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Mesenchymal stem cells (MSCs) have the ability to differentiate into neuronal like cells under appropriate 
culture condition. In this study, we investigated whether MSCs derived from human peripheral blood (PB-
MSCs) can differentiate into neuronal like cells by synergic effect of the growth factors EGF, bFGF and Noggin. 
For this purpose, the expression of five neuronal markers (Nestin, β III tubulin, NFM, MAP2 and NSE) were 
evaluated in treated PB-MSCs by SYBR Green Real time PCR. The expression analysis showed a higher 
expression of β-tubulin and NFM in treated BP-MSCs compared with untreated PB-MSCs as a control group. 
The expression of Nestin was also diminished in PB-MSCs treated with Noggin. This study suggested that the 
treatment of PB- MSCs with Noggin alongside with bFGF and EGF might differentiate these cells into neuronal 
lineage cells. The obtained results could be further developed for useful applications in regenerative medicine. 
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owadays, the regenerative medicine has 
provided an alternative source of different 

cell lines and organs through trans- differentiation 
process (1). During last decades, different strategies 
have been used to regenerate missing tissues (2). 
Some studies indicated that stem cells derived from 

fetal umbilical cord have the ability to differentiate 
into cell types of different organs (3-4). In other 
alternative methods, the induced pluripotent stem 
cells (iPSCs) generated from somatic cells have 
opened a new window in regenerative medicine (5). 
However, the use of these cells was accompanied 

N 

Submmited 15 September 2015; Accepted 1 December 2015; Published 26 December 2015  



Fazeli Z et al. 

Int J Mol Cell Med Autumn 2015; Vol 4 No 4   210 

by some limitations. For example, lentivirus vectors 
including transcription factors for transformation of 
somatic cells into iPSCs could cause the recipient 
cells to exhibit long-term genetic aberrations (6). 
The characterization and isolation of stem cells 
from different organs and tissues has represented an 
alternative source of cells in cell therapy or 
regenerative medicine. However, it is not possible 
to isolate stem cells from some tissues including 
central nervous system (CNS). Therefore, trans-
differentiation of stem cells derived from other 
tissues could provide a suitable supply for 
regeneration of these tissues. Current studies have 
demonstrated that the mesenchymal stem cells 
(MSCs) derived from different tissues have the 
ability to differentiate into different cell types. 

MSCs are multipotent cells that can 
differentiate into chondrocytes, osteocytes, 
adipocytes, myocytes, endothelial cells, and 
neurons (7-10). Although the primary sources of 
MSCs are bone marrow, umbilical-cord blood, 
olfactory bulb, amniotic fluid (AF), and Wharton’s 
jelly, these cells have also been found in peripheral 
blood (11-12). Studies have demonstrated that 
MSCs have the ability to spontaneously express the 
neural markers including nestin, NeuN, gilal 
fibrillary acidic protein (GFAP) and βIII tubulin 
(13). These observations could support the 
predisposition of MSCs to differentiate toward 
neuronal lineage cells including neurons, 
oligodendrocytes and astrocytes. Different 
protocols have been published for differentiation of 
MSCs into neuronal lineage cells (9, 14-16). There 
is increasing evidence about neural induction of 
MSCs by numerous growth factors (9, 17). These 
growth factors are able to regulate neuronal 
differentiation through different mechanisms (18). 
It has been known that BMP2 is one of the most 
important bone morphogenetic proteins (BMPs) in 
regulating the osteogenic differentiation (19). 
Previous studies indicated that the inhibition of 
BMP2 by Noggin prevented from osteogenic 

differentiation through blockage of Smad signalling 
(20-21). Furthermore, it has been demonstrated that 
the inhibition of BMP signalling by Noggin along 
with activation of bFGF signalling could participate 
into neural differentiation of MSCs (22). 

In this study, we attempted to differentiate 
peripheral blood derived MSCs (PB-MSCs) into 
neuronal cells by inhibition of BMP signalling upon 
treatment with growth factors such as Noggin, 
bFGF and EGF. The expression of neural markers 
like nestin, β III tubulin, neurofilament M (NFM), 
microtubule- associated protein 2 (MAP2) and 
neuron-specific enolase (NSE) in treated cells were 
investigated to determine whether those growth 
factors could influence the expression of these 
neural markers. 
 
