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Abstract

Motivation: Knowledge Graph (KG) is becoming increasingly important in the biomedical field. Deriving new and re-
liable knowledge from existing knowledge by KG embedding technology is a cutting-edge method. Some add a var-
iety of additional information to aid reasoning, namely multimodal reasoning. However, few works based on the
existing biomedical KGs are focused on specific diseases.

Results: This work develops a construction and multimodal reasoning process of Specific Disease Knowledge
Graphs (SDKGs). We construct SDKG-11, a SDKG set including five cancers, six non-cancer diseases, a combined
Cancer5 and a combined Diseases11, aiming to discover new reliable knowledge and provide universal pre-trained
knowledge for that specific disease field. SDKG-11 is obtained through original triplet extraction, standard entity set
construction, entity linking and relation linking. We implement multimodal reasoning by reverse-hyperplane projec-
tion for SDKGs based on structure, category and description embeddings. Multimodal reasoning improves pre-
existing models on all SDKGs using entity prediction task as the evaluation protocol. We verify the model’s reliability
in discovering new knowledge by manually proofreading predicted drug–gene, gene–disease and disease–drug
pairs. Using embedding results as initialization parameters for the biomolecular interaction classification, we dem-
onstrate the universality of embedding models.

Availability and implementation: The constructed SDKG-11 and the implementation by TensorFlow are available
from https://github.com/ZhuChaoY/SDKG-11.

Contact: liulei_sibs@163.com or zonefan@163.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge Graph (KG) is a way to store knowledge and reveal the
dynamic development law of a field. KG represents facts in the real-
world through a large number of triplets (head entity, relation and
tail entity), denoted as ðh; r; tÞ. Large integrated KGs like Freebase
(Bollacker, 2008) and DBpedia (Lehmann et al., 2015) keep expand-
ing. They have been successfully used in many applications, such as
recommendation systems (Wang et al., 2019a) and question answer-
ing (Huang et al., 2019).

In the field of biomedicine, the application of KG is becoming in-
creasingly popular for its specialized knowledge that only domain
experts can understand well (Mohamed et al., 2021). The influential
roles of KG in predicting protein drug targets Mohamed et al.
(2020) and adverse drug reactions (Zhang et al., 2021) are both

convincing examples. The triplets of biomedical KGs can be manual-
ly filled out by experts or automatically extracted from Electronic
Medical Records (EMRs) and literature (Li et al., 2020). The former
is labor-intensive for large-scale KGs; While the latter is becoming
more effective benefit from the rapid improvement of natural lan-
guage processing.

Most existing biomedical KGs focus on particular subfields, such
as DrugBank (Wishart et al., 2018) for drugs and UniProt (UniProt
Consortium, 2019) for proteins. However, these subfields are div-
ided at the entity level, and few KGs focus on specific diseases.
Specific Disease Knowledge Graph (SDKG) mainly focuses on the
knowledge of a particular disease, which can play a more profes-
sional role in guiding the causes, treatments and prognoses of the
disease. Recently, in response to the COVID-19, over three associ-
ated SDKGs had been constructed for drug repurposing (Al-Saleem
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et al., 2021; Che et al., 2021; Zhang et al., 2021). A chronic ob-
structive pulmonary disease (COPD) SDKG was established to assist
in diagnosing early curable stage COPD (Fang et al., 2019). There
was also a melanoma SDKG built to support precision medicine
(Kang et al., 2020). Considering the event that it is hard to access all
the knowledge from literature (e.g. all PubMed abstracts), limiting
to several diseases allows for a greater concentration of valid infor-
mation. We consider 11 diseases in this work, named SDKG-11,
including 5 cancers (colon cancer, gallbladder cancer, gastric cancer,
liver cancer and lung cancer) and 6 non-cancer diseases (Alzheimer’s
disease, COPD, coronary heart disease, diabetes, heart failure and
rheumatoid arthritis). The morbidity and mortality of these diseases
are significantly high, seriously threatening people’s lives (WHO,
2016). Especially, lung cancer, colon cancer, liver cancer and gastric
cancer ranked the top four in the global cancer mortality rate in
2020 (Sung et al., 2021).

