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Abstract: This paper reports on single step and rapid fabrication of interdigitated electrodes (IDEs)
using an inkjet printing-based approach. A commercial inkjet-printed circuit board (PCB) printer was
used to fabricate the IDEs on a glass substrate. The inkjet printer was optimized for printing IDEs on a
glass substrate using a carbon ink with a specified viscosity. Electrochemical impedance spectroscopy
in the frequency range of 1 Hz to 1 MHz was employed for chemical sensing applications using
an electrochemical workstation. The IDE sensors demonstrated good nitrite quantification abilities,
detecting a low concentration of 1 ppm. Taste simulating chemicals were used to experimentally
analyze the ability of the developed sensor to detect and quantify tastes as perceived by humans. The
performance of the inkjet-printed IDE sensor was compared with that of the IDEs fabricated using
maskless direct laser writing (DLW)-based photolithography. The DLW–photolithography-based
fabrication approach produces IDE sensors with excellent geometric tolerances and better sensing
performance. However, inkjet printing provides IDE sensors at a fraction of the cost and time. The
inkjet printing-based IDE sensor, fabricated in under 2 min and costing less than USD 0.3, can be
adapted as a suitable IDE sensor with rapid and scalable fabrication process capabilities.

Keywords: inkjet printing; microfabrication; nitrite sensing; taste sensing

1. Introduction

Interdigitated electrodes (IDEs) have gained significant popularity since their intro-
duction in the late 1990s. Interdigitated electrodes, also referred to as Interdigitated arrays
(IDAs), are high aspect ratio electrodes closely spaced together to form an array of sensing
regions which significantly increase the effective area available for electrochemical sensing.
IDEs find extensive use and application in electronic sensor and actuator applications
along with biological and chemical sensing applications. Biological sensing using IDEs
includes DNA sensing, viral load detection, label-free detection systems, etc. [1–3]. Volatile
organic compound sensing, gas sensing, and sensing of harmful chemical components
are a few of the many applications of IDEs in chemical sensing [4–7]. Due to the growing
trend towards miniaturized systems, IDEs even find application in energy storage and
lab-on-a-chip devices [8,9].

Interdigitated electrodes are often employed for the electrochemical impedance spec-
troscopy (EIS) technique for quantitative sensing [10]. EIS is used to analyze the impedance
behavior of the system at applied potential with varying frequencies and finds application
in various fields including chemical analysis [11,12], study of fuel cells and batteries [13–15],
corrosion analysis [16], etc. Total impedance (Z), represented as a combination of a real part
and an imaginary part, is an important parameter for analyzing electrode–electrolyte inter-
actions in aqueous systems. The real part of the impedance represents the resistance, while

Micromachines 2021, 12, 1037. https://doi.org/10.3390/mi12091037 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-5197-330X
https://orcid.org/0000-0002-9739-4178
https://doi.org/10.3390/mi12091037
https://doi.org/10.3390/mi12091037
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12091037
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12091037?type=check_update&version=2


Micromachines 2021, 12, 1037 2 of 13

the imaginary part represents the reactance. EIS, with the aid of IDEs, offers increased sensi-
tivity due to the increased sensing surface area. Most of such IDEs are manufactured using
complex fabrication processes, often involving lengthy and skill-intensive photolithog-
raphy processes, mostly in cleanroom environments [17,18]. At times, extensive surface
modification is required to improve the sensing capabilities of the fabricated IDEs [19].
However, with emerging materials, such as polymer films, highly conductive inks, etc.,
coupled with new and inexpensive fabrication techniques, fabrication of IDEs, sensors, and
electronics is being simplified [20–28].