Materials and methods 
PB-MSCs isolation 

The peripheral blood (almost 6 ml) was 
obtained from three healthy individuals. The blood 
was collected in EDTA-treated tubes and layered 
over ficoll in a 2:1 ratio. The peripheral blood 
mononuclear cells (PBMCs) were separated by 
density gradient centrifugation, plated in DMEM/F-
12 medium containing 10% fetal bovine serum 
(FBS), 2 mM L- Glutamate and 100 units/ml 
Penicillin/ Streptomycin (medium A) and then, 
incubated at 37 °C in a 5% CO2 humidified 
atmosphere. After 48 hours, media and unattached 
cells were removed by washing with phosphate-
buffered saline (PBS). The adherent cells were 
maintained in a fresh medium until approximately 
80% confluence was reached on day 6 of culture. 
Flow cytometry analysis 

The adherent cells were confirmed to be 
MSCs by flow cytometry. On day 6, the cells were 
harvested with trypsin. After centrifuging at 450 g 
for 5 min, the cells were suspended in DPBS and 
incubated with following antibodies: FITC 
(Fluorescein isothiocyanate) conjugated CD45 (BD 
Biosciences, Cat# 347463, RRID: AB_400306) as 
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leukocyte marker, PE (Phycoerythrin) conjugated 
CD14 (BD Biosciences, Cat# 347497, RRID: 
AB_400312) as monocytic marker, FITC 
conjugated CD44 (BD Biosciences, Cat# 347943, 
RRID: AB_400360), PE conjugated CD105 (BD 
Biosciences, Cat# 560839, RRID: AB_2033932) 
and PE conjugated CD73 (BD Biosciences, Cat # 
550257, RRID: AB_393561) for 30 min in the dark. 
The CD73, CD105 and CD44 served as surface 
markers of MSCs. Negative control staining was 
performed by using IgG1- FITC and IgG1-PE 
isotype controls. Then, the cells were analyzed on 
Partec CyFlow Space cytometer using FloMax 
software (http://flomax.software.informer. com/ 2.2 /). 

Neuronal differentiation 
On day 6, the medium A was removed and the 

cells were plated in medium A supplemented  
with 0.1 mM NEAA, 2% B27 supplement, 1%  
N2 supplement, 50 ng/ml Noggin, 20 ng/ml EGF 
and 10 ng/ml recombinant human bFGF (medium 
B). The medium A was used as the control medium. 
The growth factors Noggin, EGF and recombinant 
human bFGF were added to the medium every  
day. After three days culture in the medium B,  
the EGF and recombinant human bFGF were 
removed from the medium (medium C) and the 
cells were cultured for an additional six days  
in medium C. The medium was changed every  
two days. 
RNA extraction and cDNA synthesis 

Total RNA was extracted from untreated and 
growth factor-treated PBMSCs (day 14) using the 
total RNA purification kit (Jena Bioscience, 
Germany) according to the manufacture’s 
instructions. DNase I treatment of RNA was 
performed in a final volume of 50 μl containing 40 
μl RNA, 5 μl RNase-free DNase I and 5 μl 10x 
reaction buffer (Fermentas, Thermo Scientific, 
Waltham, MA, USA). The mixture was incubated 
for 30 min at 37 °C. Then, the enzyme was 
inactivated at 65 °C for 10 min. The complete 
removal of DNA was confirmed by electrophoresis 
on 1% agarose gel. Finally, the cDNA template was 
synthesized from extracted RNA using random 
hexamer primers and dART reverse transcriptase 
(EURx Ltd, Gdansk, Poland). 
Real time quantitative PCR 

The expression levels of neuronal marker 
genes were evaluated by quantitative PCR (qPCR) 
after 14 days of culture. The SYBR Green based 
qPCR was carried out on Rotor-Gene 6000 Real 
time PCR system. The qPCR reaction was prepared 
in a total volume of 25 μl containing 12.5 μl of 2X 
SYBR Green master mix (Eurex, Poland), 5 μl of 
the cDNA template, 0.2 μl of each primer (10 
pmol/μl) and 7.1 μl of deionized water. A negative 
control was used by replacing the cDNA template 
with deionized water. Primer sequences used in this 
study and their annealing temperature are shown in 
Table 1. 

 
Table 1. Characteristics of qPCR primers pairs used in this study 
Gene  Accession number Primer sequences 

5'              3' 
Amplicon 
size (bp) 

Annealing 
temperature (ºC) 

Reference 

HSP90AB1 
(Reference gene) 

XM_005249075.1 GGAAGTGCACCATGGAGAGGA 157 55  
GCGAATCTTGTCCAAGGCATCAG 

β-tubulin III NM_001197181.1 CTCAGGGGCCTTTGGACATC 160 60 23 
CAGGCAGTCGCAGTTTTCAC 

Nestin NM_006617.1 ATCGCTCAGGTCCTGGAA 146 60 24 
AAGCTGAGGGAAGTCTTGGA 

NFM NM_005382.2 GTCAAGATGGCTCTGGATATAGAAATC 104 60 25 
GTCAAGATGGCTCTGGATATAGAAAT 

MAP2 XM_006712533.1 CATGGGTCACAGGGCACCTATTC 233 60 26 
GGTGGAGAAGGAGGCAGATTAGCTG 

NSE NM_001975.2 GGAGAACAGTGAAGCCTTGG 239 60 27 
GGTCAAATGGGTCCTCAATG 
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Fig. 1. Morphological features of PBMSCs treated with Noggin. A) Prior to treatment, PBMSCs showed fibroblast like shape on day 6. B) 
PBMSCs after 4 days treatment with Noggin (Day 10). C) PBMSCs after 8 days treatment with Noggin (Day 14). The cells showed the 
multipolar processes. D) PBMSCs after 8 days treatment with Noggin (Day 14). The cells in this figure displayed synaptic structure. 