Since new biomedical knowledge is being presented every day,
almost all constructed biomedical KGs are incomplete (Nickel et al.,
2016). In addition to the methods mentioned above, new knowledge
can also be reasoned by the existing knowledge. Knowledge Graph
Embedding (KGE) has recently emerged as a paradigm for KG rea-
soning (Alshahrani et al., 2021; Wang et al., 2017). KGE maps enti-
ties and relations into a low-dimensional vector space, using simple
mathematical calculations instead of explicitly defining the reason-
ing process, improving computational efficiency vastly. KGE model
defines a scoring function f ðh; r; tÞ to measure the probability of the
existence of a triplet (Bordes et al., 2013). To improve the reasoning
effectiveness, some models aim to strengthen the expressive ability
of the scoring function (Nguyen et al., 2018; Wang et al., 2014),
and some multimodal models add additional information, such as
categories (Xie et al., 2016) and descriptions (Nie and Sun, 2019).

This study proposes a complete SDKG construction and multi-
modal reasoning process. Firstly, we constructed the original
SDKGs from biomedical literature. Secondly, we built the standard
entity set from specialized biomedical databases. Then, we refined
the original SDKGs by entity linking and relation linking to obtain
SDKG-11. Finally, we reasoned on the SDKGs by multimodal KGE
model. To verify the reliability of inferential knowledge, we manual-
ly proofread the predicted drug–gene, gene–disease and disease–
drug pairs. To demonstrate the universality of embedding results,
we served them as pre-trained knowledge for biomolecular inter-
action classification.

2 Materials and methods

2.1 Original triplet extraction
Based on the aliases of 11 selected diseases (Supplementary
Appendix S1), we extract triplets from the titles, running titles, key-
words, abstracts and conclusions of PubMed indexed literature pub-
lished between 1980 and 2020. We only consider journals with an
impact factor no <2.0 of the year 2020.

Triplet extraction has two main steps: Named Entity
Recognition (NER) Wang et al. (2019b) and Relation Extraction
(RE) (Sangrak and Kang, 2018). NER identifies biomedical entities
from literature texts, and we use Att-BiLSTM-CRF (Luo et al.,
2018) to accomplish that. RE extracts the relation among these enti-
ties identified by the NER, which is performed by a combination of
BiLSTM (Kiperwasser and Goldberg, 2016) and ResNet (He et al.,
2016).

We integrate all the extracted triplets of each specific disease as
original SDKG, combine the five cancers as a Cancer5 KG, and
build a Disease11 KG consisting of all the 11 diseases. In addition,
we record the complete sentence of each original triplet’s proven-
ance for subsequent processing. Figure 1 is the flow chart for this
section.

2.2 Standard entity set
Biomedical entity names are easily plagued by synonymy and poly-
semy phenomena, which will increase the unreliability and redun-
dancy of KG. For the former, ‘HCC’ and ‘liver cancer’ may both

mean the entity ‘hepatocellular carcinoma’. This step builds a stand-
ard entity set containing all the synonymies so that the same entities
can point to a unique node. For the latter, besides denoting a dis-
ease, ‘HCC’ also corresponds to two genes, a phenotype, and a small
molecule (Fig. 2). It will be addressed by entity disambiguation in
Section 2.3.1.

There are 165 062 biomedical entities in the standard entity set
(Table 1), all of which are extracted from their specialized data-
bases. Among them, genes are extracted from NCBI-Gene (Brown
et al., 2015), miRNAs from MirBase (Kozomara et al., 2019), pro-
teins from UniProt (UniProt Consortium, 2019), small molecules
from ChEBI (Janna et al., 2016), drugs from DrugBank (Wishart
et al., 2018), phenotypes from HPO (Köhler et al., 2019) and dis-
eases from OMIM (Amberger et al., 2015). We encode all entities
with type-serial numbers like ‘gene-00001’. We also extract their
functional annotations (category and description) to support subse-
quent multimodal reasoning.

Category annotations are particular for each entity type. For ex-
ample, the category annotation of a protein includes its status
(‘Experimental evidence at protein level’, etc.) and its Gene
Ontology (The Gene Ontology Consortium, 2019) annotations.
Besides, entity type (gene, disease, etc.) is treated as a particular cat-
egory. The detailed category annotations are provided in
Supplementary Appendix S2.

Description annotations consist of multiple text contents con-
catenated in order of importance. For example, the description an-
notation of a disease is attached by summary, clinical features,
molecular genetics, mapping and inheritance texts. As some descrip-
tions are empty characters, we use the splice of all synonymies in-
stead. The detailed description annotations are provided in
Supplementary Appendix S3.

2.3 Specific disease KG construction
2.3.1 Entity linking

Original triplets extracted from literature should be linked to the
standard entity set. Firstly, we perform entity normalization for ori-
ginal entities and synonymies in the standard entity set, including
outlier screening, token stem processing and token reorder. Then,
we link original entities to the standard entity set with the principle
of string complete matching. Since a synonymy may appear in mul-
tiple standard entities, we build an end-to-end entity disambiguation
model to select the most suited standard entity for 1-to-N mapping
pairs.