IDEs are extensively used for various sensing applications, including environmental
monitoring such as soil health monitoring, water quality assessment, air quality measure-
ment, etc. One of the essential environmental monitoring applications is water quality
assessment where various methods, such as colorimetric, fluorometric, electrochemical,
etc., have been reported [29–32]. Electrochemical assessment of water quality using IDEs
can overcome issues associated with optical detection systems which require optically
clear samples. IDEs have been employed for the detection of various components and
contaminants in water, including salinity and ions [24,33]. Nitrite is also a contaminant
found in water obtained from unchecked sources which, when consumed in excess via
contaminated water sources, can have adverse effects on humans [34,35]. In this context,
nitrite detection has been demonstrated as a possible application for fabricated IDEs in this
work. Another application where IDEs are employed is taste sensing. Human taste buds
are capable of sensing and differentiating between five fundamental tastes—namely, salty,
sour, bitter, sweet, and umami. For experimental purposes, herein, five chemicals have
been identified which can replicate these fundamental tastes; they are sodium chloride for
salty, L-tryptophan for bitter, guanosine monophosphate (GMP) for umami, citric acid for
salty, and sucrose for sweet [36]. In a recent work, a flexible IDE sensor was developed
using laser-induced graphene [36]. However, the reported fabrications are a two-step
process involving the development of laser-induced graphene followed by the transfer of
developed graphene onto a Kapton tape. The process seems to be effective, but the process
of transfer might result in a partial transfer of film, making the sensor less reliable. A single
step process for fabrication could improve the repeatability in sensor fabrication.

In this work, a single step, rapid miniaturized IDE sensor fabrication process, using an
inkjet printing approach, is reported. A commercial inkjet PCB printer has been employed
for fabrication of the IDEs on a glass substrate. Carbon ink, adjusted for viscosity to
enable use with the printer, was used and characterized post-printing. The inkjet-printed
IDE’s performance was compared with that of an IDE fabricated using a maskless direct
laser writing (DLW)-based photolithography. Two types of chemical analysis studies were
conducted to establish the functionality of the IDE sensors developed using inkjet printing.
The following sections will elaborate on the design, modelling, experimental methodology,
and the observations made using the fabricated interdigitated electrode sensors.

2. Materials and Methods
2.1. Materials and Equipment

Chemicals conforming to analytical grade were used. Guanosine-5-monophosphate
disodium salt (GMP), citric acid anhydrous, l-tryptophan, sucrose, and sodium chloride
were procured from Sisco Research Laboratories Pvt. Ltd. (Mumbai, India). Sodium nitrite
and acetone were obtained from Sigma-Aldrich (St. Louis, MO, USA). Sodium carbonate
was procured from TCI Chemicals Pvt. Ltd. (Tokyo, Japan). Ethanol was obtained from
Changshu Hongsheng Fine Chemicals Co. Ltd. (China). All solutions were prepared in
Milli-Q water (18.2 MΩ.cm) at room temperature (≈25 ◦C).

Borosil glass slides measuring 75 mm × 25 mm × 1 mm were used as substrates for
inkjet printing. The conductive carbon ink (viscosity: 25,000 cps) was obtained from Engi-
neered Materials Systems, Inc. (EMS) (Delaware, OH, USA). Negative dry film photoresist
of 1.5 mil, i.e., 40 µm thickness (RistonPM 240, Dupont, Wilmington, DE, USA), was used
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for photolithography. The V-One inkjet-printer (Voltera, Kitchener, Canada) and direct
laser writing system (HO-LWS-PUV, Holmarc, Kochi, India) were used for fabrication.

2.2. Design and Modelling of Interdigitated Electrodes (IDEs)

Prior notable works have been carried out to model and optimize interdigitated
electrodes for impedance-based sensing [37–39]. The design parameters, limiting factors for
selection of those parameters, and their optimized values have been thoroughly discussed
in this work. For representing systems incorporating the use of IDEs for analysis of analytes
in a solution, the equivalent model proposed by Hong et al. [39] is widely employed. This
model was referred to for selecting and optimizing design parameters for IDEs for the
required immersed sensing application. The primary consideration for selecting the overall
dimensions of the electrode was the dimensions of the substrate (microscope slide) for
inkjet printing. The length of each finger was selected based on the width of such glass
substrate. The lower limiting value for selecting the width of the IDE was limited by the
nozzle thickness of Voltera V-One. The width of each electrode was selected to be 310 µm
which was found to be the most repeatable single-width capable of being printed using the
inkjet printing.