The PCR amplification consisted of an initial 
denaturation at 95 ºC for 10 min, followed by 40 
cycles of denaturation at 95 ºC for 30 s, annealing 
at 60 ºC for 30 s and extension at 72 ºC for 30 s. 
The specificity of PCR products was verified by 
melting curves and electrophoresis through 3% 
agarose gel. 

The expression level of each gene was 
calculated as fold change relative to the expression 
of reference gene (HSP90AB1) using pfaffl method 
(28). The statistical analysis was performed using 
Social Science Statistics website (http: //www. 
socscistatistics.com /tests/studentttest/ Default2. 
aspx). The ΔCt value of treated versus untreated 
PBMSCs was compared by t-test. Data were 
represented as fold change relative to the cell 
identifier using GraphPad Prism software (http: 
//www.graphpad.Com/scientific–software /prism/). 
 
Results 

Morphological changes of the growth factor-
treated PBMSCs  

The morphological features of untreated and 
growth factor-treated PBMSCs were observed 
under inverted microscope. After being cultured for 
6 days, the PBMSCs adhered to the culture surfaces 
reached 70-80% confluence (Figure 1A). The 
untreated PBMSCs showed mainly spindle- shaped 
morphology. These cells had a tendency to become 
flatter and wider over time. The neurosphere like 
cells were suspended 2-3 days after culture in the 
medium induction containing growth factors 
Noggin, bFGF and EGF. Within 4-5 days after 
addition of growth factors, some cells began to look 
like oligodendrocytes or astrocytes. After 8 days 
treatment with growth factors, the PBMSCs 
displayed multipolar shapes and bright cell bodies 
reminiscent of oligodendrocytes morphology 
(Figure 1C). 
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Fig. 2. Flow cytometry analysis of adherent cells derived from peripheral blood. The cultured cells were CD45 and CD14 negative. In 
contrast, presence of MSCs markers (CD73, CD105 and CD44) confirmed that the majority of these cells were MSCs. 

Fig. 3. Analysis of neuronal markers expression of the PBMSCs treated with growth factor Noggin. Graphs were generated using 
GraphPad Prism 6. The results were obtained from three independent experiments. 
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Expression pattern of surface markers on 
PBMSCs 

The adherent cells derived from peripheral 
blood were analyzed by flow cytometry. As 
expected, these cells were negative for leukocyte 
marker CD45 as well as monocytic marker CD14. 
The majority of these cells showed positive signal 
for mesenchymal cell makers CD105, CD44 and 
CD73 (Figure 2). 
Expression levels of neural markers in growth 
factor treated-PBMSCs 

Quantitative analysis with qPCR revealed that 
the expression of NFM and βIII tubulin increased 
significantly in the growth factor-treated group. 
Almost three fold increase of βIII tubulin 
expression was observed upon treatment in the two 
cultures of PBMSCs. The nestin expression level 
was markedly reduced in the PBMSCs treated with 
Noggin. Treatment with Noggin, bFGF and EGF 
caused an increased expression of MAP2 and 
diminished expression of NSE in one of the treated-
PBMSCs. In contrast, the other culture displayed a 
reduction of MAP2 expression and augmentation of 
NSE expression after treatment with Noggin. The 
third culture showed reduced expression of MAP2 
as well as NSE in growth factor-treated PBMSCs. 
The graphs derived from these data are presented in 
figure 3. The results obtained from statistical 
analysis indicated that there was no statistically 
significant difference between treated and untreated 
PBMSCs. This is probably due to the low number 
of experiments. 
 
