
Published online 19 February 2008 Nucleic Acids Research, 2008, Vol. 36, No. 7 2257–2267
doi:10.1093/nar/gkn073

Human branch point consensus sequence is yUnAy
Kaiping Gao, Akio Masuda, Tohru Matsuura and Kinji Ohno*

Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School
of Medicine, Nagoya 466-8550, Japan

Received December 6, 2007; Revised January 17, 2008; Accepted February 5, 2008

ABSTRACT

Yeast carries a strictly conserved branch point
sequence (BPS) of UACUAAC, whereas the human
BPS is degenerative and is less well characterized.
The human consensus BPS has never been exten-
sively explored in vitro to date. Here, we sequenced
367 clones of lariat RT-PCR products arising from
52 introns of 20 human housekeeping genes. Among
the 367 clones, a misincorporated nucleotide at the
branch point was observed in 181 clones, for which
we can precisely pinpoint the branch point. The
branch points were comprised of 92.3% A, 3.3% C,
1.7% G and 2.8% U. Our analysis revealed that the
human consensus BPS is simply yUnAy, where the
underlined is the branch point at position zero and
the lowercase pyrimidines (‘y’) are not as well
conserved as the uppercase U and A. We found
that the branch points are located 21–34 nucleotides
upstream of the 3’ end of an intron in 83% clones.
We also found that the polypyrimidine tract spans
4–24 nucleotides downstream of the branch point.
Our analysis demonstrates that the human BPSs
are more degenerative than we have expected and
that the human BPSs are likely to be recognized in
combination with the polypyrimidine tract and/or
the other splicing cis-elements.

INTRODUCTION

In higher eukaryotes, pre-mRNA splicing is mediated by
degenerative splicing cis-elements comprised of the branch
point sequence (BPS), the polypyrimidine tract (PPT), the
50 and 30 splice sites and exonic/intronic splicing enhanc-
ers/silencers. Stepwise assembly of the spliceosome starts
from recruitment of U1 snRNP, SF1, U2AF65 and
U2AF35 to the 50 splice site, the branch site, the PPT
and the 30 end of an intron, respectively (Complex E). SF1,
a 75-kDa polypeptide, is a mammalian homolog of

yeast BBP (branch point-binding protein). U2AF65 and
U2AF35 bring U2snRNP to the BPS in place of SF1 (1,2).
The BPS establishes base pairing interactions with a
stretch of ‘GUAGUA’ of U2 snRNA (3,4), which then
bulges out the branch site nucleotide, usually an adenosine
(Complex A) (5). Thereafter, pre-mRNAs are spliced in
two sequential transesterification reactions mediated by
the spliceosome. In the first step, the 20-OH moiety of the
branch site nucleotide carries out a nucleophilic attack
against a phosphate at the 50 splice site, generating a free
upstream exon, as well as a lariat carrying the intron and
the downstream exon. In the second step, the 30-OH
moiety of the upstream exon attacks the 30 splice site
leading to intron excision and ligation of the upstream and
downstream exons (6). The branch site is thus involved in
the first step of splicing, and potentially in the second step
of splicing, although the detailed molecular mechanisms
of contribution to the second step remain elusive (7).
The BPS is strictly conserved in yeast and has the

sequence of UACUAAC, where the branch point adeno-
sine is underlined. On the other hand, the human BPSs are
degenerative. No extensive in vitro identification of human
BPSs has been reported. Five communications address the
mammalian consensus BPSs (Table 1). Three reports are
based on 11–20 in vitro identified BPSs, and two are
dependent on the in silico analysis of the human genome.
In an effort to establish the human consensus BPS based

on in vitro experiments, we analyzed 367 clones of lariat
RT-PCR products arising from 52 introns of 20 human
housekeeping genes. We found that the human consensus
BPS is yUnAy. Our analysis demonstrates that the human
BPSs are more degenerative than we have expected and
that the BPS is likely recognized in combination with the
PPT and/or the other splicing cis-elements.

MATERIALS AND METHODS

Lariat RT-PCR primers for human housekeeping genes

Among the 575 human housekeeping genes registered
at http://www.compugen.co.il/supp_info/Housekeeping_
genes.html (8), we excluded 82 genes, for which we
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could not find entries in the EST profile viewer of the
NCBI UniGene database (http://www.ncbi.nlm.nih.gov/
UniGene/). Among 4188 introns of the remaining 493
human housekeeping genes, we excluded introns with a
size of less than 300 nucleotides or with multiple repeated
segments, because it was difficult to design appropriate
PCR primers for such introns. We next sorted the 493
genes in the order of skin expression levels according to
the EST profile viewer, and picked up the 20 best genes.
We thus analyzed 52 introns of the 20 human house-
keeping genes (Supplementary Table 1).
We placed the sense primers at least 100 nucleotides

upstream of the 30 end of an intron, and the antisense
primers at least 10 nucleotides downstream of the 50 end of
an intron. The melting temperatures of the primers were
designed to be 64–678C according to the nearest neighbor
method. Gene symbols, intron numbers and primer
sequences are indicated in Supplementary Table 1.