Using the contexts of original entities (i.e. complete sentences)
and the contexts of standard entities (i.e. description annotations) as
inputs, the disambiguation model outputs the matching score
through an encoder and a Fully Connected layer. We serve all 1-to-1
mapping pairs as the positive set and generate a negative set of equal
numbers for them. The combination of these two sets is then ran-
domly divided into a training set (90%) and a validation set (10%).

We apply a pre-training language model BERT (Devlin et al.,
2019), and its biomedical version BioBERT (Lee et al., 2019), as
encoders, respectively. They both perform fine-tuning by 10 epochs,
and their accuracies are checked on the validation set. Figure 2 is the
structure and an example of this step. More information about the
pre-training language models and the complete training details are
provided in Supplementary Appendices S4 and S5.

2.3.2 Relation linking

The main problems of biomedical relations are noises and synonymy
phenomena, so we perform relation normalization for all original
relations. Besides outlier screening and token stem processing, we
also do part-of-speech tagging and keep only nouns, verbs and
adverbs. Unlike entities, relations are not numerous, and lack a
standard set to match. Therefore, we build a mapping dictionary
manually for frequently occurring relations with reference to a built
relation hierarchy structure (Zhao et al., 2019). For instance, the
relations ‘related’ and ‘correlated’ are both represented by the rela-
tion ‘associate’.
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2.4 Knowledge graph embedding
We build the multimodal reasoning model by three parts: structure
embedding (S), category embedding (C) and description embedding
(D). For each SDKG, we randomly divide it into a training set
(80%), a validation set (10%) and a test set (10%), ensuring that all
entities and relations have appeared in the training set.

2.4.1 Structure embedding

We apply three representative models, TransE (Bordes et al., 2013),
TransH (Wang et al., 2014) and ConvKB (Nguyen et al., 2018) as
structure embedding parts, respectively.

TransE believes that if a triplet exists, its vector representations
should conform to: hþ r � t. Its structure embedding is defined as:

Fig. 1. Flow chart of original triplet extraction. An example is shown in the bottom of the figure

Fig. 2. The structure and an example of entity linking. The [CLS] and [SEP] symbols are the start and delimiter tokens in the (Bio)BERT. The original entity ‘HCC’ matches to

five standard entities (‘disease-0272’, ‘gene-16095’, ‘gene-25343’, ‘phenotype-04723’ and ‘small_molecule-09152’) by entity normalization and string complete matching. The

brown sentence is the text that extracted the ‘HCC’ entity, while the green, orange, blue, purple and red sentences are the description annotations of the five standard entities.

They are input into the trained model, and the result shows that this ‘HCC’ entity corresponds to ‘disease-0272’ with the highest score 0.6241

Table 1. Statistic of standard entity set

Entity type Number Number of category Description coverage (%)

Gene 44 570 5 35.77

miRNA 4650 2 00.00

Protein 21 722 4 91.31

Small molecule 57 130 0 83.11

Drug 13 790 3 60.02

Phenotype 13 692 0 78.02

Disease 9508 1 85.01

Note: The last two columns indicate the number of category annotations

and non-empty character percentage of description annotations for each en-

tity type.
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STransE h; r; tð Þ ¼ hþ r� t:

Despite its simplicity and efficiency, TransE cannot handle non-
1-to-1 relations. TransH introduces a hyperplane normal vector wr

for each relation r so that each entity has a different vector represen-
tation facing foreign relations. While ConvKB incorporates the prin-
ciple of TransE: hþ r� t, and the convolution operation makes the
model more parameter-efficient. Their structure embeddings are
defined as:

STransHðh; r; tÞ ¼ ðh�wT
r hwrÞ þ r� ðt �wT

r twrÞ;
SConvKBðh; r; tÞ ¼ ReLUð½h; r; t� � XÞ;

where matrix ½h; r; t� is the concatenation of a triplet, � is the convo-
lution operator, X is the concatenate of filters (initialized as a 1� 3
vector ½0:1; 0:1; � 0:1�) and ReLU xð Þ ¼ maxðx;0Þ.