The sensitivity of IDE sensors can be evaluated using the contact surface between
the sample solution and electrodes. The metallization ratio (a), which is the ratio of space
between the successive fingers and the width of the electrodes, plays an important role in
determining the sensitivity for IDE-based sensing applications. The analytically optimized
value of the metallization ratio, i.e., a = 0.66, was used [38]. Based on the selected width
of the electrodes, a gap of 205 µm between each finger was derived. Another parameter
required to be selected was the number of fingers which plays an important role in deciding
the cell constant of the cell. A lower cell constant is preferred, which can be achieved by
increasing the number of fingers (n). It was analytically observed that beyond 20 fingers,
no appreciable change in cell constant was observed [38]. Further, as 20 fingers could
be easily accommodated on the glass substrate, n = 20 was selected for designing and
fabricating the IDEs. Post the selection of geometric parameters, the interdigitated electrode
arrays were designed in LayoutEditor. Finger spacing and electrode widths of 205 µm and
310 µm were used, respectively, with a total of 20 fingers for the CAD model. Contact pads
of 5 mm × 7 mm (Figure 1a) were also incorporated in the design to enable clipping of
alligator clips during EIS analysis.
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Figure 1. (a) Optimized Design (b) Carbon ink-based IDE printed on glass slide (c) Photolithography-based DLW IDE on a
copper-cladded FR4 board.

2.3. Fabrication of Inkjet Printing-Based (IDE) Sensor

Figure 2a describes the overall fabrication scheme of the inkjet printing-based IDE
sensor. The software bundled with Voltera V-One recognizes designs as vector image
files in Gerber format. Thus, the design created in LayoutEditor was converted to Gerber



Micromachines 2021, 12, 1037 4 of 13

format using DipTrace. Voltera V-One (Figure 2(a2)) uses a nozzle-cartridge-based printing
approach. The cartridge can be filled with custom viscous pastes. Prior to use, the supplied
cartridges were thoroughly washed with acetone. The cartridge was filled with the viscous
carbon ink after the ink’s viscosity was adjusted using acetone and the cartridge was
primed to ensure adequate and continuous operation. The layout verification, height
calibration of bed, and substrate was conducted using the supplied probe. The primed
cartridge was replaced with the probe. After multiple trials, optimized parameters for
the best printing conditions were used. Nozzle height, which is the space between the
substrate and the ink nozzle, was optimized at 150 µm, and the space between the probe
and the substrates was set as 0.13 mm. Dispensing amount, which is a machine parameter
to control the amount of ink being extruded out of the nozzle, was set to 50. A glass
substrate, thoroughly cleaned with ethanol, was used. Post printing of IDEs on the glass
substrate (Figure 1b), heat treatment was carried out at 100 ◦C for 20 min.
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2.4. Fabrication of DLW-Photolithography-Based (IDE) Sensor

The complete fabrication process for the DLW-photolithography-based IDE sensor is
schematically represented in Figure 2b. A customized direct laser writing (DLW) system
(Figure 2(b3)) was used for maskless photolithography fabrication. The design created
using LayoutEditor was imported into the software of the DLW system. The DLW system
uses a 405 nm GaN laser diode with a maximum intensity of 65,000 W/m2. An FR-4
copper-cladded board was coated with a negative dry film photoresist (DFR) using a
hot roll laminator (A3 Mega Drive Laminator, Cambridge, UK). Optimized laser writing
parameters, such as speed, focal distance, etc., selected from our previous work performed
on DLW system optimization [40,41] were utilized to obtain a width of 310 µm. Post laser
writing, the resist development was conducted using 0.85% sodium carbonate. The etching
of unprotected copper was completed using ferric chloride. The final step involved resist
removal, a rinse with Milli-Q water and acetone, and air drying. Figure 1c shows the IDE
fabricated using DLW-photolithography.

2.5. Experimental Setup

First, various stock solutions of different analytes were prepared. A 50 ppm stock
solution of sodium nitrite was prepared. Sodium nitrite stock solution was serially diluted
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to obtain solutions of concentrations—1, 10, 20, and 50 ppm. For taste simulating chemicals,
stock solutions of 500 ppm were each prepared for guanosine-5-monophosphate disodium
salt (GMP), L-tryptophan, sucrose, citric acid, and sodium chloride. Each of these chemicals
were further diluted to concentrations of 1, 5, 10, 50, 100, 150, and 250 ppm for concentration
analysis. All the prepared standard solutions were used for EIS analysis using both types
of fabricated sensors.