Lariat RT-PCR to identify the branch point

We performed nested lariat RT-PCR to amplify a frag-
ment spanning the 20–50 phosphodiester bond at the branch
point (9). We isolated total RNA from HEK293 cells
grown to confluency in DMEM medium (Sigma-Aldrich)
supplemented with 10% fetal bovine serum (Sigma-
Aldrich) and penicillin–streptomycin (Invitrogen). First-
strand cDNA was synthesized with SuperScript II reverse
transcriptase (Invitrogen) using an intron-specific anti-
sense primer C (Figure 1) located close to the 50 end of an
intron. The first round of lariat RT-PCR was performed
using primers C and D with Taq HS DNA polymerase
(Takara) in 25 ml. The nested lariat RT-PCR was carried
out with primers A and B using 0.2ml of the first-round
lariat RT-PCR product in 50 ml. The first-round PCR
program was comprised of an initial denaturation step at
948C for 3min, followed by 30 cycles of 948C for 30 s, 558C
for 30 s and 728C for 1min. For the nested PCR, we
performed 35 cycles of amplification.
We purified the nested lariat RT-PCR products using

the Wizard SV Gel and PCR Clean-up system (Promega),
and cloned them into the pGEM-T-Easy vector (Promega).
We sequenced 10 clones for each intron using the CEQ8000
genetic analyzer (Beckman Coulter).

Presentations of sequence motifs

Sequence motifs are presented using the Pictogram web
server at http://genes.mit.edu/pictogram.html (10).

To indicate the amount of information conferred
by each nucleotide at each position, we employed
the WebLogo program at http://weblogo.berkeley.edu/
(11,12). We also calculated the total amount of informa-
tion content at each position using the following formula:

Rsequence ¼ 2þ
X

Pi log2 Pi i ¼ A,C,G andUð Þ

where Pi represents the probability of nucleotide i at each
position. Rsequence represents the degree of conservation

Figure 1. (A) Lariat RT-PCR of PGK1 intron 6 indicates a
misincorporated ‘A’ nucleotide at the branch point. We can pinpoint
the branch point in this situation. The sequencing is performed with
primer B. The small dots indicate the 50 end of an intron. (B) Lariat
RT-PCR of GAPDH intron 2 exhibits no misincorporated nucleotide.
The branch point can be either at ‘C’ or upstream ‘T’ depending on
whether skipping of the reverse transcriptase occurs or not. We cannot
locate the exact branch point in this case. The sequencing is performed
with primer A.

Table 1. Previously reported consensus BPSs

Consensus BPS Note References

S. cerevisiae
UACUAAC Invariant BPS (36,37)
Mammals
YNYURAY 11 mammalian BPSs (25)
YNCURAC 20 mammalian BPSs (38)
YNCURAY 15 BPSs of human HBB (39)
CURAY In silico homology search (40)
YUVAYa

CUSAYb
In silico homology search (41)

Branch point ‘A’ is underlined.
Y, U or C; R, A or G; S, G or C; V, A, C or G.
aLow GC% region.
bHigh GC% region.
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of a sequence motif at a specific position (13). It becomes
2.0 when a single nucleotide is exclusively observed at
a specific position, whereas it becomes 0.0 when four
nucleotides are evenly observed.

RESULTS

Collation of previously identified mammalian BPSs

As shown in Table 1, five communications address the
mammalian consensus BPSs. In order to understand the
in vitro determined mammalian consensus BPS, we collated
29 previously reported BPSs comprised of 25 mammalian
and four viral introns (Table 2). Viral introns should be
spliced in the same way as the mammalian genes. The
branch points are located between positions �38 to �4
(mean and SD, �26.9� 7.8). Nucleotides ‘C’, ‘U’, ‘A’ and
‘Y’ at positions �3, �2, 0 and +1 are observed at 21
(72.4%), 21 (72.4%), 23 (79.3%) and 25 sites (86.2%),
respectively. The deduced consensus BPS thus becomes
CUnAy at positions�3 to+1 (Figure 2A and B), when we
arbitrarily assume that positions with the information
contents above 0.45 are significant.

Lariat RT-PCR with or without a misincorporated
nucleotide at the branch point

To further explore the human consensus BPS, we chose 52
introns of 20 human housekeeping genes. We performed
nested lariat RT-PCR and cloned the amplified products.

We sequenced ten clones from each intron, and 367 clones
carried available inserts, which represented 117 possible
branch sites (Table 3). The remaining 153 clones carried
either no inserts or PCR artifacts.
The 367 clones were divided into two classes: 181 clones

carrying misincorporated nucleotides at the branch points,
and 186 clones without misincorporated nucleotides. For
those carrying misincorporated nucleotides, we could
pinpoint the exact branch points (Figure 1A). On the
other hand, for those carrying no misincorporated
nucleotides, the reverse transcriptase might have skipped
one or two nucleotides at the 20–50 phosphodiester bond at
the branch points (Figure 1B).
Among the 367 clones, we observed two or more

possible branch sites in 36 of 52 introns. The 36 introns
carried a total of 101 possible branch sites. Among the 101
sites, 25 were followed by an immediate downstream
branch site, making 25 possible branch-site pairs. Among
the 25 upstream branch sites, 19 carried no misincorpo-
rated nucleotides. In addition, 13 of the 19 upstream sites
were followed by an ‘A’ nucleotide. Furthermore, when
we simply deduced the consensus BPS from all 367 clones,
the consensus BPS became more degenerative and less
informative (data not shown). These findings suggest that
the observed upstream branch points are likely due to
skipping of a nucleotide in lariat RT-PCR. We thus
employed the 181 clones carrying misincorporated nucleo-
tides at the branch points in the following analyses unless
otherwise stated.