2.4.2 Category embedding

We first randomly initialize a category embedding matrix with the
same dimension as structure embedding, which will be learned joint-
ly with structure embeddings. Then we take the mean value of
embedding vectors of entity e’s all categories as its category
embedding:

ec ¼
1

jecj
X

c2ec
c;

where ec is the category set of e. The category embedding of a triplet
is defined as:

C h; r; tð Þ ¼ hc � tc:

2.4.3 Description embedding

We use BioBERT to convert description annotations into comput-
able vectors. The description embedding of entity e is defined as:

ed ¼WD
TBioBERT edð Þ;

where ed is the description annotation of e, and WD is a weight ma-
trix. We train the description embedding of all entities in advance by
10 fine-tuning epochs and fixed them as characteristic inputs. The
description embedding of a triplet is defined as:

D h; r; tð Þ ¼ hd � td:

2.4.4 Multimodal learning

Cross-embedding (Tang et al., 2019; Xie et al., 2016) and hyper-
plane projection (HP) (Guan et al., 2019; Xiao et al., 2017) are two
traditional multimodal learning methods. The cross-embedding
scoring function for TransE is defined as:

f h; r; tð Þ ¼ � h� rþ tj jj j2
2

�
X

M2 C;Df g
hM � rþ tj jj j22 þ h� rþ tMj jj j22

� �
;

and similar formulas for TransH and ConvKB. In the HP method,
category and description embeddings are regarded as two normal
vectors (Fig. 3A). However, we believe that structure embedding
should be the core part of multimodal learning, since it contains es-
sential knowledge from literature. Hence, we propose reverse-
hyperplane projection (reverse-HP), which regards the structure
embedding as the hyperplane (Fig. 3B). On the one hand, we want
to minimize the module of structure embedding vector, which is
consistent with the original intention of structure embedding; on the
other hand, we wish to maximize the projections of category and de-
scription embeddings on structure hyperplane, that fully extract the
meanings of annotations. The results of this work are based on
reverse-HP after comparison (Fig. 4).

For TransE and TransH, the final scoring functions of reverse-
HP are defined as:

f h; r; tð Þ ¼ � Sj jj j22 þ
X

M2 C; Df gkM M� S�
TMS�

�� ���� ��2
2;

where S� ¼ S=jjSjj22, kC and kD are weight parameters. And the loss
function is defined as:

L ¼
X

h;r;tð Þ2Gþ ;ðh0 ;r0 ;t0 Þ2G�
ReLUðc� f h; r; tð Þ þ f h

0
; r
0
; t
0� �
Þ;

where c is a margin hyper-parameter, Gþ represents the positive
triplet set, and G� represents the artificially generated negative trip-
let set by Bernoulli trick (Wang et al., 2014).

For ConvKB, the final scoring function is defined as:

f h; r; tð Þ ¼ �WS
Tvec Sð Þ þ

X
M2 C; Df gkMWS

Tvec M� S�
TMS�

� �
;

where WS is a weight matrix, vecð�Þ transforms a matrix into a vec-
tor of equal elements. And the loss function is defined as:

L ¼
X

h;r;tð Þ2Gþ[G�
logð1þ exp �yhrt � f h; r; tð Þ

� �
Þ;

where yhrt ¼ 1 if h; r; tð Þ 2 Gþ, else yhrt ¼ �1.

2.4.5 Experimental setup

We use the Adam optimizer (Kingma and Ba, 2014) to minimize the
loss function on the training set, finding the optimal hyper-parameters
by grid search strategy on the validation set, evaluating the model on
the test set. The search scopes of hyper-parameters are: embedding size
k 2 f100; 200g, margin c 2 f0:2; 0:6; 1:0g, number of filters
n�f 2 f10; 20; 30g, learning rate l�r 2 f5� 10�4; 10�3; 5� 10�3g,
k 2 f0:0; 0:1; 0:2; 0:3; 0:4; 0:5g. In addition, we fix the batch size
to be 1/40 of the training set size, and the max training epochs is 1000.
All the embeddings are initialized by Glorot initialization (Glorot and
Bengio, 2010) with the boundary of ð�

ffiffiffiffiffiffiffiffi
6=k

p
;

ffiffiffiffiffiffiffiffi
6=k

p
Þ.

The evaluation protocol of KGE models is the entity prediction
task, namely, given an entity and a relation, predict another entity.

Fig. 3. The schematic of (A) hyperplane and (B) reverse-HP. Orange for structure,

blue for category and green for description one. The dashed lines represent normal

vectors, which should be normalized to unit normal vectors

Fig. 4. Comparison of multimodal learning methods. Blue, green and red lines repre-

sent SþC, SþD and SþCþD configurations. HP and reverse-HP are denoted by

dotted and solid lines, respectively. The yellow line represents cross-embedding.

Triangles and dots represent the optimal k� for that annotation.
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Our evaluation metric is the mean rank (MR) of correct answers.
Note that lower MR means better performance, and we only con-
sider the ‘filter’ setting (Wang et al., 2014). We also evaluate on
PharmKG (Zheng et al., 2021), a dedicated KG benchmark for bio-
medical data mining. Since there are no entity category and descrip-
tion annotations for PharmKG, we annotate the overlap part with
the standard entity set and override the rest with null values.