The electrochemical workstation (SP-150 from Biologic, France) was used to perform
electrochemical impedance spectroscopy (EIS) in two electrode configurations. To avoid
temperature-induced effects, it was ensured that all experiments were conducted at similar
room temperature (~24 ◦C). The frequency and voltage ranges were set as 1 Hz–1 MHz and
±10 V, respectively. To avoid any unnecessary interference, separate unused IDE sensors
were used for each type of chemical. For different concentrations of the same chemical, a
water–ethanol cleaning protocol was employed. The IDE was rinsed with Milli-Q water,
air dried for 20 min at 70 ◦C, rinsed with ethanol, and air dried at room temperature for
5 min before each use. Electrochemical workstation probes were connected to IDEs using
alligator clips to ensure tight and continuous contact with the contact pads. A 3D printed
jig was used to hold the IDE in place and prevent the electrochemical workstation probes
from coming in direct contact with the analyte solution (Figure 3).
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Figure 3. Experimental setup and schematic showing the enhanced view of the experimental setup
for EIS analysis using potentiostat. A two-electrode configuration was employed with a frequency
ranging from 1 Hz to 1 MHz.

3. Results and Discussion
3.1. Characterization of Inkjet Printing-Based (IDE) Sensor

Scanning electrode microscopy (SEM) (Apreo scanning electron microscope, Thermo
Fisher Scientifc, Waltham, MA, USA) and energy-dispersive X-ray (EDX) spectroscopy
were performed to characterize the carbon inkjet-printed IDE (Figure 4). SEM images
at different magnifications showed good porosity of the carbon paste. Further, the EDX
analysis showed a good weight percentage of carbon (95.94%). Figure 4c represents the
particle size distribution. The mean size of the particles was found to be 111.35 nm and the
standard deviation for the particle size was found to be 16.72 nm.

A stylus profiler with a 2 µm tip (DektakXT, Bruker, MA, US), was used to find the
thickness of the inkjet-printed layers. Figure 5 represents the profile obtained for the
thickness of a single finger of the inkjet printing-based (IDE) sensor. The thickness was
measured at four different locations and the average height was found to be 14.51 µm.
The conductivity and resistivity measurements of the inkjet-printed electrode layer were
conducted using a four-point probe system (Ossila, Sheffield, UK). The resistivity and
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conductivity were found to be (3.2030 ± 0.0094) x 10−4 Ω.m and 3122.079 ± 9.189 S/m,
respectively (n = 50).

Micromachines 2021, 12, 1037 6 of 14 
 

 

 

Figure 4. SEM image of inkjet-printed carbon ink at a magnification scale corresponding to (a) 40 

µm, (b) 500 nm, (c) particle size distribution plot (mean particle size = 111.35 nm and standard de-

viation, σ = 16.72 nm) and (d) EDX analysis. 

A stylus profiler with a 2 µm tip (DektakXT, Bruker, MA, US), was used to find the 

thickness of the inkjet-printed layers. Figure 5 represents the profile obtained for the thick-

ness of a single finger of the inkjet printing-based (IDE) sensor. The thickness was meas-

ured at four different locations and the average height was found to be 14.51 µm. The 

conductivity and resistivity measurements of the inkjet-printed electrode layer were con-

ducted using a four-point probe system (Ossila, Sheffield, UK). The resistivity and con-

ductivity were found to be (3.2030 ± 0.0094) x 10−4 Ω.m and 3122.079 ± 9.189 S/m, respec-

tively (n = 50). 

 

Figure 5. Profile obtained for thickness of single finger of inkjet printing-based (IDE) sensor meas-

ured using a stylus profiler. 

3.2. Chemical Sensing 

Two types of chemical analysis were carried out in this work—nitrite quantification 

in aqueous solutions and detection of taste simulating chemicals. An EIS study for the 

prepared standard solutions was carried out. Frequencies from 1 Hz to 1 MHz were used 

for the EIS analysis. However, depending on the type of analysis, only certain relevant 

portions of the whole analysis were considered. 