Table 2. Previously identified mammalian and viral BPSs

Species Gene Intron BPS Position Predicted BPa BPS Scorea Reference

H. sapiens CALCA 4 CACTCAC �36b �36A 3.85 (42)
H. sapiens CALCA 3 TACTGTC �23b �42A 2.60 (21)
H. sapiens CALCA 3 GTACTGT �24b �42A 2.60 (21)
H. sapiens CALCA 3 GGTGCAT �32b �42A 2.60 (21)
H. sapiens CSH1 1 CCTCCAT �23b �23A 2.75 (22)
H. sapiens DQB1 3 CACAGAC �21c �21A 3.25 (17)
H. sapiens GH1 1 CTCTGTT �22b na na (22)
H. sapiens GH1 1 GGCTCCC �28b na na (22)
H. sapiens GH1 1 TGCTCTC �36b na na (22)
H. sapiens GH1 4 GCCTCTC �24b �37A 2.80 (22)
H. sapiens GH1 4 ACCCAAG �37b �37A 2.80 (22)
H. sapiens GH1 4 TACCCAA �38b �37A 2.80 (22)
H. sapiens HBA 1 CCCTCAC �19b �37A 3.25 (25)
H. sapiens HBA 2 CACTGAC �18b �18A 3.95 (25)
H. sapiens HBB 1 CACTGAC �37b �37A 3.95 (25)
H. sapiens HBE1 1 CTCTAAT �31b �31A 3.45 (25)
H. sapiens HBG1 1 TTCTGAC �30b �30A 3.85 (25)
H. sapiens MYH10 5 TGCTAAC �31b na na (15)
H. sapiens XPC 3 TGTTGAT �4b na na (16)
H. sapiens XPC 3 TACTGAT �24b na na (16)
M. musculus Hbb-b2 1 CACTAAC �36b �36A 3.85 (25)
M. musculus Igh 5 AATTCAC �22b �22A 3.30 (14)
R. norvesicus Ins1 1 CCTCAAC �18b �18A 3.15 (25)
O. cuniculus Hbb 1 TGCTGAC �34b �34A 3.85 (25)
O. cuniculus Hbb 2 TGCTAAC �32b �32A 3.75 (28)
Adenovirus 5 E1A 1 GTTTAAA �30b �30A 2.70 (25)
Adenovirus 2 E2a-2 1 GACTGAC �26b �26A 3.70 (42)
Adenovirus 5 Major Late 1 TACTTAT �24b �24A 3.05 (42)
SV40 T antigen 1 ATTCTAA �19b �19A 2.00 (42)

aPredicted BPs and BPS scores are according to the Branch-Site Analyzer at http://ast.bioinfo.tau.ac.il/BranchSite.htm (14). na, not available.
bIdentified by the primer extension method.
cIdentified by lariat RT-PCR.
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We counted each clone as a single occurrence of a
branch point in order to weigh the preferred branch
points. For example, in PGK1 intron 6, eight clones
mapped to ‘A’ at position �23, whereas one clone pointed
to ‘A’ at position �28 (Table 3). We assumed that the
branch point at position �23 was eight times more fre-
quently employed than that at position �28. This analysis
method might have overweighed introns that gave rise to
more clones. An alternative analysis method would be
to make the contribution of each intron equal regardless
of the number of available clones. The alternative method,
however, is also biased in favor of introns with fewer

clones. For example, PGK1 intron 8 had a single available
clone mapping to position �27, whereas EEF1A1 intron 1
had ten clones all mapping to position �23. A single clone
of PGK1 might have arisen from one of many branch
points, and we might have sequenced it by chance. On the
other hand, it is likely that EEF1A1 intron 1 indeed had
a single branch point. We analyzed our data using both
methods and obtained similar results (data not shown),
except that the frequency of C at position �1 was slightly
lower with the alternative method (44.8% versus 36.3%).
In the current communication, we employed the former
method, in which each clone was counted as a single
occurrence of a branch site.

Positions and sequence motif of the branch points

Analysis of the 181 clones revealed that the positions of
the branch points were from �50 to �5, where position
�1 represents the 30 end of an intron (Figure 3A). Among
the 181 sites, 150 (83%) were at positions �34 to �21.

We observed U at position �2 in 74.6% branch sites,
and A at position 0 in 92.3% branch sites (Table 4).
In addition, pyrimidines were observed at positions �3
and +1 in 79.0% and 75.1% branch sites, respectively
(Table 4). We can thus conclude that the human consensus
BPS is yUnAy at positions �3 to +1 (Figure 2C), where
the branch site is underlined and the less conserved
nucleotides are indicated in lowercase letters. The infor-
mation contents of 0.27 and 0.23 at positions �3 and +1,
however, were not as high as those of 0.85 and 1.48
at positions �2 and 0 (Figure 2D), or 0.39� 0.12
(mean� SD) of the polypyrimidine tract at positions +4
to +24 (Figure 3C). Therefore, the consensus sequence
alternatively becomes UnA according to the information
contents (Figure 2D).