In experiments, we consider the following four configurations:

1. S stands for using structure embedding only (kC ¼ 0; kD ¼ 0).

2. S þ C stands for using structure and category embeddings

(kC 6¼ 0; kD ¼ 0).

3. S þ D stands for using structure and description embeddings

(kC ¼ 0; kD 6¼ 0).

4. S þ C þ D stands for using all the three embeddings simultan-

eously (kC 6¼ 0; kD 6¼ 0).

2.5 Verification
2.5.1 Statistical superiority test

To test the superiority of the selected model and configuration, we
perform a multivariate Analysis of Variance (ANOVA) on the score
rank. Due to the non-normal rank distribution, we employ the ro-
bust ANOVA based on median and median-of-means estimations
using R package WSR2 (Mair and Wilcox, 2020). Further, one-
tailed Wilcoxon tests are used as the post hoc tests from another
perspective.

2.5.2 Reliability of inferred knowledge

We perform the KG completion task on drug–gene, gene–disease
and disease–drug pairs. For all the possible pairs, we calculate their
scores (all relations are substituted into and retain the highest score)
by the trained scoring function on each SDKG. We assume the top-
scored inferred items (not in the training set) with a scale of 10% of
the training set size as reliable new inferred knowledge. Then, they
are combined with existent knowledge to construct comprehensive
networks, which are illustrated by Cytoscape (Su et al., 2014).

We further compare the disease–gene prediction result with
advanced network-based methods, LINE (Tang et al., 2015),
Node2vec (Grover and Leskovec, 2016) and HerGePred (Yang
et al., 2019). Association Precision (AP) is served as an evaluation
metric:

AP ¼
X

d2D
jT dð Þ \ P dð Þj=

X
d2D
jT dð Þj;

where D is the test disease set, T dð Þ represents the test gene set of
disease d and P dð Þ is the top T dð Þ predicted gene set.

In terms of clinical significance, we are especially interested in
new inferred disease–drug pairs with potential clinical applications.
We perform co-clustering by CoClust (Role et al., 2019) for compre-
hensive disease–drug pairs, which is a Python package based on K-
means clustering for one-zero variables. We set the number of clus-
ters of each bilateral clustering as two because diseases can be div-
ided into cancerous and non-cancerous, and the same for drugs.

2.5.3 Universality of embedding models

We use embedding results as initialization parameters for the bio-
molecular interaction classification task, whose dataset is
extracted from Pathway Commons v12 (Rodchenko et al., 2019).
We aim to predict the interaction in an entity pair by two steps:
Step 1 to judge whether an entity pair interacts (manually generate
an equal number of non-interacting entity pairs), then Step 2 to
predict which kind of interaction between the interacting entities
has. Finally, the overall prediction accuracy is calculated
by: Acc Interactingð Þ � Acc Step 2ð Þ þ Acc Non� interactingð Þ½ �=2.

The initial embeddings of all entities will depend on the follow-
ing five configurations: NONE stands for Glorot random initializa-
tion, while P, PþC, PþD and PþCþD stand for initialized by
pre-trained embedding results of S, SþC, SþD and SþCþD

configurations, respectively. Dataset description, model structure
and training details are provided in Supplementary Appendix S6.

3 Results

3.1 Specific disease KGs
In the entity disambiguation step, BioBERT and BERT both con-
verge within 10 fine-tuning epochs, showing the incredible power of
the pre-training language model. And they achieve 91.3% and
90.6% accuracy on the validation set, respectively. Therefore, we
use the results of entity disambiguation by BioBERT in the following
analyses (Table 2). In the relation linking step, all the constructed
SDKGs have 67 relations, mapped by relation hierarchy structure.

3.2 Entity prediction
From MR comparisons (Table 3) and statistical analyses of robust
ANOVA and post hoc Wilcoxon tests (Supplementary Table S1), we
can observe that:

1. ConvKB achieves the best performance in most conditions with

statistical significance.

2. Among the 14 KGs and 3 structure embedding algorithms, 35

S þ C þ D configurations achieve the best performance (0 for S

and S þ C, 8 for S þ D). However, the superiority of S þ C þD

over S þ D lacks statistical significance.

3. PharmKG has a comparably slight lift, since it is only partially

annotated.