Figure 4. SEM image of inkjet-printed carbon ink at a magnification scale corresponding to (a) 40 µm,
(b) 500 nm, (c) particle size distribution plot (mean particle size = 111.35 nm and standard deviation,
σ = 16.72 nm) and (d) EDX analysis.

Micromachines 2021, 12, 1037 6 of 14 
 

 

 

Figure 4. SEM image of inkjet-printed carbon ink at a magnification scale corresponding to (a) 40 

µm, (b) 500 nm, (c) particle size distribution plot (mean particle size = 111.35 nm and standard de-

viation, σ = 16.72 nm) and (d) EDX analysis. 

A stylus profiler with a 2 µm tip (DektakXT, Bruker, MA, US), was used to find the 

thickness of the inkjet-printed layers. Figure 5 represents the profile obtained for the thick-

ness of a single finger of the inkjet printing-based (IDE) sensor. The thickness was meas-

ured at four different locations and the average height was found to be 14.51 µm. The 

conductivity and resistivity measurements of the inkjet-printed electrode layer were con-

ducted using a four-point probe system (Ossila, Sheffield, UK). The resistivity and con-

ductivity were found to be (3.2030 ± 0.0094) x 10−4 Ω.m and 3122.079 ± 9.189 S/m, respec-

tively (n = 50). 

 

Figure 5. Profile obtained for thickness of single finger of inkjet printing-based (IDE) sensor meas-

ured using a stylus profiler. 

3.2. Chemical Sensing 

Two types of chemical analysis were carried out in this work—nitrite quantification 

in aqueous solutions and detection of taste simulating chemicals. An EIS study for the 

prepared standard solutions was carried out. Frequencies from 1 Hz to 1 MHz were used 

for the EIS analysis. However, depending on the type of analysis, only certain relevant 

portions of the whole analysis were considered. 

Figure 5. Profile obtained for thickness of single finger of inkjet printing-based (IDE) sensor measured
using a stylus profiler.

3.2. Chemical Sensing

Two types of chemical analysis were carried out in this work—nitrite quantification
in aqueous solutions and detection of taste simulating chemicals. An EIS study for the
prepared standard solutions was carried out. Frequencies from 1 Hz to 1 MHz were used
for the EIS analysis. However, depending on the type of analysis, only certain relevant
portions of the whole analysis were considered.

Standard solutions of sodium nitrite of different concentrations (1, 10, 20, and 50 ppm)
were used for the EIS analysis. Three trials each (n = 3) were carried out for each type of
sensor, i.e., inkjet printing-based IDE sensor and DLW-photolithography-based IDE sensor
at each standard solution concentration. From the EIS analysis, regions corresponding to
maximum values of real and imaginary parts of impedance where the sensor displays a
sensitive nature were identified. For the inkjet printing-based IDE sensor, such frequencies
were identified to be 97 kHz and 331 kHz, respectively, for real and imaginary parts. In
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the case of the DLW-photolithography-based IDE sensor, these frequencies were identified
as 265 kHz and 615 kHz for the real and imaginary parts of impedance, respectively.
Figure 6a represents the Nyquist plots for nitrite sensing in the range of 1–50 ppm for
the DLW-photolithography-based IDE sensor. The maximum value for the imaginary
part of impedance was observed at the end of the scan and was still increasing in the
end. Therefore, the real part of impedance was selected for the relative comparison of
sensors. Figure 6b clearly shows the varying nature of the real part of impedance versus the
frequency at different concentrations. From Figure 6b, it can be clearly observed that the
value of resistive impedance reaches its limiting value for each concentration at 265 kHz.
To establish a comparison between DLW-photolithography and inkjet printing-based IDE
sensors, the real part of impedance at their respective identified frequencies for maximum
value were used. Based on the obtained fitted linear curve, the limit of detection [30]
and other relevant parameters were estimated for both types of sensors and reported
in Table 1. Table 1 also provides a comparison of the two types of sensors’ merits. The
DLW-photolithography-based IDE sensor demonstrates better LOQ and LOD but the
inkjet printing-based IDE sensor offers a rapid and low-cost fabrication. Both sensors can
effectively quantify nitrite in water with good repeatability up to 1 ppm, which is three
times lower than the WHO recommended limiting value of 3 ppm for potable water [30,34].
To analyze selectivity of both the sensors for nitrite detection and quantification, tap water
was spiked with known concentrations of nitrite solution and samples were subjected
to testing using the developed IDEs. The results tabulated in Figure 6d indicate good
recovery percentages, thus establishing that the developed sensors can be used for real-life
applications with selectivity towards nitrite.
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Figure 6. (a) Nyquist plot for nitrite sensing using the DLW-photolithography-based IDE sensor for
different concentrations (b) real part of impedance vs. frequency plot for DLW-photolithography-
based IDE sensor showing the nature of resistive impedance maximizing at 265 kHz (c) results
derived from EIS analysis for nitrite concentration evaluation using inkjet printing-based IDE Sensor
and DLW-photolithography-based IDE sensor in terms of resistive impedance vs. concentration (d)
results for the analysis of tap water for detection via recovery of nitrite at different concentrations.
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Table 1. Comparative data for nitrite sensing using the developed IDE sensors.