Among the 41 introns yielding the 181 clones, 14 introns
carried multiple branch sites. In eight of the 14 introns
(57%), the most downstream branch sites were most
frequently used (Table 3). Although the ratio of 57% was
not high, the downstream branch sites were four to eight
times more frequently used than the upstream sites in four
of the eight introns. We could not observe this magnitude
of differential branch site usage in the remaining six
introns, in which the downstream branch points were not
overrepresented. Accordingly, when there are multiple
branch points, downstream branch points are more likely
to be employed than their upstream counterparts.

We also predicted BPSs of our housekeeping genes with
the Branch Site Analyzer (14), and found that the actual
branch sites matched to the predicted positions in 80 of
the 181 sites (44.2%) (Table 3).

Alignment of polypyrimidine tract in respect
to the branch point

We next aligned the PPT’s in respect to the 181 branch
points (Figure 3B and C). We observed a polypyrimidine
stretch from position +4 down to position +24. The ‘U’
nucleotide was preferred over ‘C’ especially at positions
+4 to +12 in the PPT. Alignment of the PPT in respect to
the 30 end of an intron also demonstrated a stretch of
pyrimidines from positions �20 to �4 (Figure 3D and E).

Figure 2. Pictogram (A, C and E) and WebLogo (B, D and F)
presentations of mammalian BPSs. (A and B) Twenty-nine mammalian
and viral BPSs identified by in vitro experiments (Table 2). (C and D)
BPSs with a misincorporated nucleotide at the branch point in our
studies. (E and F) BPSs without a misincorporated nucleotide at the
branch point in our studies. We assume that ‘A’ residue one or two
nucleotides downstream of the sequenced branch point is the actual
branch point (see Figure 1B). Position 0 represents the branch point.
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Figure 3. (A) Positions and nucleotides of 181 branch points with misincorporated nucleotides in our studies, where position �1 represents the 30 end
of an intron. The median value of the branch points is �26, and the mean and SD is �27.7� 7.6. Among the 181 sites with misincorporated
nucleotides at the branch points, 150 sites (83%) are at positions �34 to �21 (horizontal bar on top). Native nucleotides, not the misincorporated
nucleotides, are indicated. Nucleotide preferences (B and D) and information contents (C and E) are deduced from 181 branch points. (B and C)
Plots are aligned in respect to the branch point (closed arrows), which is designated as position 0. Open arrows point to peaks of information
contents at positions +7 and +8. A polypyrimidine stretch starts from position +4 down to position +24 (bars). The plots are truncated at
position +25, because the numbers of observations fall below 40 after position +25, and the plots become less informative and uneven. The last
three nucleotides of introns are excluded from the plots. (D and E) Plots are aligned in respect to the 30 end of each intron, which is designated as
position �1. A polypyrimidine stretch spans positions �19 to �5 (bars).

Figure 4. Representative composition of the branch point sequence (arrow) and the PPT deduced from our studies.
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Table 3. Analyzed introns and observed branch points

Gene Intron Intron

size (bp)

Predicted

BPa
BPS

Scorea
Observed

BP

Number of

clones

Misincorporated

nucleotide

Intronic sequence from BPS position �5 to the

30 end of an intronb

ACTB 3 441 �24A 3.10 �30A 10 – TCCCCAGTGTGACATGGTGTATCTCTGCCTTACAG

ALOD 8 984 �24A 3.05 �26T 2 – TGTCTTAATGTTGTTACCCTGACCCCAACAG
�25A 2 T GTCTTAATGTTGTTACCCTGACCCCAACAG
�5A 1 – ACCCCAACAG

CCT3 4 1069 �21A 3.30 �32A 3 – TGAATAGTGTGAATTCACTAGTGATCTACC

TTTTTAG
�30T 1 – AATAGTGTGAATTCACTAGTGATCTACCTTTTTAG
�21A 2 T AATTCACTAGTGATCTACCTTTTTAG

CCT3 11 845 �44A 2.95 �24A 6 T GCTTCATACTGTCTGTTTGCTTCTCCAAG
�10C 1 – GTTTGCTTCTCCAAG

EEF1A1 2 366 �24A 2.80 �28A 2 T TAGTAACCAAGTAACGACTCTTAATCCTTACAG
�19C 1 – AGTAACGACTCTTAATCCTTACAG

EEF1A1 1 943 �33A 3.25 �23A 10 T GGTTCAAAGTTTTTTTCTTCCATTTCAG

ENO1 2 2837 �33A 3.25 �27T 6 – ATTGCTACTACATCTTTTTTCCTCTCATCCAG
�25C 2 T TGCTACTACATCTTTTTTCCTCTCATCCAG

ENO1 4 2394 �21A 3.45 �21A 10 T CCCTCATTCTCCCCTCTCCCTCGTAG

ENO1 5 737 �32A 3.20 �27A 6 T ACTTCATTCCACTCGGTTCTCTTCTGTTCTAG
�24C 1 – TCATTCCACTCGGTTCTCTTCTGTTCTAG

ENO1 6 615 �36A 2.85 �30T 2 G CCCAGTGCCATGCTTCTCTGCTCTGCTCTCCCCAG
�27C 3 A AGTGCCATGCTTCTCTGCTCTGCTCTCCCCAG
�26A 3 – GTGCCATGCTTCTCTGCTCTGCTCTCCCCAG