3.3 Comparison of multimodal learning
Figure 4 shows how performance (MR of the Disease11) changes by
varying kC and kD for HP and reverse-HP, respectively, one fix at 0
when another change from 0 to 0.6 (we assume that kC and kD are
independent, because they are the weights of two parts). We can see
that HP outperforms reverse-HP initially, but reverse-HP is consist-
ently better as k increases. In comparing with cross-embedding,
SþC þ D configuration of both HP and reverse-HP perform better
with the appropriate kC

� and kD
�.

3.4 New knowledge inference
According to the criteria that 10% scale of the corresponding train-
ing set size, we finally obtain reliable new inferred knowledge of
drug–gene, gene–disease and disease–drug pairs by ConvKB
(S þ C þ D) (Supplementary Tables S2–S4). These results may be
new discoveries that are the potential research directions. Table 4
lists the top 10 new inferred pairs of the Disease11. Respectively, 8,
9 and 9 evidences from literature can be found for 10 pairs of these

Table 2. Statistics of the specific disease KGs

Type SDKG Original Constructed

#Triplet #Entity #Triplet #Entity

Cancers Colon cancer 360 695 95 837 53 858 8085

Gallbladder cancer 36 865 13 286 4227 1585

Gastric cancer 155 657 48 257 25 514 4854

Liver cancer 515 371 142 564 76 723 10 186

Lung cancer 383 582 117 338 59 262 8723

Cancer5 1 387 710 301 460 197 009 15 258

Non-cancers Alzheimer’s disease 159 459 43 288 22 929 4427

COPD 30 154 11 235 4981 1615

Coronary heart disease 101 801 29 582 14 780 3332

Diabetes 408 433 86 341 71 036 7886

Heart failure 104 212 36 203 17 430 4457

Rheumatoid arthritis 129 710 36 985 17 679 3725

Disease11 2 305 019 438 993 332 937 19 416
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Table 3. MR comparisons on each constructed SDKG under three structure embedding algorithms and four configurations

Model TransE TransH ConvKB

SDKG\configuration S SþC SþD SþCþD S SþC SþD SþCþD S SþC SþD SþCþD

Colon cancer 749 644 608 606 708 640 576 587 653 604 549 550

Gallbladder cancer 238 230 192 189 225 219 197 185 203 174 157 154

Gastric cancer 474 412 377 376 470 417 378 390 390 363 338 333

Liver cancer 912 788 745 735 869 769 711 704 802 720 629 627

Lung cancer 830 702 669 675 805 710 663 645 709 646 564 566

Cancer5 1157 1015 900 892 1105 1043 926 914 1045 957 820 804

Alzheimer’s disease 433 382 354 341 388 360 321 309 352 318 293 281

COPD 222 194 185 182 210 181 174 174 175 155 145 144

Coronary heart disease 341 298 277 267 336 302 283 270 294 260 226 217

Diabetes 594 527 463 462 544 503 460 461 501 455 401 399

Heart failure 527 474 421 419 483 445 412 411 441 409 348 353

Rheumatoid arthritis 438 391 337 336 389 360 319 318 334 314 292 291

Disease11 1246 1101 969 956 1176 1095 981 968 1074 984 874 867

PharmKG 290 277 263 255 274 265 257 254 254 244 239 236

Note: The best configuration under each structure embedding algorithm is noted in bold. The best configuration for each SDKG is noted in underlining.