IDE Type LOD 1 (ppm) LOQ 2 (ppm)
Sensitivity

(Ohm/ppm) Sensor Cost ($) 3 Fabrication Time
(Minutes) 4

DLW-Photolithography 0.697 2.322 6.95 1.5 ≈40
Inkjet Printed 1.502 5.006 5.54 0.3 ≈2

1 Limit of Detection; 2 Limit of Quantification; 3 Component cost based on raw materials, excluding equipment and operation costs; 4

Overall process time for fabrication.

For each simulated taste chemical, data is represented through two plots—(a) real
Z (i.e., resistance) vs. frequency and (b) imaginary Z (reactance) vs. frequency. Even
though the analysis was performed up to 1 MHz, results attained saturation after a spec-
ified frequency. Therefore, results up to 69 kHz have been considered for the DLW-
photolithography-based IDE sensor. For the inkjet printing-based IDE sensor, frequencies
up to 62 kHz have been considered. During experimental trials, it was observed that
concentrations lower than 100 ppm were not effectively quantified and differentiated by
the fabricated inkjet printing-based sensor.

Figures 7 and 8 represent the response of the inkjet printing-based IDE sensor with
various taste simulating chemicals. Figures 9 and 10 depict results for sensing using the
DLW-photolithography-based IDE sensor. As expected, based on the model described by
Hong et al., the resistivity (real Z) increases at higher frequencies. The change in impedance
values at varying frequencies is evident from the plots. The solution resistance and double-
layer capacitance play a vital role in describing EIS behaviors. The solution resistance
results lead to an increase in resistance at higher frequencies. Reactance (imaginary Z)
behavior is dependent on double-layer capacitance, amongst other parameters. As evident
from Figure 7b, the imaginary part of impedance (reactance) increases with increases
in frequency to around 35 kHz, which can be attributed to the charge separation at the
electrode–electrolyte interface. This is followed by a steady decrease in reactance due
to double-layer shortening. The impedance behavior for both L-tryptophan and GMP
was found to be similar, which could be attributed to the analogous chemical structures
comprising amino and carboxyl groups in both of them. At higher frequencies, polarization
of oxygen atoms takes place in both carboxyl groups and phosphate groups (which is
present in GMP). This leads to an overall increase in charge carriers, causing a change in the
reactance values at higher frequencies. Solution resistance governs the resistive behavior
for both GMP and L-tryptophan. Increased ion-solvent interactions at higher frequencies in
the presence of sucrose is responsible for the resistance behavior. As in previous instances,
double-layer capacitance largely governs the reactance behavior of sucrose.