ENO1 7 796 �25A 3.05 �38A 3 T TACCTACCTGTTTTCCAAACCTGTTGTCACCATC

TCTTCCCAG
�28C 1 – TTTTCCAAACCTGTTGTCACCATCTCTTCCCAG
�27A 2 T TTTCCAAACCTGTTGTCACCATCTCTTCCCAG
�26A 2 T TTCCAAACCTGTTGTCACCATCTCTTCCCAG

ENO1 9 547 �30A 2.70 �5T 2 A TGGCTTCCAG

ENO1 11 1457 �26A 2.95 �48T 4 – AGGTCTGACTTTTCTTTTTTCCTCCCCATCTCTTTACC

TTTCTCCTTCCCAAG
�47G 2 – GGTCTGACTTTTCTTTTTTCCTCCCCATCTCTTT

ACCTTTCTCCTTCCCAAG
�46A 3 T GTCTGACTTTTCTTTTTTCCTCCCCATCTCTTTACC

TTTCTCCTTCCCAAG

G22P1 1 6031 �28A 2.90 �30A 2 – AGGACAAACATTTTCTTCCATTTTTTTCCCCATAG
�28A 4 T GACAAACATTTTCTTCCATTTTTTTCCCCATAG

G22P1 8 3212 �26A 2.50 �31A 2 – AAGTCAAATCAAAGAAAATTTATCTCCTTTCTTCAG
�26A 1 T AAATCAAAGAAAATTTATCTCCTTTCTTCAG
�25A 1 T AATCAAAGAAAATTTATCTCCTTTCTTCAG

G22P1 10 2978 �33A 3.60 �33A 10 – GACTCACCAGGCCACTCTTCTGTGTTTTGATTT

TCTAG

GAPDH 2 1633 �26A 3.35 �6T 10 – TTGTCTCTTAG

HSPA8 1 734 �39A 3.15 �23A 1 T TTTTAAACCAGATTTTTCTTTTTTTCAG
�19A 1 – AAACCAGATTTTTCTTTTTTTCAG
�17A 1 C ACCAGATTTTTCTTTTTTTCAG

HSPCB 6 448 �18A 3.15 �22A 6 T GTACCACTTATTTTTGGTTTCTTTCAG
�23C 1 – TGTACCACTTATTTTTGGTTTCTTTCAG

HSPCB 10 777 �22A 3.20 �24T 1 – CAATCTAAGGCTTTTGTGATCGTCCACAG
�22A 2 T ATCTAAGGCTTTTGTGATCGTCCACAG

HSPCB 1 1434 �22A 2.75 �18A 1 T AATTAATGAGATTTTTATTTTAG

LDHB 2 7526 �22A 3.35 �24T 4 – GGTTCTAATGCCTGTTTTTGCGTTTACAG
�23A 1 T GTTCTAATGCCTGTTTTTGCGTTTACAG
�22A 6 T TTCTAATGCCTGTTTTTGCGTTTACAG

PGK1 1 5461 �28A 3.00 �29G 2 – AAGTTGATCATGGTCTTGCATCTTTCTTTTTTAG
�28A 4 T AGTTGATCATGGTCTTGCATCTTTCTTTTTTAG

PGK1 2 3826 �35A 3.00 �26T 4 – CATTCTGTTTGTTGTCTCTCTTTGGTTGCAG

PGK1 4 3151 �29A 3.35 �33C 1 – GGAGCCATCACATTTTCTGTTTTTGTTTTTCTCTA

TAG
�29A 5 T CCATCACATTTTCTGTTTTTGTTTTTCTCTATAG

PGK1 5 635 �32A 3.40 �29A 1 T TGACTAGAATCTGAATGTCTTTGATCTTTTCTAG

(Continued)
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Table 3. Continued

Gene Intron Intron

size (bp)

Predicted

BPa
BPS

Scorea
Observed

BP

Number of

clones

Misincorporated

nucleotide

Intronic sequence from BPS position �5 to the

30 end of an intronb

�22G 7 – AATCTGAATGTCTTTGATCTTTTCTAG
�21A 2 T ATCTGAATGTCTTTGATCTTTTCTAG

PGK1 6 4664 �27A 3.15 �28A 1 T TCTTTAAGTGATGATTCTTGCTTTCTCTTGTAG
�23A 8 T AAGTGATGATTCTTGCTTTCTCTTGTAG

PGK1 8 1499 �27A 3.20 �27A 10 T AGCTCATCTTCTCTTTCACCTCTACCCCTCAG

PGK1 10 364 �35A 2.75 �36A 10 – ATAGTAATGCTGTCTATGTATGTGTGCTCTCTC

AAAAACAG

PKM2 2 1443 �39A 3.05 �31A 2 T AATTAATACTTGTGGCTTTAAAACTTTTCCTAATAG
�29A 1 T TTAATACTTGTGGCTTTAAAACTTTTCCTAATAG
�25G 1 C TACTTGTGGCTTTAAAACTTTTCCTAATAG
�23G 1 C CTTGTGGCTTTAAAACTTTTCCTAATAG