Discussion  

Stem cell therapy is a new approach for the 
treatment of different disorders including neu-
rological diseases (29). Different studies have 
demonstrated that the embryonic stem cells can 
give rise to neuronal cells (30-31). However, the 
ethical problems are major concerns in the use of 
these cells in cell therapy. In some studies, the 
induced pluripotent stem cells (iPSCs) have been 

used to establish neuronal stem cells (NSCs) and 
neuronal lineage cells. The safety problem is an 
important issue to use of these cells as a therapeutic 
method (32). MSCs are an alternative source of 
cells for use in treating patients with neurological 
disease. It has been demonstrated that these cells 
have the ability to differentiate into neuron like 
cells (9). Numerous reports have described different 
protocols for differentiation of stem cells derived 
from peripheral blood. The previous studies 
revealed that PBMCs have ability to differentiate 
into neural like cells in the presence of different 
combinations of growth factors (33-34). In this 
study, a new combination of growth factors 
including Noggin, bFGF and EGF was used to 
induce neural differentiation of MSCs derived from 
peripheral blood (PBMSCs) by inhibition of BMP 
signaling. To confirm the differentiation of 
PBMSCs, the expression level of neural cell 
specific markers were assessed with qPCR. 

PB-MSCs showed changes in morphology and 
expression of neural markers upon treatment with 
growth factors Noggin, bFGF and EGF. The cells in 
the present study had morphology different from 
the neural like cells described in the previous 
studies. These observations suggested that these 
cells belonged to different cell types of neural 
lineage. 

Nestin is a marker of NSCs (35) that its 
expression has also been observed in MSCs (36). It 
was revealed that the expression of nestin is 
inversely correlated with cellular differentiation 
(35). The expression of nestin decreased upon 
treatment with growth factor Noggin, consistent 
with differentiation of MSCs. Although the 
previous studies showed that the expression of 
nestin needs at least 10 passages of the cultured 
MSCs in serum free medium (37), but we observed 
nestin expression in MSCs following culture in 
medium supplemented with fetal bovine serum for 
14 days. These results were consistent with the 
finding obtained by Foudah et al. (38). 
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β III tubulin and NFM are known to be the 
early and late neuronal markers, respectively. These 
two neural markers are expressed in undifferen-
tiated MSCs (39). As observed in Figure 3, Noggin 
treatment of PBMSCs resulted in increased β III 
tubulin and NFM expression. The results obtained 
from previous studies suggested that the in vitro 
culture could induce the spontaneous expression of 
neural markers in MSCs. However, it has remained 
to be demonstrated (40). 

Different isoforms of MAP2 are expressed in 
the neural lineage cells (41). The primer pair used 
in the present study detects MAP2a, MAP2b and 
MAP2c isoforms. These isoforms of MAP2 were 
expressed in different stages of neuronal differen-
tiation. MAP2c is an early neuronal marker and its 
expression decreased in the mature neurons. 
MAP2b was expressed in terminally differentiated 
neurons as well as during differentiation. MAP2a 
expression was detectable in mature neurons (39). 
We observed a two-fold increase in the expression 
of MAP2 in one of treated PBMSCs as compared 
with non-treated PBMSCs. This data along with 
expression pattern of other markers suggested that 
PBMSCs differentiated into neuron like cells 
following treatment with Noggin. In contrast, qPCR 
analysis showed a decrease of MAP2 expression in 
the other two PBMSCs treated with noggin, pro-
posing the differentiation of these treated cells into 
oligodendrocytes. This fact was confirmed by 
morphology assessment of treated PBMSCs. A 
previous study on differentiating oligodendrocytes 
has demonstrated that MAP2 expression transiently 
increased in preoligodendrocytes. Its expression 
was decreased at the onset of terminal differentia-
tion of oligodendrocytes (42). 

Enolase is a key enzyme in the glycolytic 
pathway which plays an important role in energy 
production for cells. It has been revealed that γ-
enolase (Eno2) was only found in cells of neuronal 
lineage (43). Our results showed that NSE 

expression level was increased in one of treated cell 
cultures with Noggin, consistent with their 
differentiation into neuron like cells. The previous 
studies indicated that the expression level of NSE 
increased during the oligodendrocyte differentiation 
and NSE expression was repressed in mature 
oligodendrocytes (44). Furthermore, it has been 
found that low levels of NSE expression are present 
in astrocytes. Therefore, NSE expression data in our 
study suggested that treatment with Noggin was 
accompanied by differentiation of PBMSCs into 
different types of neurons, astrocytes and 
oligodendrocytes. 

In general, our results showed that PBMSCs 
could express some neural markers including 
Nestin, βIII tubulin, NFM, MAP2 and NSE. 
Accordingly, PBMSCs are a potential source of 
cells that can be used to generate neuronal cells. 
Although different induction protocols were 
published about differentiation of MSCs into 
neuron like cells, the introduction of new protocols 
could improve our understanding from the 
characteristics of MSCs and the neuron like cells 
derived from MSCs. Furthermore, the results 
obtained from this study provide evidence of 
neuronal differentiation of MSCs upon treatment 
with Noggin. However, neural marker expression 
analysis cannot be used as the only proof to 
demonstrate the neuronal differentiation of MSCs 
following treatment with Noggin and the complete 
understanding of these cells needs additional 
studies from the molecular, biological and 
physiological aspects. 
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