A DLW-photolithography-based IDE sensor was primarily used to provide a perfor-
mance reference for the inkjet printing-based IDE sensor. Figures 9 and 10 represent the
EIS analysis results for the DLW-photolithography-based IDE sensor. The trends observed
for the respective chemicals were found to be very similar to that in the case of the inkjet
printing-based IDE sensor. However, it is clearly evident that DLW-photolithography-
based IDE sensors can effectively sense lower concentrations, as low as 1 ppm. Unlike in
the case of citric acid (Figure 9a,b), for L-tryptophan (Figure 9c,d), GMP (Figure 10a,b), and
sucrose (Figure 10c,d), the data points for resistance and reactance are closely spaced for
lower concentrations at 1, 5 and 10 ppm. Though sensing at lower concentrations has been
demonstrated, the resolving performance of the DLW-photolithography-based IDE sensor
at lower concentrations needs improvement.
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An important shortcoming in the application of both types of IDE sensors for taste
sensing applications was the inability to sense for the presence of sodium chloride. Due
to the electrolytic behavior of both sodium chloride and citric acid, it was expected that a
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similar trend would be observed with a change in absolute resistive and reactance values
owing to the highly conductive nature of sodium chloride. However, with the set EIS
analysis parameters, no reportable results were observed for sodium chloride. This inability
to quantify sodium nitrite could be attributed to the highly polarizing nature of the analyte
when compared with other analytes.

4. Conclusions

Herein, a simple, rapid, and single step interdigitated electrode fabrication process has
been discussed and its chemical sensing abilities were reported. The inkjet printing-based
IDE sensor, fabricated in under 2 min and costing less than USD 0.3, can be adapted as a
suitable sensor with rapid and scalable fabrication process capabilities. The effectiveness of
the sensor was demonstrated using its ability to detect nitrite in water. The inkjet printing-
based IDE sensor effectively quantified 1 ppm of nitrite, which is three times lower than
the WHO safe standard, using resistive approach. The fabricated sensor can further be
enhanced to sense multiple contaminants simultaneously and be employed for real time
water quality assessment. The application of the inkjet printing-based IDE sensor for taste
sensing was also investigated. Four out of five taste sensing chemicals were effectively
sensed and quantified. The performance of the inkjet printing-based IDE sensor was
compared with the DLW-photolithography-based IDE sensor. The DLW-photolithography-
based IDE sensor provides IDEs with excellent geometric tolerances and performs better
at sensing lower concentrations in taste sensing. However, the inkjet printing-based IDE
sensor provides a comparable alternative at a fraction of the cost and time as demonstrated
for nitrite sensing. The analysis was carried out at fixed temperatures and environmental
conditions; the effect of these external parameters need to be studied in detail.

An important outcome of the reported work is the ability to selectively sense nitrite
without the requirement of specific surface modification. This has been demonstrated by
real sample analysis with good recovery percentages. The nitrite-sensing platform can
be used in real-time applications for the deployment in point-of-source applications. The
sensors being developed as a two-electrode setup can be integrated with handheld LCR
meters and potentiostats. This concept of point-of-source systems using the developed IDE
sensors in conjunction with handheld potentiostats and LCR meters is under development.
However, there exist certain limitations which need to be addressed and are currently
being worked upon. In its present form, the IDE sensors are capable of sensing individual
taste components; however, the sensing of components in a combination of tastes is a short-
coming that needs to be addressed before employing the sensor for real-time applications.
Work is being carried out to identify and use surface modification agents for selective
detection of taste simulating chemicals. Moreover, a significant limitation identified for
these sensors was their inability to sense sodium chloride. Work is being carried out to
improve the limiting values of the sensing ranges for the inkjet printing-based IDE sensor
and evaluate the sensor for broader application. A further extension of this work could also
enable the rapid fabrication of IDEs on substrates suitable for flexible sensing applications.

Author Contributions: Conceptualization and design development was completed by S.D., S.K.D.,
A.J. and S.G. Fabrication of devices and development of experimental setup was carried out by S.D.
and S.S. Manuscript preparation was completed by S.D. Visualization, supervision and document
revisions were completed by S.K.D., A.J. and S.G. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was funded by Department of Science and Technology (DST) Biomedical
Device and Technology Development (BDTD) under Technology Development Programme of Gov-
ernment of India (TDP/BDTD/28/2019).

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge Clean Room, BITS Pilani, Hyderabad Campus for
assisting with surface profile characterizations.



Micromachines 2021, 12, 1037 12 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tsouti, V.; Boutopoulos, C.; Zergioti, I.; Chatzandroulis, S. Capacitive microsystems for biological sensing. Biosens. Bioelectron.