Table 4. Validation of the top 10 drug–gene, gene–disease and disease–drug pairs

Pair type Rank Score Head entity Tail entity PubMed evidence

Drug–gene 39 18.522 Interferon gamma IFNB1 29 313 175

51 17.990 Nerve growth factor NGF Equivalent

54 17.874 Interferon alfa IL22 30 976 912

58 17.817 Interferon gamma CASP3 22 785 177

121 16.370 Insulin beef FGF21 29 987 000

122 16.086 Interferon kappa IFNG \

140 16.086 Thrombin CD177 \

154 15.814 Docetaxel SERPINB3 21 695 460

159 15.534 Interferon gamma IFNG Equivalent

175 15.375 Interleukin-7 FOXP3 32218828

Gene–disease 114 23.200 MMP12 Pulmonary fibrosis 33 065 600

260 21.234 HMGA2 Bladder cancer 31 053 526

452 19.706 YAP1 Squamous cell

carcinoma

32 206 709

565 19.159 TIMP1 Sarcoidosis 26 240 517

573 19.098 GPI Ovarian cancer \

596 19.015 IRF8 Autoimmune disease 30 285 234

602 18.988 TNFRSF25 Lupus erythematosus 22 666 553

645 18.789 SATB1 Squamous cell

carcinoma

32 451 408

654 18.755 DLEC1 Ovarian cancer 30 324 802

662 18.726 EPHA2 Breast cancer 33 962 882

Disease–drug 37 16.939 Biliary cirrhosis Interferon alfa 23 291 480

128 14.023 Wilson disease Iron 33 680 437

151 13.373 Depressive disorder Glutathione 26 706 022

180 12.863 Obesity Albumin human 22 230 555

217 12.443 MODY Insulin human 27 103 109

272 11.815 MODY1 Insulin human 28 684 784

274 11.803 Burkitt lymphoma Fibronectin 19 625 084

320 11.356 Pancreatic cancer Insulin-like growth

factor II

28 420 208

356 11.026 Diabetes I Vitamin D3 33 069 738

383 10.744 Lamellar ichthyosis Ethanol \

Note: The Rank column also ranks the pairs in the training set. Equivalent means that drug and gene refer to the same biological concept, so we treat it as a cor-

rect prediction.
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three types, which fully demonstrate the reliability of our model in
discovering new knowledge. And the pairs for which no evidence
has been found may be some findings that beyond the scope of cur-
rent knowledge.

For the disease–gene prediction task (Table 5), all the disease–
gene networks constructed by ConvKB and other three advanced
network-based methods, SDKGs have relatively small AP due to
domain-induced incompleteness. Nevertheless, ConvKB outper-
forms network-based methods, thanks to the relation embedding
and multimodal annotations to compensate for network
incompleteness.

Figure 5 shows the networks containing all the entities that are
linked by inferred edges. The node in the center of each network is
the disease itself, which is mostly connected by existent knowledge
(black edges) as expected. Our model then reasons out new potential

Table 5. AP of disease–gene prediction results based on SDKGs

SDKG\methods LINE Node2vec HerGePred ConvKB

Colon cancer 0.0492 0.0431 0.0529 0.0683

Gastric cancer 0.0349 0.0403 0.0430 0.1020

Liver cancer 0.0368 0.0314 0.0378 0.0650

Lung cancer 0.0132 0.0286 0.0317 0.0782

Alzheimer’s disease 0.0316 0.0150 0.0382 0.1080

COPD 0.0578 0.0751 0.0636 0.0983

Diabetes 0.0043 0.0281 0.0583 0.0540

Rheumatoid arthritis 0.0573 0.0466 0.0717 0.1111

Note: Bold number stands for the best method on that SDKG. We only list

the SDKGs with
P

d2D T dð Þ
�� �� � 100. ConvKB on SþCþD configuration.

Fig. 5. Networks contain inferred (green edges) and existent (black edges) knowledge. Yellow, red and blue nodes denote gene, disease and drug entities, respectively
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knowledge (green edges) based on this core knowledge of the specif-
ic disease field.

3.5 Application of the inferred knowledge
From the drug–disease part in the Disease11 (Fig. 6A), we can ob-
serve that: in most cases, anticancer drugs are used to treat cancer
and vice versa. Although non-anticancer drugs are also used exten-
sively in cancer treatment, the reverse is not true. Most of the new
inferred disease–drug pairs are in the field of anticancer drugs to
treat cancer. This means expanding some anticancer drugs to more
types of cancer will be the mainstream direction of drug repurpos-
ing. There are plenty of potential clinical applications of repurposing
non-anticancer drugs in their original field to treat non-cancerous
diseases. However, repurposing of non-anticancer drugs in carcin-
oma can be rarely inferred from existing knowledge. They should be
mainly dependent on some subversive discoveries beyond current
knowledge.

Further, we focus on fdrug, gene, diseaseg closed-triplets for the
mutual corroboration of both reliability and systematicness. The

desired closed-triplet consists of each node type and contains at least
one new inferred edge (Supplementary Table S5). On the one hand,
we can get more evidence support from the other two edges of the
triplet; on the other hand, the triplet itself is a logically closed loop
that can naturally form a proposition that ‘Gene associates Disease,
and Drug effects on Disease by influencing Gene (products)’. Take
an example from the Cancer5, we discover a cluster of vitamin D3
centric closed-triplets (Fig. 6B). Vitamin D3 has been predicted to
prevent or alleviate breast cancer, and the effects may work through
genes, such as IL10. The effects of vitamin D3 on gene IL10
(Boontanrart et al., 2016) and IL10 plays an essential role in breast
cancer (Moghimi et al., 2018) have both been studied. While some
studies partly supported our predictions that vitamin D3 may pre-
vent or alleviate breast cancer (Wu et al., 2017) but without direct
evidence.