PKM2 3 6930 �21A 2.75 �25T 3 – ACGCTTGTCATCTTCCTTCTTTTCCCCCAG
�21A 4 T TTGTCATCTTCCTTCTTTTCCCCCAG

PKM2 4 487 �26A 2.85 �38T 1 – TGGTGTCTCCAGTTTGGACTCTTGCTTACTCTCTTGT

CCCTAG
�33A 1 T TCTCCAGTTTGGACTCTTGCTTACTCTCTTGTCC

CTAG
�23C 1 – GGACTCTTGCTTACTCTCTTGTCCCTAG
�16A 1 T TGCTTACTCTCTTGTCCCTAG
�8G 1 – CTCTTGTCCCTAG
�5C 1 – TTGTCCCTAG

PKM2 5 781 na na �32T 1 – CGTGCTCTGCCTCCCCTACTTACCCTTTTTCATACAG
�31C 1 – GTGCTCTGCCTCCCCTACTTACCCTTTTTCATACAG
�28C 3 – CTCTGCCTCCCCTACTTACCCTTTTTCATACAG
�20A 1 T CCCCTACTTACCCTTTTTCATACAG
�18T 1 A CCTACTTACCCTTTTTCATACAG
�16A 2 T TACTTACCCTTTTTCATACAG

PKM2 6 1343 �29A 3.10 �39G 1 C CCTCTGTTCTATATAACCTCTCTCCCCCCAACTTTG

TCCATCAG
�34A 6 T GTTCTATATAACCTCTCTCCCCCCAACTTTG

TCCATCAG
�32A 2 T TCTATATAACCTCTCTCCCCCCAACTTTGTCCATCAG

PKM2 8 4107 na na �65T 2 – CCTTTTGTGACAAAGCTCTGACAAAGCTCTGTCCC

CCTCTCGTCCCTCTGGACGGATGTTGCTCCCCTAG
�52T 1 – AGCTCTGACAAAGCTCTGTCCCCCTCTCGTCCCTC

TGGACGGATGTTGCTCCCCTAG
�50A 5 T CTCTGACAAAGCTCTGTCCCCCTCTCGTCCCTCTGGA

CGGATGTTGCTCCCCTAG

PKM2 10 717 �25A 3.75 �27T 1 – TTTACTCACCAACCTCCCTTCTCTTCCTCCAG
�26C 2 – TTACTCACCAACCTCCCTTCTCTTCCTCCAG
�25A 6 T TACTCACCAACCTCCCTTCTCTTCCTCCAG

PSMB4 4 393 �40A 3.05 �44A 4 T CTGTTATTCAGCCCAATATCCCCCCATGGTTTTCC

CCCAATCTCCCTAG
�40A 5 T TATTCAGCCCAATATCCCCCCATGGTTTTCCCCCA

ATCTCCCTAG

RPL13 4 583 �21A 3.30 �26A 1 C ACCCCACTTAACTCTTCTCATTCACCAACAG
�23T 1 – CCACTTAACTCTTCTCATTCACCAACAG
�22A 4 T CACTTAACTCTTCTCATTCACCAACAG

RPL13 5 492 �22A 3.30 �22A 9 – GTTTAACAACCTGTCTTTCTCTTCTAG
�20A 1 T TTAACAACCTGTCTTTCTCTTCTAG

RPL13A 1 2205 �26A 3.55 �22C 7 – GAGTCCTTTTGCCCTTGTCTCCCACAG
�8T 1 – TTGTCTCCCACAG

RPL3 2 770 �21A 3.70 �21A 4 T GTCTGACTACTGCTTTTTTTTTGCAG
�19T 3 – CTGACTACTGCTTTTTTTTTGCAG

RPL3 4 1150 �22A 3.30 �24T 10 – GGAGCTGAGCTGTGTCTACCTTCTCCTAG

RPL3 5 522 �22A 2.50 �29T 1 – GGCGCTGAGGTGAAGTAATGTGTATCCATTCCAG

RPL3 6 477 �34A 3.45 �22T 3 – AGCCTTACACCCTTCTTGTTCATTCAG
�21A 3 T GCCTTACACCCTTCTTGTTCATTCAG

RPL8 4 806 na na �23C 5 – GTTCCCTGAGGTATCTGATCCCCTACAG

SLC25A3 2 1591 �30A 2.85 �31A 1 – ATATTAAAATGCATGGTGTGTCTTCTCTTACTACAG

(Continued)
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The information contents at the PPT’s were similar
between the two alignments. We observed peaks of infor-
mation contents seven and eight nucleotides downstream
of the branch point. The functional significance of these
peaks, however, remains elusive.

Information obtained from lariat RT-PCR clones without
misincorporated nucleotides

We next asked if we could exploit the 186 clones without
misincorporated nucleotides at the branch point. If there
was an ‘A’ nucleotide one or two nucleotides downstream
of the sequenced branch point and the sequenced branch
point was not ‘A’, we assumed that one or two nucleotides
were skipped by the reverse transcriptase and that the
particular downstream ‘A’ was the actual branch point.
A similar assumption has also been applied to three other
genes in previous reports (15–17). We aligned the branch
points under this assumption, and plotted the nucleotide
preferences and the information contents (Figure 2E
and F). Compared to those ofmisincorporated nucleotides,
the information contents were generally lower, but the
Pictogram and WebLogo presentations resulted in similar
patterns. These analyses suggest that one or two nucleo-
tides were skipped when there were no misincorporated
nucleotides, but definite experimental evidence is lacking to
employ these clones to deduce the human consensus BPS.

DISCUSSION

Highly degenerative human BPS

We determined splicing branch points in 52 introns of
20 human housekeeping genes by lariat RT-PCR.

