotype Specie Reference

ABA Biosynthesis
ABA1 Zeaxanthin epoxidase (ZEP) aba1, vp2/5/7/9 Reduced dormancy Arabidopsis, Maize, Tobacco [104]
ABA2 Short-chain dehydrogenase

reductase (AB-SDR)
aba2 Reduced dormancy Arabidopsis [31,37]

ABA2 Zeaxanthin epoxidase (ZEP) aba2 Reduced dormancy Tobacco [37]
VP14 9-cis Epoxycarotenoid dioxygenase vp14 Reduced dormancy Maize [35,205]
NCED 9-cis Epoxycarotenoid dioxygenase nced1-9 Reduced dormancy Arabidopsis, Bean,

Brachypodium distachyon
[44]

AAO3 Aldehyde oxidase 3 aao3-1 Slightly reduced dormancy Arabidopsis [47]

ABA Catabolism
CYP707A2 ABA 80-hydroxylase cyp707a2-1/2 Enhanced dormancy Arabidopsis [27]
CYP707A1 ABA 80-hydroxylase cyp707a1 Enhanced dormancy Arabidopsis [28,206]

ABA signaling components
PYR, PYL/

RCAR
ABA receptors Pyls Reduced dormancy and ABA

sensitivity
Arabidopsis , Rice [29,30]

ABI1 Protein phosphatase 2C abi1-1 Reduced dormancy and ABA
sensitivity

Arabidopsis [207–209]

ABI2 Protein phosphatase 2C abi2-1 Reduced dormancy and ABA
sensitivity

Arabidopsis [209–211]

AHG1 Protein phosphatase 2C ahg1-1/2/3/4/5 Enhanced dormancy and ABA
sensitivity

Arabidopsis [54,55]

AHG3 Protein phosphatase 2C Ahg3-1/2 Enhanced dormancy and ABA
sensitivity

Arabidopsis [212,213]

SnRK2s Protein kinase snrk2.2, 2.3, 2.6 triple
mutant

Green seed, Reduced dormancy and
ABA sensitivity

Arabidopsis [214,215]

Transcription factors
ABI3/VP1 B3 domain abi3-1 to 17, vp1 Green seed, Reduced dormancy and

ABA sensitivity
Arabidopsis, Rice, Maize [60,216,217]

ABI4 ERF/APETALA domain abi4-1 ABA insensitive Arabidopsis [75,218]
ABI5 ABF, bZIP abi5-1/7/8 ABA insensitive Arabidopsis [60,219]
FUS3 B3 domain fus3-3/8 Reduced dormancy Arabidopsis
LEC1 B3 domain lec1-1/2 Reduced dormancy Arabidopsis [68,220]
LEC2 B3 domain lec2-1/3 Reduced dormancy Arabidopsis [26,220]
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temperature, humidity and other exogenous factors (e.g., oxygen,
calcium, and pollutants) influence the ABA/GA balance or the inter-
action between ABA and other hormones is still in a blank.

During post-germination growth, ABI3 activated by ABA acti-
vates JMJ30 and accelerates SnRK2.8 expression through
H3K27me3 demethylation, promoting downstream ABI3 expres-
sion to enhance post-germination growth as a feedback loop,
which provides some hints to reveal the relationship of ABA and
epigenetic modification machinery to improve the network of
ABA in seed straits as well as shed light for the regulation of ABA
pathway in genomic level. Due to the technology limitation of
ABA visualization, the regulation of ABA metabolism has not been
well studied, especially at cellular and tissue levels. Along with the
advance of technology, uncovering the profiles of GA and ABA in
different tissues during seed development would provide direct
evidence for the antagonism between them. Compared to fresh
harvest seeds, the seeds after-ripening or stratification display
decreased dormancy and increased seed germination, how activa-
tion of GA biosynthesis impels the break of dormancy is still an
open question during this period. Expectedly, the low temperature
and high humidity play some roles in GA activation, but the under-
lying factors and mechanisms are still unclear.

Collectively, although great progress of roles of ABA in under-
standing the regulation of seed development has been done, some
open questions remain unanswered. For example, it is still unclear
how ABA regulates downstream genes such as components of LAFL,
and the function of ABA signaling factors in response to ABA against
dormancy. Many genes influenced dormancy, but, it is unknown how
these genes interact with each other in detail. In the future, studies
should be focused on the questions discussed above to improve the
understandings of the mechanisms by which ABA and genetic factors
209
regulate andmaintain seed dormancy and germination, which would
be conducive to a better presentation of the system of ABA function
and continuous agricultural productivity.
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