3.6 Pre-trained biomolecular interaction classification
Table 6 shows the biomolecular interaction prediction result by
ConvKB of the Disease11, from which we can observe that:

Fig. 6. (A) Co-clustering result for comprehensive disease–drug pairs on the KG combining all the 11 diseases. These pairs are automatically grouped into four distinct clusters

(I: anticancer drugs 	 non-cancer diseases; II: non-anticancer drugs 	 non-cancer diseases; III: anticancer drugs 	 cancers; and IV: non-anticancer drugs 	 cancers). Red and

gray nodes denote inferred and existent knowledge, respectively. (B) A cluster of 15 fdrug, gene, diseaseg closed-triplets with vitamin D3 and breast cancer nodes have emerged

in the Cancer5 after reasoning. The inferred and existent edges are in green and black, respectively
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1. Although NONE and P configurations have the same structure,

initialized with structure embedding achieves better prediction

accuracy than random initialization. It strongly supports the uni-

versality of pre-trained embedding.

2. P þ C þ D configuration has the highest prediction accuracy in

all steps. It indicates that multimodal learning can further im-

prove the performance of biomolecular interaction classification.

3. In Step 2, some interactions (controls-phosphorylation-of and

reacts-with) have a rather low prediction accuracy, mainly due

to their rather small sample sizes.

4 Discussion

The SDKG-11 is constructed based on biomedical literature, and the
build process produces large-scale original triplets almost without
human intervention. As a highly condensed knowledge carrier, bio-
medical literature contains virtually all the knowledge that has been
discovered and is being studied. Thus, it should be an ideal source of
triplet extraction. As for another primary source of biomedical
knowledge, EMR has low overall data quality, with a lot of unfore-
seen noise, and varies widely across regions. However, one of the
most significant advantages of EMR-based triplet extraction is that
it is more clinical and real-world (Li et al., 2020). Therefore, we
would like to combine literature with EMR to build comprehensive
SDKGs containing real-world data next.

At the model level, we evaluate TransE, TransH and ConvKB as
structure embedding parts, and the experimental result shows that
ConvKB is the most efficient one. The main reason is that ConvKB
not only considers the transitional characteristics of TransE, but
also takes advantage of the effectiveness of the convolutional neural
network. If we intend to consider more advanced structure embed-
dings, graph neural network-based KGE model would be a solid
choice due to its natural fit structure with the KG. The combination
of KG and graph convolutional networks (Schlichtkrull et al.,
2018), as well as KG and graph attention networks (Che et al.,
2021; Nathani et al., 2019), both have been studied. We consider
that serving multimodal embedding as multiple features of the
graph’s nodes would be a promising attempt.

As for multimodal learning, we apply reverse-HP rather than cross-
embedding nor HP. Cross-embedding combines structure embedding
with other modal embeddings, but cannot adjust the weight of each
modal embedding. Previous HP models only considered description

hyperplane, and their description embeddings were generated by topic
model (Xiao et al., 2017) and skip-gram model (Guan et al., 2019). In
this work, the weight parameters represent the contribution degree of
each annotation with certain interpretability. Both category and de-
scription annotations can promote the inference effect (Fig. 4), because
they make up the incompleteness of SDKGs to some extent, and pro-
vide new knowledge sources for structure embedding. We also observe
that description annotation is better than category annotation, since
the former has much more information. Moreover, when there is al-
ready description annotation (SþD), adding category annotation
(SþCþD) will not improve much. Suppose, we intend to consider
more modal annotations, image annotation (e.g. structure schematics
of proteins and drugs) is the most likely annotation to be added (Xie
et al., 2017). In addition, the annotation of relation (Tang et al., 2019)
and multi-omics (Zheng et al., 2021) are also potentially promising
directions.

From the perspective of knowledge relevance, triplets from the
literature of each specific disease are more focused. However, con-
sidering the completeness of information from the perspective of
‘big data’, we highly recommend combining all available informa-
tion into one corpus, since some inferred knowledge from one
SDKG may already exist in another SDKG. Next, we will try to ex-
tract knowledge from more general themes, such as ‘cancer’ or ‘dis-
ease’ to construct the initial KG.

5 Conclusion

In this work, we have proposed a complete specific disease KG con-
struction and multimodal reasoning process. We have constructed
SDKG-11, a SDKG set including five cancers, six non-cancer diseases,
a combined Cancer5 and a combined Diseases11. We have evaluated
our multimodal KGE model by entity prediction task and verified in
some instances. We have then demonstrated the influential role of the
learned embedding in the downstream biomedical task. All of the
above suggests that the new knowledge, we reasoned is reliable, and
the embeddings, we learned are universal. They can be helpful for re-
search and clinical staffs in the field of some specific diseases.
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