Our analysis disclosed the following features (Figure 4).
First, 83% of the branch points are located 21–34 nucleo-
tides upstream of the 30 end of an intron (Figure 3A).
Second, a polypyrimidine stretch spans 4–24 nucleotides
downstream of the branch point (Figure 3B and C). Third,
the human branch point consensus sequence is yUnAy
(Figure 2C and D). The first and the second features
underscore the previous in silico observations (6,14),
whereas the degeneracy of the human BPS is more than
we have expected.

It is interesting to note that among the six consensus
BPSs proposed for the mammalian branch points
(Table 1), the shared nucleotides are yUnAy, which is
identical to that determined by our analysis.

SF1 binds to BPS using its KH domain (18). NMR
analysis of SF1 bound to the BPS revealed that a
hydrophobic motif of Gly-Pro-Arg-Gly within the KH
domain builds hydrogen bonds with ‘UAA’ at positions
�2 to 0 of the yeast BPS, ‘UACUAAC’ (19). Our analysis
suggests that the binding of the KH domain to position
�1 may enhance, but may be dispensable for, the recog-
nition of the BPS. Berglund and colleagues (20) also
demonstrate that, in ‘UACUAAC’ at positions �5 to +1,
nucleotide substitutions only at position �2 or 0,
but not at the other positions, compromise the binding
of SF1.

Non-‘A’ nucleotides at position 0

We observed an ‘A’ nucleotide at 92.3% of the branch
points. Non-‘A’ nucleotides at the branch point have
been reported in CALCA1 (21) and GH1 (22) (Table 2).
The two reports demonstrate six such examples in

Table 3. Continued

Gene Intron Intron
size (bp)

Predicted
BPa

BPS
Scorea

Observed
BP

Number of
clones

Misincorporated
nucleotide

Intronic sequence from BPS position �5 to the
30 end of an intronb

SNRPB 1 2929 �24A 3.20 �24A 1 T GTCTCATCCCTGTCCATTTCTCCTTGCAG

SNRPB 2 1787 �34A 3.85 �36T 2 – ACCTCTAACACTTTTTTTGTTCCTTCTAAAC
CTCTCTTTAG

�35A 5 – CCTCTAACACTTTTTTTGTTCCTTCTAAACC
TCTCTTTAG

�34A 2 T CTCTAACACTTTTTTTGTTCCTTCTAAAC
CTCTCTTTAG

SNRPB 3 1808 �34A 3.10 �30G 2 – CACTGGGCATCAGAGCATATTTGTTTATTT
TTCAG

�29G 3 – ACTGGGCATCAGAGCATATTTGTTTATTTT
TCAG

�28C 1 G CTGGGCATCAGAGCATATTTGTTTATTTTTCAG
�27A 2 – TGGGCATCAGAGCATATTTGTTTATTTTTCAG

SNRPB 4 519 �25A 3.75 �27T 7 – TCTTCTAACTCTTTCTTCTTATGTCCTCTTAG
�26A 1 T CTTCTAACTCTTTCTTCTTATGTCCTCTTAG
�25A 5 T TTCTAACTCTTTCTTCTTATGTCCTCTTAG

SNRPB 6 696 �25A 3.95 �27T 8 – GGCACTGACTAAACTTCTTACTCTTACTTCAG

UBB 1 717 �33A 3.45 �30T 6 – TGAGGTGACACGCTTATGTTTTACTTTTAAA
CTAG

�29G 1 – GAGGTGACACGCTTATGTTTTACTTTTAA
ACTAG

�28A 2 T AGGTGACACGCTTATGTTTTACTTTTAAACTAG

aPredicted BPs and BPS scores are according to the Branch-Site Analyzer at http://ast.bioinfo.tau.ac.il/BranchSite.htm (14).
bObserved branch sites are underlined.
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four introns. As these unusual branch points constitute
21% (6/29) of the previously reported in vitro determined
branch points, the ratio of ‘A’ at the branch point is
reduced to 79% (Table 2). Additionally, the potential
observation bias posed by these unusual BPSs may
account for the differences in the Pictogram and
WebLogo patterns between the previously identified
BPSs (Figure 2A and B) and our BPSs (Figure 2C and D).

Disease-causing mutations disrupting BPSs

According to the Human Gene Mutation Database (23),
splicing mutations account for 13.7% (1768 of 12 879) of
single nucleotide substitutions. Most splicing mutations,
however, are at the splice donor or acceptor sites. To our
knowledge, sixteen disease-causing mutations and a single
polymorphism disrupt BPSs and give rise to aberrant
splicings (Table 5). Nine variants are at position 0, and the
other eight are at position �2. Among the nine variants
affecting position 0, seven are A-to-G mutations, which
supports the notion reported by Kralovicova and collea-
gues (24) that A-to-G transitions at position 0 are more
deleterious than A-to-T or A-to-C transversions. For all
the variants, aberrant splicings have been determined
either in patients or minigenes. The actual branch points,
however, have been identified only in two variants by
lariat RT-PCR, whereas the remaining fourteen variants
have been mapped to putative BPSs. Exclusive confine-
ment of BPS-disrupting nucleotide changes at positions
�2 and 0 also underscores our observation that the BPS
consensus is yUnAy.