2011, 27, 1–11. [CrossRef] [PubMed]
2. Wang, L.; Veselinovic, M.; Yang, L.; Geiss, B.J.; Dandy, D.S.; Chen, T. A sensitive DNA capacitive biosensor using interdigitated

electrodes. Biosens. Bioelectron. 2017, 87, 646–653. [CrossRef] [PubMed]
3. Lin, J.; Gopinath, S.C.B.; Lakshmipriya, T.; Chen, Y.; Yuan, W.R.; Yang, M. Target DNA detection of human papilloma virus-16 E7

gene by capture-target-reporter sandwich on interdigitated electrode sensor. Int. J. Biol. Macromol. 2019, 141, 564–569. [CrossRef]
4. Sapsanis, C.; Omran, H.; Chernikova, V.; Shekhah, O.; Belmabkhout, Y.; Buttner, U.; Eddaoudi, M.; Salama, K. Insights on

Capacitive Interdigitated Electrodes Coated with MOF Thin Films: Humidity and VOCs Sensing as a Case Study. Sensors 2015,
15, 18153–18166. [CrossRef]

5. Wanna, Y.; Srisukhumbowornchai, N.; Tuantranont, A.; Wisitsoraat, A.; Thavarungkul, N.; Singjai, P. The effect of carbon
nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor. J. Nanosci. Nanotechnol. 2006, 6, 3893–3896.
[CrossRef]

6. Kitsara, M.; Goustouridis, D.; Chatzandroulis, S.; Chatzichristidi, M.; Raptis, I.; Ganetsos, T.; Igreja, R.; Dias, C.J. Single chip
interdigitated electrode capacitive chemical sensor arrays. Sens. Actuators B Chem. 2007, 127, 186–192. [CrossRef]

7. Vinoth, E.; Gopalakrishnan, N. Fabrication of interdigitated electrode (IDE) based ZnO sensors for room temperature ammonia
detection. J. Alloys Compd. 2020, 824, 153900. [CrossRef]

8. Vakilian, M.; Majlis, B.Y. Study of interdigitated electrode sensor for lab-on-chip applications. In Proceedings of the IEEE
International Conference on Semiconductor Electronics, Proceedings, ICSE, Kuala Lumpur, Malaysia, 27–29 August 2014; pp.
201–204.

9. Pires, A.L.; Costa, R.S.; Pereira, C.; Pereira, A.M. An Interdigital Planar Energy Harvesting/Storage Device Based On an Ionic
Solid–Gel Polymer. ACS Appl. Electron. Mater. 2021, 3, 696–703. [CrossRef]

10. Brett, C. Electrochemical Impedance Spectroscopy for Characterization of Electrochemical Sensors and Biosensors. ECS Trans.
2019, 13, 67–80. [CrossRef]

11. Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. Electrical Impedance Spectroscopy (EIS) characterization of saline solutions with a
low-cost portable measurement system. Eng. Sci. Technol. Int. J. 2019, 22, 102–108. [CrossRef]

12. Pwavodi, P.C.; Ozyurt, V.H.; Asir, S.; Ozsoz, M. Electrochemical Sensor for Determination of Various Phenolic Compounds in
Wine Samples Using Fe3O4 Nanoparticles Modified Carbon Paste Electrode. Micromachines 2021, 12, 312. [CrossRef] [PubMed]

13. Rewatkar, P.; Bandapati, M.; Goel, S. Optimized bucky paper-based bioelectrodes for oxygen-glucose fed enzymatic biofuel cells.
IEEE Sens. J. 2018, 18, 5395–5401. [CrossRef]

14. Paul, T.; Seal, M.; Banerjee, D.; Ganguly, S.; Kargupta, K.; Sandilya, P. Analysis of drying and dilution in phosphoric acid fuel
cell (PAFC) using galvanometric study and electrochemical impedance spectroscopy. J. Fuel Cell Sci. Technol. 2014, 11, 041001.
[CrossRef]

15. Antunes, R.; Golec, T.; Miller, M.; Kluczowski, R.; Krauz, M.; Krząstek, K. Geometrical optimization of double layer LSM/LSM-
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