Conversely, mutations disrupting yUnAy are not
always deleterious. When the branch point ‘A’ is mutated
or deleted, a neighboring cryptic ‘A’ residue is employed
as a branch point (25–27), or the mutant ‘C’, ‘G’ or ‘U’
residue is used as a surrogate branch point (28).
Additionally, we observed two or more branch sites in
15 of 41 introns (Table 3), which also implies that a
mutation-harboring BPS can be readily substituted for by
another BPS.

How is the highly degenerative BPS recognized?

It is hard to believe that SF1 simply recognizes yUnAy.
We expect that SF1 recognizes the BPS along with the
other cis-element(s) and their interacting trans-factor(s).

The SELEX screening of the yeast BBP binding motifs
revealed a stem and loop structure immediately upstream
of the BPS of ‘UACUAAC’ in 9 out of 48 selected motifs
(29). A gel shift assay also showed preferential binding of
human SF1 to ‘UACUAAC’ carrying an upstream stem
and loop. Our BPSs, however, had no upstream stem and
loop structures (data not shown). An upstream stem and

loop may help recognize highly degenerative mammalian
BPSs for a subset of introns.
In the early step of the spliceosome assembly, SF1,

U2AF65 and U2AF35 bind to the BPS, the PPT and AG
at the 30 end of an intron, respectively, to form complex E
(1,2). In S. pombe, SF1/BBP is tightly associated with
U2AF59, a yeast homolog of mammalian U2AF65 reco-
gnizing the PPT, as well as with U2AF23, a yeast homolog
of mammalian U2AF35 recognizing the 30 AG (30).

Table 4. Nucleotide frequencies at the 181 branch sites

Position �5 �4 �3 �2 �1 0 1 2 3

A 0.254 0.232 0.083 0.066 0.166 0.923 0.182 0.302 0.201
C 0.210 0.227 0.470 0.160 0.448 0.033 0.331 0.274 0.391
G 0.254 0.193 0.127 0.028 0.177 0.017 0.066 0.112 0.112
U 0.282 0.348 0.320 0.746 0.210 0.028 0.420 0.313 0.296

Table 5. Sixteen mutations and a single polymorphism disrupting BPSs

Gene and intron Sequence Consequence Reference

LCAT intron4
Wild-type CCCTGAC
Mutant CCCCGAC Intron retentiona (43,44)
Mutant CCCGGAC Intron retentionb (45)
Mutant CCCAGAC Intron retentionb (45)

FBN2 intron30
Wild-type TACTAAG
Mutant TACGAAG Exon skippinga (46)

COL5A1 intron32
Wild-type GACTGAC
Mutant GACGGAC Exon skippinga (47)

ITGB4 intron31
Wild-type GGCTCAC
Mutant GGCACAC Intron retention,a

cryptic 30 splice sitea
(48)

TH intron10
Wild-type GGCTGAT
Mutant GGCAGAT Exon skipping,a

cryptic 30 splice sitea
(49)

L1CAM intron18
Wild-type ATCCAAG
Mutant ATCCACG cryptic 30 splice sitea (50)

LIPC intron1
Wild-type CCCCAAT
Mutant CCCCAGT cryptic 30 splice sitea (51)

FBN2 intron28
Wild-type TTGCAAT
Mutant TTGCAGT Exon skippinga (52)

HEXB intron10
Wild-type TTGCAAT
Mutant TTGCAGT Cryptic 30 splice sitea (53)

NF2 intron5
Wild-type TTCTAGC
Mutant TTCTAAC Intron retentiona (54)

TSC2 intron38
Wild-type GCGTGAC
Mutant GCGTGGC Cryptic 30 splice site,a

intron retentiona
(55)

XPC intron3c

Wild-type TACTGAT
Mutant TACTGGT Exon skippinga (16)

NPC1 intron6
Wild-type CACTAAT
Mutant CACTAGT Exon skippinga (56)

F9 intron 2
Wild-type CGTTAAT
Mutant CGTTAGT Exon skippingb (24,57)

DQB1 intron 3c,d

Genotype A CACAGAC Exon skippingb (17)
Genotype U CACUGAC Exon inclusionb (17)

Mutations or a polymorphism are underlined.
Aberrant splicings have been determined in patientsa or minigenesb.
cBranch points have been identified by lariat RT-PCR. Others are
putative BPSs lacking in vitro evidence.
dPolymorphism.
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In mammals, the association between SF1 and U2AF65 is
mediated by the 28 N-terminal amino acids of the KH
domain of SF1(31) and by the third RBD of U2AF65 (32).
Wang and colleagues determined that Ser20 in the N-
terminal region of the KH domain is essential for binding
to U2AF65 and that phosphorylation of Ser20 inhibits its
binding and formation of complex A (33). Berglund and
colleagues also report that the SF1-U2AF65 interaction
promotes cooperative binding to the BPS and the PPT
(32). Our analysis also demonstrates positional association
of the BPS and the PPT (Figure 3B and C). On the other
hand, Kent and colleagues demonstrate that U2AF65 and
U2AF35 are dispensable for the binding of SF1 to the BPS
(34). Sharma and colleagues similarly show that complex
H includes SF1 in the absence of U2AF65 and U2AF35
(35). Although the exact order of the SF1, U2AF65 and
U2AF35 assembly remains elusive, the BPS is possibly
recognized along with the PPT and the 30 AG.
Alternatively, SF1 is bound to any yUnAy sequences in
complex H, and a particular SF1 that successfully
associates with the U2AF heterodimer exclusively survives
to form complex E.
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